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Preface

The first International Modelica Conference took place in October 2000 in Lund, Sweden. Since
then, Modelica has increasingly become the preferred language tool for physical modelling of complex
systems. This is indicated by the high number of registrations from industry and science at the 6th

International Modelica Conference held between 3rd and 4th March 2008 at the University of Applied
Sciences, Bielefeld, Germany. It is also indicated by the number of excellent papers submitted to the
program committee which made the task of selecting papers for oral and poster presentation very
difficult and, last but not least, by the exhibition during the conference at which several companies
will be represented. This volume contains the papers of the 68 oral presentations and 14 poster
presentations at the conference. The ability of Modelica as a multi domain simulation language is
demonstrated impressively by the various fields the papers are covering.

Due to the special features of the Modelica language, such as object-oriented modelling and the
ability to reuse and exchange models, Modelica strongly supports an integrated engineering design
process. Thus in various fields Modelica has become the standard tool for model exchange between
suppliers and OEM’s. A key issue for the success of Modelica is the continuous development of the
Modelica language as well as the Modelica Standard Library under strict observance of compatibility
to previous versions by the Modelica Association. The broad base of private and institutional mem-
bers of the Modelica Association as a non-profit organization ensures language stability and security
in software investments.

The 6th International Modelica conference was organized by the Modelica Association and by the
University of Applied Sciences, Bielefeld, Germany. I would like to thank the local organizing commit-
tee, the technical program committee and the reviewers for offering their time and expertise throughout
the organization of the conference. Together with the entire team of the local organizing committee I
would like to wish all participants an excellent and fruitful conference.

Bielefeld, March 1st, 2008

Bernhard Bachmann
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Reuterswärd, Philip: Modelon AB, Lund, Sweden

The Modelica Association XVIII Modelica 2008, March 3rd − 4th, 2008



Index of Authors

Real-Time HWIL Simulation of Liquid Food Process Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Richter, Christoph: Braunschweig University of Technology, Braunschweig, Germany

ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. . . .157
Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented

Library TIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration

Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Sasena, Michael: Emmeskay, Inc., Plymouth, U.S.A.
Model Embedded Control: A Methode to Rapidly Synthesize Controllers in a Modeling

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Savaresi, Sergio M.: Politecnico di Milano, Milano, Italy

Object Oriented Modeling of a Gasoline Direct Injection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Scattolini, Riccardo: Politecnico di Milano, Milano, Italy

Object Oriented Modeling of a Gasoline Direct Injection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Schallert, Christian: German Aerospace Center, Oberpfaffenhofen, Germany

Incorporation of Reliability Analysis Methods with Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Schei, Tor Steinar: Cybernetica AS, Trondheim, Norway

Model-Based Optimizing Control and Estimation using Modelica Models . . . . . . . . . . . . . . . . . . . . 301
Schicktanz, Matthias: Fraunhofer Institut, Freiburg, Germany

Modelling of an Adsorption Chiller with Modelica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .573
Schmitz, Gerhard: Hamburg University of Technology, Hamburg, Germany

Enhancement of a Modelica Model of a Desiccant Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Schmitz, Gerhard: Hamburg-Harburg University of Technology, Hamburg, Germany

Modeling of Cold Plates for Power Electronic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Schmucker, Ulrich: Fraunhofer Institut, Magdeburg, Germany

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation . . . . . . . . 719
Schneider, Peter: Fraunhofer Institut, Dresden, Germany

Modelica Wind Turbine Models with Structural Changes Related to Different Operating
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Schwarz, Peter: Fraunhofer Institut, Dresden, Germany
Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks . . . . . . . . . . . . . . . 605

Seem, John: Building Efficiency Research Group, Milwaukee, U.S.A.
Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers . . . . . . . . . . . . . . . . . . . . 447

Simic, Dragan: Arsenal Research, Vienna, Austria
Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the

SmartElectricDrives Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Thermal Modelling of an Automotive Nickel Metall Hydrid Battery in Modelica using

Dymola. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Skoglund, Tomas: Tetra Pak Procesing Systems, Lund, Sweden

Real-Time HWIL Simulation of Liquid Food Process Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
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Design Considerations for Dimensional Inference and Unit
Consistency Checking in Modelica

David Broman1 Peter Aronsson2 Peter Fritzson1
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Abstract

The Modelica language supports syntax for declaring
physical units of variables, but it does not yet exist
any defined semantics for how dimensional and
unit consistency checking should be carried out. In
this paper we explore different approaches and new
constructs for improved dimensional inference and
unit consistency checking in Modelica; both from an
end-user, library, and tool perspective. A proposal for
how dimensional inference and unit checking can be
carried out is outlined and a prototype implementation
is developed and verified using several examples from
the Modelica standard library.

Keywords: dimensional analysis, unit checking;
dimensions; types; Modelica; language design

1 Introduction

The Modelica language enables expressive modeling
by making use of object-oriented acausal constructs.
However, certain powerful language constructs eas-
ily lead to modeling errors, which are often hard to
detect at simulation time. One class of modeling er-
rors that can be detected statically before simulation is
model and equation consistency with regards to phys-
ical dimensions, quantitiesand units. The Modelica
language specification [12] states how units and quan-
tities can be declared. However, the semantics and
strategy for how physical units and dimension of quan-
tities can be checked for consistency, are not described
in the specification.
Several of the available tools (e.g., Dymola[4] and
Simulation X[8]) implement various algorithms for
handling units and dimensions. Furthermore, tool spe-
cific language constructs are being added to enable

better unit consistency checking. However, this may
lead to incompatibility, where some tools reject certain
model and others accept them. Unit related research
results within the field of programming language (e.g.,
[1, 5, 9, 13, 18]) have shown that there exist many con-
cepts and constructs that affect the possibility and sim-
plicity to perform correct dimensional and unit check-
ing. Design considerations must be taken from both
theend user perspectiveand from thelibrary and tool
implementor perspective.

This paper introduces and discusses several different
concepts and constructs, which are important when de-
signing a language with support for dimensional infer-
ence and unit consistency checking1. Examples are
given using both existing Modelica syntax, and ad-
ditional suggested constructs. The main contribution
of the work is the suggested design for incorporating
the unit checking as part of the elaboration (instanti-
ation) process, which supports both implicit inference
of unspecified dimensions and rational numbers of di-
mension exponents. To verify the design, a prototype
implementation was constructed in the OpenModelica
[17] environment.

The paper is structured as follows: Section 2 intro-
duces fundamental terminology and describes design
considerations affecting primarily the end user. Sec-
tion 3 describes design issues from a library and tool
perspective. Both these sections explore the design
space in which a specific design can be created. Sec-
tion 4 specifies a number of design choices made for a
prototype implementation created in the OpenModel-
ica environment. Section 5 discusses related work and
section 6 concludes the paper.

1In the remainder of the paper, the termunit checkingwill be
used fordimensional checkingas well. However, note that even
if a system is dimensionally consistent, it might have conflicting
units of measure.
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2 End User Perspective

In this section, several aspects of unit checking will
be discussed primary from an end user perspective.
The section starts by refreshing fundamental terminol-
ogy; followed by description of concepts such as type
checking and polymorphism.

2.1 Units, Quantities, and Dimensions

Physicalquantitiesare organized into differentdimen-
sions, such aslength , time , andmass. The SI-
system [7] defines sevenbase quantities, which can be
combined to form newderived quantities.
For a particular quantity, there exist several different
units, e.g., the quantitylength can be used with
both of the unitsmeter and foot . To convert be-
tween different units within the same quantity dimen-
sion,conversion factorsare defined. To convert from
foot to meter ascale factorof 0.3048is multiplied to
the measured value. However, some unit conversions
are more complex. For example, the formulaTCelsius=
(5/9)∗(TFahrenheit−32) for convertingFahrenheit
to Celsius involves both a scale factor of5/9 and
anoffsetof value−32∗ (5/9).
The SI-system defines sevenbase units
(m,kg,s,A,K,mol,cd ) as well as derived
units, which are accepted within the SI-system. These
derived units have specific names and symbols and
always have a corresponding normalized form ex-
pressed in base units. For example newton meter has
the symbol N m, which has the expression m2 kg s−2.
For some derived quantities, the dimensional expo-
nents are zero. Such a quantity is referred to asdi-
mensionlessor having dimension one. For example
the derived quantityplane angle with derived unit
radian is such a dimensionless quantity.
In Modelica, there is a syntax to define derived
unit using base unit expressions. For example, the
above expression of newton meter can be expressed
as"m2.kg.s-2" . From now on, this syntax will be
used for describing unit expressions.

2.2 Static Unit Type Checking

When simulating Modelica models, the state of a dy-
namic model changes during the simulation, but the re-
lation between the units of variables should not change
dynamically2.

2Using algorithms and functions, it is possible to define ex-
pressions that violates this principle. However, it would require
the theory of dependent types to manage this property statically.

Hence, unit and dimensional checking can advanta-
geously be performed statically at compile time. This
process is typically accomplished by using astatic type
checker, which takes a Modelica model as input and
returns one of three possible answers:

• Consistent and complete.The equations, connec-
tors, hierarchy composed components, and the
declared derived physical units match without ex-
ception. All variables have a specific unit as-
signed to it.

• Consistent and incomplete.The model is consis-
tent (no conflicting constraints), but some vari-
ables have no units assigned to them.

• Inconsistent.One or several relations mismatch.
For example, an equationa = der(b) * 33+c
is inconsistent ifa andc do not have the same
units, or if the unit ofb multiplied by"s" (time)
is not equal to the unit ofc .

A language and type checker can be designed toinfer
missing unit types, which can result in both a consis-
tent and an inconsistent result.
Furthermore, from a user’s point of view, it is impor-
tant toknowthat the model is consistent, e.g., that the
type checker canguaranteethat unit errors do not ex-
ist. The property that a tool cannot find any inconsis-
tencies in a model, does not imply that the model is
consistent. In our proposal, this is a strong require-
ment for the design of the unit checker.

2.3 Detecting Errors, Isolating Faults

The previous described approach for unit checking en-
ablesdetectionof modeling errors, i.e., to give a sound
judgement of the model’s correctness regarding phys-
ical units and quantities. However, even if a tool can
respond that a model is incorrect, it is very important
for the user to know where in the model the fault is
located. Hence, the tools’ ability toisolate faultsin a
model is critical for making the unit checking process
useable.

2.4 Polymorphism

A language where an object only can be of one type
is said to have amonomorphictype system. This
leads to a very restrictive language, with limited ex-
pressiveness. Modelica is apolymorphic language,
where polymorphic behavior is primarily expressed
using subtyping polymorphism.
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Consider the following example of the blockGain ,
defined in the Modelica standard block library.

block Gain
parameter Real k(unit="1") = 1;

public
Interfaces.RealInput u;
Interfaces.RealOutput y;

equation
y = k * u;

end Gain;

Both input and output to and from the model are de-
fined usingReal types, i.e., no units are defined for
this block. If a unit checker should be able to check
instances of this block, unit types must be specified
for its formal parameters. For example, both input
and output can be defined to have unit typeVoltage .
However, this would result in a new block definition
for every imaginable unit, which clearly is impracti-
cal.
A solution to this problem which is being implemented
in this proposal is the use ofunit type variables, and
so calledparametric polymorphismi.e., the block is
declared to take a unit type variable’p as both input
and output. Hence, the unit information is propagated
from the input to the output3. This approach is similar
to ordinary type variables used in for example Haskell
[16] or Standard ML [11].
For general information about types and polymor-
phism see [3]. An accessible description on how types
are related to Modelica can be found in [2].

3 Design from Library and Tool
Perspective

This section presents requirements and a proposed de-
sign for unit checking from the perspective of imple-
menters of libraries and tools.

3.1 Unit Type Declaration

There are two approaches of handling declaration of
unit types,implicit unit type inference orexplicit type
declaration.

• Implicit type inference means that the user does
not specify units for all variables and that the tool
uses type inference to deduce the units of those
variables.

3Note that parameter k needs to be explicitly defined to be di-
mensionless (unit="1") in order to make a unit type inference algo-
rithm to work. If it was left as unspecified, the gain could generate
any possible unit, regardless of its input.

• Explicit type declaration means that the user
specifies units for variables, and thus removes the
need of deducing units.

For instance, consider the following example:

model A
Real(unit="m") x1,y1,d1,d2;
Real x2,y2;

equation
d1 = sqrt(x1^2+y1^2);
d2 = sqrt(x2^2+y2^2);

end A;

The example calculates the distances of two points to
the origin(0,0) . The first point(x1,y1) uses ex-
plicit unit type declaration, givingx1 ,y1 andd1 the
unit "m" , and the second point(x2,y2) uses im-
plicit type inference, where units are not specified. In
the second case the units can be deduced from the unit
of the distance variabled2 , i.e., the unit type ofx2
andy2 areinferred from the unit type ofd2 .
A problem is how to distinguish between dimension-
less units and implicit type inference. Consider the
following declaration:

Real x;

Is x dimensionless or should the type be inferred (i.e.,
hasanydimension)? The most probable interpretation
is that it should be inferred. There are several alter-
natives of how to declare a dimensionless unit. One
solution is to use

Real x(unit ="1");

It is important to differentiate between any dimension
and dimensionless, because the distinction can give
better information for the unit checker to perform its
task.
To be able to handle parametric polymorphism it must
be possible to declareunit type variables. A unit type
variable can hold any unit type and thus provides flexi-
bility of e.g., writing functions. For instance, consider
the following example:

function myDer
input Real x(unit="’p");
output Real y(unit="’p.s-1");

algorithm
y:= der(x);

end myDer;

The example is a wrapper around theder operator.
The unit of the input argument uses a unit type variable
"’p" which is used to express the unit of the result
from the function. Here the character’ is part of the
type variable identifier and indicates that this is a type
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variable and not a normal variable. Using a type vari-
able makes it possible to use themyDer() function
for any type of unit, and still being able to express the
relation between the unit types of the input and output
argument.

3.2 Unit Conversion

For many situations it is necessary to convert expres-
sions from one unit to another. A unit conversion does
not change the dimension of an expression, only its
value. For instance:

SI.Length d1 = 25.4;
Real d2 =

unitConvert(d1,"mm");

For this case 25.4 is interpreted as meter (defined
in SI.Length ). The proposed built in function
unitConvert(var,unit) converts the value to
25400 and assigns it tod2 . Moreover, d2 is now as-
sumed to have unit"mm". Note that it is not possi-
ble to just scale this using an ordinary multiplication,
since the user must tell the type checker that the unit
has been changed.
In conclusion, unit conversion is a fundamental re-
quirement to be able to work conveniently with units.

3.3 Representation of Units

The unit checking mechanism requires the tool to be
able to distinguish between different (base) units. This
is typically solved (e.g., in [14, 15]) by having a vec-
tor of seven base units, as described by the SI standard
[7]. For instance, energy can in the SI units be de-
scribed using"J" (Joule) or"N.m" (Newton meter)
corresponding to the base unit"m2.kg.s-2" . Cur-
rently, a Modelica tool would need to know that"J"
or "N.m" correspond to the base unit"m2.kg.s-2"
and how to construct the appropriate vector for such a
unit.
To be able to handle functions like calculating the
square root of a value (the sqrt function), the coeffi-
cients of the dimension vector must be able to handle
more than integer numbers. By using rational num-
bers instead it is possible to express e.g., the square
root with exponent (1/2). Note that it is not possible to
use floating point precision as coefficients , since that
would lead to roundoff errors.
A problem related to the representation of units is how
to present a unit to the user. Often a user has no idea
what the unit"m2.kg.s-2" means. Instead, the user
expects the derived unit to be output, i.e.,"N.m" . The
problem of unparsing (pretty printing) the internal unit

representation to a string must be considered. Often,
the choice of derived units to use is not obvious, and
heuristics must be used to achieve what a user might
expect as output. Such heuristic is not trivial to do
and it might even be different depending on the context
(application area) of the user model.

3.4 Defining Units in the Modelica Language

To be able to handle other units than those described
by the SI standard, a more elaborate design than using
seven base units must be introduced. For instance, a fi-
nancial institute involved in modeling and simulating
the stock market might be interested in using the quan-
tity "money" . Also, they would like to be able to add
scaling factors between different units of money ($,
C, SEK, etc.). Thus, an important design requirement
for the unit checking framework is that the number of
base units is not known a priori, i.e., end users must be
able to add whatever units they want. Also, the scale
and offset information must be available for the unit
checking module. Finally, it must also be possible to
describe the relation between base units and derived
units.
Currently, Modelica does not have support for adding
scaling (and offset) for units, neither can one add ones
own "base units". Today, Modelica has some knowl-
edge about the SI units, e.g., a Modelica tool with unit
checking capabilities knows thatunit="m" refers to
the base unit meter andunit ="F" refers to the non-
base unit farad (expressed as"m-2.kg-1.s4.A2"
in base units) and not to Fahrenheit. But, if users
should be able to add their own base units, the lan-
guage should instead be extended so that base units
can be described in Modelica. The SI-units package
would then first declare the SI base units, and then de-
rive units based on these base-units.
Moreover, information for converting between units is
not covered by current Modelica. To be able to convert
between different units, scaling and offset information
must be introduced. For instance, consider converting
between Fahrenheit and Kelvin. This can be achieved
using a scaling factor and an offset as illustrated by the
conversion function in the standard library:

function from_degF
input NonSIunits.Temperature_degF

fahrenheit;
output Temperature kelvin;

algorithm
kelvin := ((fahrenheit - 32) * 5)/9 -

Modelica.Constants.T_zero;
end from_degF;
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Figure 1: Possible unit checking-times (T1,T2,T3,T4) during the Modelica compilation and simulation process.

If the scale and offset information instead is added to
the unit types (e.g., as attributes to the built-in Real
class), such conversion functions would not be re-
quired. Instead the tool could perform the conversion
using the built-inunitConvert() function, render-
ing convert functions in the standard library redundant.

3.5 Time of Checking

There are several different points in time during the
translation process where the unit checking mecha-
nism could be introduced, see Figure 1.

• T1 - At the model level.

• T2 - During elaboration.

• T3 - At the hybrid DAE (flat Modelica) level.

• T4 - During runtime/simulation.

Some checks can be made at the model level (T1), per-
forming checks for each individual sub-model. Local
equations in the model can be checked this way, but
not equations generated from connecting components
together, or components where types must be deduced
from the surrounding environment (e.g., connections
or modifiers). Another approach is to combine the
unit checking phase with the elaboration (flattening)
process (T2).
Checking on the flat model (T3) is of course feasible,
leading to a large check of the overall system. The ad-
vantage of this approach is its simplicity; a translation
of the model into equations for the unit checking mod-
ule is performed only once. The disadvantage is that it
is much harder to isolate the fault, since only the flat
set of equations is available. Also, this approach will
not make use of already checked parts, e.g., checking
the model equations of an electrical resistor will be
done not only once but for as many times as the re-
sistor model is used as a component. The gPROMS
unit checking tool [14, 15] uses this approach. Finally,
some analysis cannot be performed statically and must
then be performed during runtime, i.e., during the sim-
ulation (T4).

4 Prototype Implementation

A prototype implementation based on the design re-
quirements presented above is under development in
the OpenModelica[17] and MathModelica[10] com-
pilers. The compiler does a static (during compilation)
check of dimensions and units of measure.

4.1 Design

The design includes the following aspects:

• Rational numbers as exponents on dimensions.

• Unit type variables in declarations.

• Literal constants are treated differently depend-
ing on context (dimensionless in multiplication/-
division and unknown in addition/subtraction).

• Type inference of dimensions.

• User defined base and derived units.

• Checking is performed during elaboration / flat-
tening to enable better fault isolation.

The design is split into separate parts, see Figure 2.
One part is integrated with the elaboration (flattening)
process in the OpenModelica compiler. It will create
an equation systems to be solved by the Unit Checker
(the second part) for model components according to
the same principles as components are instantiated in
Modelica (i.e., a recursive process). This is done by
first adding units to a unit store by calling the addStore
function in the UnitASTBuilder module. Next, lo-
cal equations are traversed to build unit terms, with
the buildTerms function. Both the unit store and unit
terms are defined in the UnitAbsyn module. Finally,
the check function in the UnitChecker module is called
to perform the dimension analysis. The result from
the checking of each component contains two pieces
of information. First, for each component it will re-
ceive an answer whether a component is Ok (consis-
tent and complete), inconsistent (incompatible types)
or consistent and incomplete (not enough information
available). Secondly, it will calculate the resulting unit
type variables of a component which can then be used
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Elaboration (instantiation) module

Unit

Store

UnitASTBuilder

addStore(name,unit,st) -> st´

buildTerms (eqns,st) 

-> (terms,st�) UnitAbsyn

check(terms,st) -> 

({ConsistentComplete,

ConsistentIncomplete,

InConsistent},st�)

UnitChecker

Recursion over all

sub components

Figure 2: Outline of the main modules of the unit type checking engine of the prototype implementation.
Arrows describe dependencies between modules.

when checking the complete model. This will give the
following steps of the unit checking function.

1. Check components in the class.

2. Build a new equation system from the type vari-
ables from each component together with local
equations and connections.

3. Call the unit checker for the model itself.

Note that checking the components of a class means a
recursion over the three steps for the class of the com-
ponent.
The equation systems for the unit checker are created
from two data structures, a unit store that holds units of
variables, and unit terms that describe constraints be-
tween different variables. The following sections show
how these are built.

4.1.1 Storing Units

Each variable in a model has a corresponding unit. A
unit can be

• A specified unit, e.g.,"m/s" .

• A unit type parameter e.g.,"’p" , with an op-
tional exponent, e.g.,"’p^2" .

• A combination of specified unit and type parame-
ter, e.g.,"’p/s" .

• unspecified unit e.g., the unit of a declaration
"Real x;" .

The unit store is a data structure that holds the units
of variables. It gives a mapping from a variable name

to its corresponding unit. During the instantiation and
unit checking process the unit store is updated with
new units. The following model shows how the unit
store is used:

model SimpleOde
Real x;
Velocity v;

equation
der(x)=2 * v + 1.0;

end SimpleOde;

First the unit store is built by adding the units of the
variablesx andv . Sincex is declared as aReal it
gets an unspecified unit, andv gets the unit"m/s" .
After the unit checking module has been executed on
this class, it will update the unit store with the unit
for x with "m" , because this was inferred by the
UnitCheck module. This information can then be used
higher up in the instance tree to check units of other
components.

4.1.2 Building Unit Terms

The second data structure required for building unit
constraint equations is the Unit Term which describes
relations between variables. This structure is similar
to the data structure for equations, containing nodes
for e.g., addition, multiplication, etc. It is sufficient to
only have four types of relations between units: multi-
plication of terms, division of terms, addition of terms,
and equality between terms. Since an addition of two
variables and a subtraction of two variables both im-
ply the same rules for the units, both of these can be
expressed using the same unit term. The leaf nodes of
terms are references to units in the unit store.
Let us again consider the example SimpleOde above.
We use ADD and MUL for addition and multiplica-
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Figure 3: An inconsistent circuit that should fail dur-
ing dimensional checking.

tion in our data structure and EQN for equality be-
tween terms. For the leaf nodes, with references to
the unit store, are described with LOC. The example
above corresponds to the following terms (somewhat
simplified):

EQU(
LOC("der(x)"),
ADD(

MUL(LOC("V"),LOC("2")),
LOC("1.0")))

From the unit store and the unit terms, constraint equa-
tions are built. A multiplication of unit terms means
that the unit vector is added, and an addition of unit
terms means that the units must be equal.

4.1.3 Built-in Functions and Operators

The built-in functions and operators are extended with
units containing unit type parameters. That gives us
a uniform way of dealing with functions, regardless if
the function is a built-in function, a built-in operator,
or a user-defined function. For instance, the der oper-
ator is internally described as

function der
input Real x(unit = "’p");
output Real y(unit = "’p/s");
external "builtin";

end der;

That is, applying the derivative operator to an expres-
sion will change its unit by multiplication with "s-1".

Figure 4: A dimensionally correct circuit.

4.2 Example

Let us consider an example using components from
the Modelica Standard Library to illustrate the differ-
ent aspects of unit checking. Figure 3 shows an exam-
ple where unit checking will return an error because of
inconsistent units4. A VariableResistor and a Variable-
Conductor is fed from the same signal source, taken
from the Blocks library. All sources in the Blocks
library have unspecified units, such that they can be
used in any context. The unit checker will find that the
unit of the output of the clock generator should be both
"Ohm" (Resistance) and "S" (Conductance), i.e., an in-
consistency is reported. This inconsistency is detected
first when the local equations of the Circuit model is
unit type checked. The unit store then contains an un-
specified unit for the clock generator (clock1.y) and
specified units for the inputs on the resistor R1 (R1.R)
and the conductor G1 (G1.G).
To resolve the inconsistency of the circuit the user has
to use two separate clock generators, see Figure 4. The
unit of clock1.y will become"Ohm" and clock2.y will
become"S" , resulting in a consistent system.
When using math blocks (Gain, Add, TransferFunc-
tion, etc) in models it becomes evident that polymor-
phism is required. For instance, lets add a gain to

4The circuit is inconsistent since the VariableResistor and Vari-
ableConductor have declared their inputs to Resistance and Con-
ductance respectively. If they were declared as dimensionless
the circuit would have been consistent, thus also making it a li-
brary design issue. Also, it could be possible to have different
unit checking semantics depending on the causality of equations,
which would allow this kind of connections.
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Figure 5: An inconsistent model with a polymorphic
block.

our inconsistent model, see Figure 5. The gain block
should be possible to use for any unit, i.e., it should
be a polymorphic block. If that would not be possi-
ble, the user would have to write a new block model
for each particular use, in this case for amplifying a
Conductance signal. In our implementation, the unit
checker will treat the Gain block as having a poly-
morphic unit and assign a unit type parameter to it.
The result of checking the gain block is a unit type
parameter that propagates the unit of the input to the
unit of the output. Hence, when the circuit model is
checked, the unit from the VariableConductor is prop-
agated to the unit ofclock1.y , leading to an incon-
sistent system of equations. Typically, for larger block
models, this propagation can be performed over many
subsystems of components. This implementation will
however lead to a detection of the inconsistency at the
lowest level possible, making it easier for the user to
correct the inconsistency.

5 Related Work

Unit checking has been introduced in several Model-
ica tools over the last couple of years, for instance,
Dymola[4] from Dynasim and Simulation X[8] from
ITI GmbH. Dymola version 6.1 has a unit checking
mechanism, as well as support for deduction of units.
However, unit parametric polymorphism is yet not
supported.
Simulation X has a conversion extension to Modelica
for giving units to literals. For instance, the expression

a + 2.5 ’mm’ will translate the literal2.5 into SI
base unit meter by multiplying it with10e-3 .
Both of these tools will (or soon will) support enter-
ing other units than default units for e.g., parameter
values, i.e., making it possible to enter2.5 mm as a
parameter value. The displayUnit attribute of Model-
ica standard is available for this purpose.
Unit checking and checking of dimensional inconsis-
tency has been extensively explored in the program-
ming language research community and is far from
a new research area. Many library-based approaches
exist for imperative programming languages, such as a
package approach for Ada [6] and a template approach
in C++ [18]. An approach for dimensional inference is
presented in [19], where gaussian elimination is used
for solving the resulting equation system. The work
shows how dimensions with rational exponents can be
added to the simply typed lambda calculus.
In Kennedy’s thesis [9], an extension of a core calculus
of ML with support for type inference over dimension
types is given. Lately, dimension and unit checking
have also been addressed in a nominally typed object-
oriented language [1].
Besides the work on gPROMS [14, 15], few attempts
have been made to incorporate dimensional and / or
unit checking in equation-based object-oriented lan-
guages, such as Modelica. In addition, even though
Modelica today supports syntax for stating units of
variables, no sound solution exists that guarantees the
absence of unit errors.

6 Conclusions

This paper has presented a design for dimensional
analysis and unit checking of Modelica models. Re-
quirements from an end user and tool perspective have
lead to a design which has been implemented as a pro-
totype on top of the OpenModelica and MathModel-
ica compilers. MathModelica has also been used for
building the models presented in this paper, and a fu-
ture release of MathModelica will contain unit check-
ing based on the design in this paper. The design in-
troduces unit type variables enabling polymorphism
of unit types in Modelica, which increase the safety
and flexibility of the dimensional analysis. We have
also chosen to represent exponents as rational num-
bers which enables dimensional checking of e.g., the
sqrt function. The design of the dimensional analysis
also allows the possibility of adding additional base
units, on top of the seven base units of the SI system.
This enables modeling of e.g., financial systems using
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base unit money, and other application areas.
The prototype implementation has been described and
illustrated with several examples from the standard li-
brary. The analysis results in either a consistent and
complete system, a consistent but incomplete system
(which means that not sufficient unit information is
available to fully determine units) or an inconsistent
system (indicating where the inconsistency is located).
By using the prototype we have detected some minor
problems with the standard library. For instance, the
Gain component in the Blocks Math library currently
has unspecified units on its gain parameter. In order to
fully check the dimensions of models using this com-
ponent, the gain parameter should be dimensionless.
This paper has also discussed unit conversion, even
though this has not yet been implemented. Nonethe-
less, some ideas presented here could be a useful start-
ing point for the Modelica Design Group’s activities
regarding this topic.
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Abstract

What can be done to guaranty correctness of a 
model? The paper discusses two approaches to 
automatic checking. First, Dymola’s support of units, 
unit checking and unit deduction is described. It has 
already proven useful and has helped improving the 
quality of the Modelica Standard Library. The dis-
play unit concept allows users to enter parameters 
and plot variables in different units. The inputs, out-
puts and parameters of general blocks defining 
sources and mathematical operations have of course 
no units specified. Dymola infers their units in order 
to improve the variable browsers for entering pa-
rameter values and plotting variables during simula-
tion. Second, the possibilities of checking quantity 
conservation automatically are discussed. It is in 
open area with a large potential to check that models 
fulfill the very basic laws of physics including en-
ergy conservation, Newton’s third law “action equals 
reaction”, etc. To really support automatic checking 
of quantity conservation it is necessary to include 
more information in the models. Fortunately, it 
seems as if most of this can be done in the basic 
components such as inertia, body, volume, capacitor 
etc which actually store some quantities and in dissi-
pative elements as for example resistors or friction 
elements.

1 Introduction

Modelica (Modelica, 2007) is a powerful modeling 
language. It allows you to quickly build complex 
models by putting together model components from 
free public and commercial libraries. The openness
of Modelica makes it easy to modify an existing 
component. All this opens for errors. How can we 
guide users and provide automatic checking? How 
can we guarantee quality of provided library compo-
nents?

Modelica is a strongly typed language implying that 
classical computer scientific methods can be used. 

The Modelica 3.0 definition has taken this further 
and introduced the concepts of plug-in compatibility 
and balanced models. This paper will discuss two 
other orthogonal approaches: 

1. unit checking of expressions and equations 

2. checking of quantity conservation.

In Sections 2-4, Dymola’s support of units, unit 
checking and unit deduction is discussed. In Section 
5 the possibilities of checking quantity conservation 
automatically are discussed.

2 Support of Units in Dymola

Physical modeling deals with physical quantities 
such as length, mass, force, current. The value of a 
quantity is generally expressed as the product of a 
number and a unit. Modelica (2007) supports this 
approach. A real variable have a quantity attribute 
and a unit attribute, for example

  type Mass = Real(quantity="Mass", 
                   final unit="kg");

The package Modelica.SIunits provides a large set of 
predefined quantities and it is recommended to use 
them whenever possible.

2.1 SI units

The Modelica specification states “A basic support 
of units in Modelica should know the basic and de-
rived units of the SI system.” Dymola fulfils this re-
quirement.

A good reference on SI units is what commonly is 
called the SI brochure published by Bureau Interna-
tional des Poids et Mesures [BIPM, 2006]. The NIST 
Reference on Constants, Units, and Uncertainty 
[NIST, 2000] gives a good overview; see also [Tay-
lor, 1995]. ISO does not specify a formal syntax for 
unit expressions but there are strict recommenda-
tions. The Modelica language specification includes 
a formal specification based on these recommenda-
tions. 
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Dymola supports all the 20 SI prefixes to form deci-
mal multiples and submultiples of SI units. 

Factor Name Symbol Factor Name Symbol

101 deca da 10-1 deci d

102 hecto h 10-2 centi c

103 kilo k 10-3 milli m

106 mega M 10-6 micro µ

109 giga G 10-9 nano n

1012 tera T 10-12 pico p

1015 peta P 10-15 femto f

1018 exa E 10-18 atto a

1021 zetta Z 10-21 zepto z

1024 yotta Y 10-24 yocto y

Dymola knows all the seven SI base units

Name Symbol

metre m

kilogram kg

second s

ampere A

kelvin K

mole mol

candela cd

as well as the 22 SI derived units that have been 
given special names and symbols

Name
Symbol 
(in Modelica)

Definition

radian rad 1

steradian sr 1

hertz Hz 1/s

newton N kg.m/s2

pascal Pa N/m2

joule J N.m

watt W J/s

coloumb C A.s

volt V W/A

farad F C/V

ohm Ohm V/A

siemens S A/V

weber Wb V.s

tesla T Wb/m2

henry H Wb/A

degree Celcius degC K

lumen lm cd.sr

lux lx lm/m2

becquerel Bq 1/s

gray Gy J/kg

sievert Sv J/kg

katal kat mol/s

There are also units that are not part of the 
International System of Units, that is, they are 
outside the SI, but they are accepted for use with the 
SI. Dymola knows the following of them:

Name Symbol Expressed in SI units

minute min 60 s

hour h 60 min

day d 24 h

degree deg (π/180) rad

litre l dm3

decibel dB 1

electronvolt eV 0.160218 aJ

bar bar 0.1 MPa

phon phon 1

sone sone 1

In power systems the unit for apparent power is 
“V.A”. Dymola knows var = V.A which has been 
adopted by the International Electrotechnical Com-
mission, IEC, as the coherent SI unit volt ampere for 
reactive power, see IEC [2007].

The rotational frequency n of a rotating body is de-
fined to be the number of revolutions it makes in a 
time interval divided by that time interval. The SI 
unit of this quantity is thus the reciprocal second, s-1. 
However, the designations "revolutions per sec-
ond" (r/s) and "revolutions per minute" (r/min) are 
widely used as units for rotational frequency in 
specifications on rotating machinery. Although use 
of rpm as an abbreviation is common, its use as a 
symbol is discouraged. Dymola knows r = 2π rad. It 
can be used for example as “r/s” or “r/min”.

Dymola also knows the temperature units degF (de-
gree Fahrenheit) and degRk (degree Rankin).

2.2 Other units

Dymola recognizes the users' needs to enter parame-
ters and plot variables in different units. Modelica 
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defines displayUnit for that purpose. Dymola sup-
ports displayUnit when plotting variables and when 
entering values in parameter dialogs. 

A user can define units for display and its meaning is 
in terms of the SI unit. For example, the display unit 
“min” is defined in the following way in terms of the 
SI unit “s” as

defineUnitConversion("s", "min", 1/60);

There is a fourth optional argument to specify offset. 
For example, conversion from Kelvin to degrees 
Fahrenheit can be specified as 

  defineUnitConversion("K", "degF",
         9.0/5.0, 32-(9.0/5.0)*273.15);
However, if the quantity represents a temperature 
difference the offset shall not be included. Dymola 
supports an annotation __Dymola_absoluteValue
to control this. In Modelica.SIunits the quantity 
temperature difference is specified as

type TemperatureDifference = Real (
  final quantity=
            "ThermodynamicTemperature",
   final unit="K") 
   annotation
        (__Dymola_absoluteValue=false);

These definitions are conveniently stored in script 
(mos) file that is executed at the start of Dymola. By 
default Dymola has a file displayUnit.mos including 
display units of general interest. 

As an example, consider the model CoupledClutches 
in Modelica Standard Library 3.0.

J1

J=1

torque

t...
clutch1

sin1

freqHz=5

step1

startTim
e...

J2

J=1 clutch2

J3

J=1 clutch3

J4

J=1

sin2

freqH
z

=f...

step2

startTim
e...

f ixed

Pop the parameter dialog for the rotating body, J1.

The start values for the angle, phi, and the angular 
velocity, w, can be entered in SI units. The Modelica 
code for J1 is

Modelica.Mechanics.Rotational.Inertia
 J1(J=1,

    phi(fixed=true, start=0),
    w(start=10, fixed=true))

We can enter the start velocity in “deg/s”. Click on 
the unit to pop a menu and select unit

Which alternatives that are available depends on 
which defineUnitConversion calls that actually have
been invoked. It can be customized by any user by 
editing the file displayUnit.mos. If a user wants to 
see any length only in mm or inch, the user can re-
strict the display unit to that.

The value is now displayed as 572.96 deg/s. It is 
easy to enter a new value, say 60 deg/s.

The Modelica code for J1 becomes

Modelica.Mechanics.Rotational.Inertia
 J1(J=1,
    phi(fixed=true, start=0), 
    w(start=1.047197551196598,
      fixed=true, displayUnit="deg/s")) 

Note, that the attribute displayUnit is modified ac-
cording to our choice. However, the parameter value 
being 60 deg/s is stored in SI units, “rad/s”. Thus 
portability is preserved and it is still a tool issue to 
support the displayUnit in the dialogs.

Let us simulate the original example and plot J1.w.
Put the cursor on the curve and pop the context 
menu.
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Selecting “deg/s” as unit for plotting gives the plot.
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J1.w

3 Unit Checking

Equations add terms. Naturally these must be of the 
same physical quantity. This is exploited in the clas-
sical physical dimension check of equations which 
many of you have done by paper and pen in school. 
Dymola (Dynasim, 2007) has automated this check.

 The number of physical quantities we can think of is 
large. Fortunately, they are related and all physical 
quantities can be expressed as product of powers of a 
small set of base quantities. The International System 
of Units, the SI system, defines such a set including 
seven physical quantities: length, mass, time, electric 
current, thermodynamic temperature, amount of sub-
stance and luminous intensity, see BIPM (2006). The 
SI base units define a unit for each of these seven 
quantities. The units for other quantities are derived. 
For example, the unit for area is m2 because the 
physical quantity area = length*length and the unit 
for length is m (meter). Thus there is a mapping from 
quantity to unit in terms of the seven SI base units. 
Dymola exploits this for unit checking.

Dymola’s checking of units is active when checking 
a package, function or model as well as when trans-
lating a model for simulation. It includes checking of 

unit strings and unit compatibility of equations. It 
can be seen as a part of the type checking. It includes 
the checking of actual function input arguments and 
output arguments against their formal declarations.

Currently Dymola makes a relaxed checking. It 
means that an empty unit string, "", is interpreted as 
unknown unit. Also number literals are interpreted to 
have unknown unit. The unknown unit is propagated 
according to simple rules

unknown unit * "unit1" -> unknown unit

unknown unit + "unit1" -> "unit1"

There is one important exception. Let e be a scalar 
real expression. Consider the inverse of e given as 
1/e. The number 1 (one) in the numerator does not 
relax the checking. If e has a well-defined unit then 
also 1/e has a well-defined unit.

The unit checking is applied to the original equa-
tions. This has implications for vector, matrix and 
array equations. For an array where all elements 
have the same unit, the check works as if it was a 
scalar. Arrays and array expressions where the ele-
ments have different units are allowed. However, the 
check is then relaxed and the array is viewed to have 
an unknown unit that is compatible with all units. 
Checking the unit consistency between two records 
is done recursively for each component. 

Currently, the unit checking does not issue error 
messages but it generates only warnings. The unit 
checking can be disabled.

As a simple example consider the modeling of mo-
tion where there is a mistake

  parameter Modelica.SIunits.Mass m=1;
  Modelica.SIunits.Velocity v;
  Modelica.SIunits.Force    f;
equation
  m*v = f; //Should read  m*der(v) = f;

When checking or translating it, Dymola outputs

  Warning: Incompatible units in  
    m*v = f;
  The part  
    m*v
  has unit N.s
  The part  
    f
  has unit N

Dymola’s unit checking has already been proven 
useful. Several errors in the Modelica Standard Li-
brary were found. A user reported that he several 
years ago had rewritten a model in Modelica, but he 
did not get the same simulation result. He had really 
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tried to find the reason, without success. Dymola’s 
unit checking pointed out an inconsistency and he 
had found the error.

The basic laws for conservation of mass, momentum, 
electrical charge, energy are expressed as balance 
equations between physical quantities. Also constitu-
tive equations such as Ohm’s law are readily ex-
pressed as equations for physical quantities. It means 
that the unit checking should not make the modeling 
more complicated in most cases.

However, the parameterized curve descriptions used 
to model idealized characteristics of for example di-
odes or Coulomb friction needs more attentions. 
Consider the modeling of an ideal diode having the 
characteristics shown in the figure.

The parameterized curve description is

   off = s < 0;
   v = if off then s else 0;
   i = if off then 0 else s;
The curve parameter is just a real variable that is ei-
ther representing a voltage or a current. To make the 
equations unit consistent, the equations can for ex-
ample be rewritten as

v = unitVoltage*(if off then s else 0);
i = unitCurrent*(if off then 0 else s);

The s parameter and the unit constants are declared 
protected as

  protected 

    Real s(final unit="1");
    constant Modelica.SIunits.Voltage

    unitVoltage= 1  
       annotation(HideResult=true);

    constant Modelica.SIunits.Current

      unitCurrent= 1
        annotation(HideResult=true);

The HideResult annotation has the effect that the unit 
constants are not included in the simulation result. 
Basically these constant are only active during unit 
checking and then eliminated in the equations.

In summary, don’t just declare real variables, but 
declare physical quantities. Use the predefined quan-
tities available in Modelica.SIunits whenever possi-
ble. The SI units were invented to allow equations to 
be written in a clean way without conversion factors. 
This simplicity is a very good reason for using the SI 
units in physical modeling. Thus, it is recommended 
that unscaled SI units are used when specifying the 
unit attribute of a real variable. To be clear, this also 
means that prefixes shall not be used. For example 
"m", "kg", "V", "N.m" and "W" are good, but not 
"cm", "g", "kV", "MW" or "bar". The displayUnit 
concept provides convenient entering of parameter 
values and displaying and plotting of results in other 
units.

4 Unit Deduction

The Modelica.Blocks library includes general blocks 
to define sources and mathematical operations. Their 
inputs and output have of course no units specified. 
For user convenience, Dymola has introduced auto-
matic deduction of units. Here is a short description 
Consider the expression, e1 + e2, where Dymola has 
found that the expression e1 has a well-defined unit 
u1, but the unit of the expression e2 is unknown. We 
can then deduce as described in the introduction that 
the unit of the sum e1 + e2 is u1. Moreover, for unit 
consistency reasons the unit of e2 must also be u1. If 
now e2 is a simple variable reference, v, we can de-
duce that v must have the unit u1. For more complex 
expressions Dymola makes a downwards recursion 
to see if it is possible to deduce units of variables
with unknown units.

The SignalType definition in the Modelica Standard 
Library 2.0 allowed the user to specify the units 
manually by declaring the type of the inputs, the out-
puts and the parameters of the block. The Sig-
nalType is removed in the Modelica Standard Li-
brary 3.0 and the units are deduced automatically.

The deduction of units may reveal unit inconsisten-
cies. In such a case it may be useful to enable the 
logging and inspect the log. It is also useful to check 
the log when developing a model component, be-
cause if a real variable gets its unit deduced that may 
indicate that the variables shall be declared using any 
of the quantities defined by Modelica.SIunits.

As an example consider the model ElasticBearing in 
Modelica.Mechanics.Rotational.Examples.
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The component ramp is of the class Mode-
lica.Blocks.Sources.Ramp. The parameters 

parameter Real height=1 
                     "Height of ramps";
parameter Real offset=0 
             "Offset of output signal";

have no units specified. Similarly the unit of the out-
put y is not specified. At translation Dymola deduces 
their units and displays them in the variable browser

The deduced SI unit radian is treated in a special way 
by Dymola. Consider Euler’s equation for a one di-
mensional rotating body
J*a = flange_a.tau + flange_b.tau;

where the inertia, J, has unit kg.m2, the rotational 
acceleration, a,  has unit rad/s2 and the torques 
flange_a.tau and flange_b.tau have the unit N.m. It 
means that the left hand side of the equation has the 
unit, rad.kg.m2/s2 and the right hand side has the 
unit, N.m = kg.m2/s2. It means that the units are 
equal besides the left side has a factor “rad”. This is 
fine from the formal point of view because the de-
rived unit radian is formally expressed as m/m, see 
Table 3 in [BIPM, 2006], which also states that the 
radian is “a special name for the number one that 
may be used to convey information about the quan-
tity concerned.”

However, in order to support the use of radians when 
deducing units, Dymola treats the radians as if it was
a SI base unit during the analysis. The consistency 
checking is of course relaxed for radians. The result-
ing unit will include the minimum power of radians.

5 Quantity conservation

The design of Modelica.Mechanics.Rotational and 
the discussion on the modeling of mounting have 
clearly indicated the need for more automatic testing 
of models. The failure to model the mounting of a 
drive-train element is an example where the user 
fails to account for important interactions between 
components or between a component and its envi-
ronment. The failure to model the mounting of a 
component gives a simulation result where momen-
tum is not preserved. Such a model violates New-
ton’s third law “action equals reaction”.

Balance equations and conservation of physical 
quantities such as mass, momentum, energy and 
electrical charge are basic in physical modeling. 

A flow variable of a connector represents the flow of 
a conserved quantity into a component. Thus it is 
straightforward to calculate the net amount of a con-
served quantity flowing into a component. A proto-
type implementation has been made in Dymola. As 
an example consider the model

J1

J=1

torque

clutch1

sin1

freqH...

J2

J=1

s
in

2

freqH
...

The flow variables of the connectors have their at-
tributes quantity="Torque". Dymola introduces for 
each component a variable named sum_Torque and 
an equation such as

  J2.sum_Torque = J2.flange_a.tau+J2.flange_b.tau;

For the clutch that has no inertia, the sum_Torque 
variables are zero as it should be. It is not zero for 
inertia models J1 and J2 because they can store mo-
mentum.  Their models include the equation

J*a = flange_a.tau + flange_b.tau;

Thus, for inertia we have 

sum_Torque = J*a

The variable torque.sum_Torque is non zero. For the 
system, above momentum is not preserved. In reality 
the drive train is mounted in the car. The chassis 
provides a corresponding reaction torque, which 
propagates through the wheels and tires to the road. 
Thus if we put the drive train above into a chassis 
model without connecting the bearing connectors of 
the drive train properly to model the real mounting, 
we will get wrong simulation results. How can we 
provide some automatic checks?
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For components not storing conserved quantities, we 
can use sum_Torque and the other sum variables and
add an assertion that the sum should be zero. For the 
example, the simulation stops issuing

   Assertion failed: abs(torque.sum_Torque)< 1E-005
   Torque not conserved in the component torque.

In the general case, a component needs to include 
information on what are the storage terms. Tiller and 
Kittirungsi (2006) propose annotation to be used. For 
example to indicate that the term J*a above implies 
storage:

Modelica.SIunits.Torque
   torqueStorage = J*a
     annotation(storageTerm));

In 3 D mechanics forces are vectors and the balances 
of forces must be set up in the same frame. More-
over, the torque balances are even more complicated 
since they also include terms referring to the forces 
acting on the body. 

One idea is to add an annotation to 
   Modelica.Mechanics.MultiBody.Interfaces.Frame: 

connector Frame 
  "Frame of a mechanical system"

annotation(ConservedQuantity( 
   Force= Frames.resolve1(R.T, f), 
    Torque=Frames.resolve1(R.T,t)+
     cross(r,Frames.resolve1(R.T,f)))); 

import SI = Modelica.SIunits; 
SI.Position r_0[3];
Frames.Orientation R;
flow SI.Force f[3];
flow SI.Torque t[3];

end Frame; 

The scope for the right-hand-sides is the local con-
nect (exactly as for e.g. a binding equation in the 
class) and this takes precedence over the default-
summing of quantity-flows to 0. This annotation 
should only be added once [i.e. for the base-class of 
all flange-connector and not for each model], and we 
could alternatively have this built-in in Dymola for 
this class.

Please, note that if a model component fails to anno-
tate or mark a term as contribution to storage then 
the check will detect this, i.e., the component model 
is not conserving properly.

In order not to be forced to model all universe, it is 
necessary to support infinite sources or sinks for 
conserved quantities. Again it is possible to use an 
annotation to mark such components. However, there 
is a potential risk with ground elements. Assume that 
we fix the coupled clutch model above by connecting 

a ground component to the bearing connector of the 
component torque. This component can be viewed as 
a rig where we put the drive train for testing. The rig 
may be viewed as representing the “infinite mass” of 
the earth. 

Energy conservation is important to check. However, 
it is more complex. For thermodynamics the heat 
flows as well as the enthalpy flows are a power flow. 
However, the energy flow does not always appear 
explicitly as flow variables in the connectors. Some
energy flows can be computed by multiplying the 
flow quantities by a proper derivative of the corre-
sponding across variable. Examples:

pin.v*pin.i                          =>         V*A=W
der(flange.s)*flange.f        =>      m/s*N=W
der(flange.phi)*flange.tau => rad/s*Nm=W

It works for Electrical, Rotational and Translational. 
For MultiBody there is the problem with different 
coordinate systems.

Establishing energy conservation also includes iden-
tification of energy dissipation. For example a resis-
tor “dissipates” energy, or more explicitly, it con-
verts electrical energy into heat. The basic compo-
nents in Electrical do not include such information.

The automatic checking of conservation may have 
several objectives. A primary objective is to catch 
model errors. However, a conservation condition 
may be violated over time due to numerical drift of 
the numerical solution for the conserved quantity. 
This calls for a more sophisticated checking consid-
ering the numerical drift. On the other hand it may 
also be used to improve the numerical solution. A 
numerical solver may exploit these invariants for 
automatic selection of tolerances, i.e. the user put 
tolerances on invariants. Projection methods may be 
used to numerically control the drift.

Evidently there is a need to include more information 
in the models in order to be able to perform auto-
matic checking of quantity conservation. Fortu-
nately, quantity storing is done in the basic compo-
nents such as inertia, body, volume. For energy bal-
ances we need also to consider dissipation in for ex-
ample resistor, damper, pipe friction etc.

6 Conclusions

Dymola’s support of units, unit checking and unit 
deduction has been described. It has already proven 
useful. Several errors in the Modelica Standard Li-
brary were found. It has encouraged the developers 
of the Modelica Standard Library to declare vari-

Unit Checking and Quantity Conservation

The Modelica Association 19 Modelica 2008, March 3rd − 4th, 2008



ables representing quantities appropriately. The dis-
playUnit concept allows users to enter parameters 
and plot variables in different units while allowing 
clean equations without complicating conversion 
factors because the equations can refer to the quanti-
ties in SI units. The Modelica.Blocks library includes 
general blocks to define sources and mathematical 
operations. Their inputs and outputs have of course 
no units specified. This may also be the case for 
some parameters such as gain. At translation of a 
model for simulation Dymola infers their units in 
order to improve the variable browsers for entering 
parameter values and plotting variables during simu-
lation.

Second, the possibilities of checking quantity con-
servation automatically are discussed. It is in open 
area where there is a large potential to check that 
models fulfill the very basic laws of physics includ-
ing energy conservation, Newton’s third law “action 
equals reaction”. Evidently there is a need to include 
more information in the models to really support 
automatic checking of quantity conservation and 
there is a need for extensions of Modelica. Fortu-
nately, it seems as if most of this can be done in the 
basic components such as inertia, body, volume, ca-
pacitor etc which actually stores some quantity. For 
energy balances it is also necessary to identify and 
mark dissipation in resistors, friction elements etc.
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Abstract 

A Modelica model can only be simulated, if the 
number of unknowns and the number of equations 
are equal. In Modelica 3.0, restrictions have been 
introduced into the language, in order that every 
model must be “locally balanced”, which means that 
the number of unknowns and equations must match 
on every hierarchical level. It is then sufficient to 
check every model locally only once, e.g., all models 
in a library. Using these models (instantiating and 
connecting them, redeclaring replaceable models 
etc.) will then lead to a model where the total num-
ber of unknowns and equations are equal. Besides 
this strong guarantee, it is possible to precisely pin-
point which submodels have too many equations or 
lack equations in case of error. This paper gives the 
rationale behind the Modelica 3.0 design choices 
including proofs of the new guarantees, and dis-
cusses the limitations of this approach.  

1 Background 

In a causal modeling paradigm, where only in-
put/output blocks are used, it is straightforward to 
verify that all input connectors have been connected, 
and thus causal modeling naturally lead to a simple 
plug and play metaphor for end-users. The goal is to 
ensure that acausal Modelica model components are 
as convenient to use for end-users. 
The need for this is growing in importance with lar-
ger and more complex model libraries and with 
companies expanding Modelica usage from research 
to development. Furthermore, libraries with template 
models, i.e., incomplete models with replaceable 
components, like VehicleInterfaces, PowerTrain, 
VehicleDynamics library, can easily lead to wrong 
models in Modelica 2 when using the templates, 
without being able to give reasonable diagnostics for 
the source of the error. Shortened production cycles 

imply that we want to verify correctness early, in 
particular already for incomplete models where im-
plementation of the parts is left open. An example 
below (sunken icons means partial replaceable com-
ponents) shows a driveline where the input torque 
and compliance between the inertias are unspecified. 

source torque

tau

inertia1

J=1

compliant

inertia2

J=2  
The goal is that by separately verifying that the tem-
plate model is correct, and imposing restrictions on 
the models we plug in, we can be certain that the 
complete model is correct.  
Without the restrictions, the tool would need to per-
form a global analysis, and if the complete model is 
not balanced we would not know whether the im-
plementation of the part or the template model itself 
was in error. Having to verify this for all combina-
tions of sources and gears (one is shown below) is 
not practical: 

source

freqHz=2

torque

tau

inertia1

J=1

compliant

c=1000

inertia2

J=2  
The first possibility would be to improve the analysis 
of structural singularities for Modelica 2 to find the 
errors without requiring balancing, but instead use 
other information including annotations and confi-
dence in different equations [2]. Similar techniques 
are also useful at the lowest level to go from one 
equation too many in the current model to pinpoint-
ing which equation is superfluous. 
Previously there have been checks in Dymola [3] 
(since Dymola 5.3 released in 2003) to determine in 
case of an unbalanced simulation model which sub-
models are incorrect based on the actual use. That 
was introduced to help users in finding errors, but it 
did not always work satisfactorily since it was not 
always possible to determine how many equations 
should be present in each model (the best what could 
be done in general was to determine a range for the 
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number of equations); thus for the complete model it 
was not possible to determine whether the error was 
in the template or in one of the implementations – 
and if so which one. Thus without stricter language 
rules no reliable diagnostics could be given to users 
to pin-point the errors. 
A related work [4] allows unbalanced classes, main-
tains the (un)balancing of connectors and models 
when modified. The difference is that in Modelica 
3.0, it is enforced that models are balanced from the 
start and on all levels. 

2 Number of equations in the model 

In order to verify whether a component model is bal-
anced we must have a clear definition of how many 
equations the model contains – and how many equa-
tions it should contain (both based on its interface). 

2.1 Restrictions on physical connectors 

The goal is that combining models having (physical) 
connectors and connecting them (in legal ways) we 
should get new balanced models; without imposing 
additional restrictions on the models or requiring 
adding equations. 
Consider the simplest case of a model where the only 
public part is one connector, and it is “physical”, i.e. 
containing nf flow variables “Real f[nf]” and np 
non-causal, non-flow, “potential” variables “Real 
p[np]” (i.e., no connector variable has the input or 
output prefix); and the model is balanced, i.e., the 
model requires that externally a specific number of 
equations (ne) is provided, in order that all unknowns 
of the model can be uniquely computed together with 
the internal equations in the model. We will call 
these required equations in the sequel external equa-
tions of a model component. The number of external 
equations has to be uniquely defined by the interface 
of the model. The balancing is that the number of 
unknown variables equals the number of equations 
defined inside the model plus the number of external 
equations. 
The simplest use of a model m1 with connector c is 
that the connector is unconnected.  

 
The Modelica semantics does state that the flow-
variables are summed to zero, whereas the “poten-
tial” variables should be equal [1]. 

This leads to the external equations 
m1.c.f = 0; // nf equations 

Since m1 requires ne external equations and instanti-
ating the component gives nf equations, we have the 
requirement: ne = nf. 
The next case is to have two of such components not 
being connected: 

  

m2

c

m3 

c 

In this case we get the external equations 
m2.c.f = 0; // nf equations 
m3.c.f = 0; // nf equations 

Since m2 requires ne equations and m3 requires ne 
equations, we have the requirement: 2·ne = 2·nf 
The next case is to have two of such components, but 
being connected: 

m4

c

m5 

c 
 

Here we get connection equations: 
m4.c.f + m5.c.f = 0; // nf equations  
m4.c.p = m5.c.p;     // np equations 

Since m4 requires ne equations and m5 requires ne 
equations, we have the requirement: 2·ne = nf + np 
The final case is to have N components that are con-
nected together: 

M1

c

M2

c c 

MN ... 

 
Here we get one time the zero-sum equations for the 
flow variables and N-1 identity equations for the 
potential variables. Since every model requires ne 
equations, we have the requirement:  

N·ne = nf + (N-1)·np 
To summarize, we get the following relations that all 
have to be fulfilled, in order that instantiating and 
optionally connecting components does not require 
to add any more equations (= necessary and suffi-
cient conditions): m1

c 
1st model (m1): ne = nf  
2nd model (m2,m3): 2ne = 2nf  
3rd model (m4, m5) 2ne = nf + np 
4th model (M1, ...Mn) N·ne = nf + (N-1)· np 

or equivalently  

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 22 Modelica 2008, March 3rd − 4th, 2008



f e

p f

n n

n n

=

=
 

This leads to the conclusion that the number of flow 
and non-causal, non-flow variables must match 
(counting arrays as the number of elements of simple 
types), and this must correspond to the number of 
external equations for this connector. 
Models may also have variables that are declared 
with the input prefix, both in a declaration of a 
model and in a (top-level) connector. These variables 
are treated as unknowns in a model. It is natural to 
require that for all these input variables external 
equations must be provided. 
In order to force the user that all missing equations 
for a model are provided when instantiating the 
model, it is required that all input variables declared 
in a model are provided as modifiers and that all in-
puts in a (top level) connector are provided by con-
necting the connector. Since a connector must have 
the same number of flow and potential variables (see 
derivation above), the means that a connector with 
an input variable A must be connected to another 
connector where variable A has the output prefix (an 
exception of this last rule will be discussed in the 
next section). 
According to these rules, it is no longer allowed to 
provide modifiers for other variables (with exception 
of variables declared with the input, parameter or 
constant prefix) or add other equations for the com-
ponent externally, because all of these actions would 
introduce superfluous equations. 
To summarize, we have basically the following re-
quirements (for simplicity, not yet considering spe-
cial cases such as over-determined connectors, non-
causal variables with a declaration equation, partial 
models, or connectors with input variables that are 
not connected): 
1. The number of flow variables in a connector 

must be identical to the number of non-causal, 
non-flow variables (variables that do not have a 
flow, input, output, parameter, con-

stant prefix). 
2. The number of equations in a model = number of 

unknowns – number of inputs – number of flow 
variables (of top-level public connector compo-
nents). For the equation count, components are 
not taken into account, because this is taken into 
account by the next rule 3. 

3. When using a model, i.e., making an instance, all 
missing equations of this component must be 
provided to make the component “balanced” by: 

a) Connecting connectors or by leaving “physi-
cal” connectors unconnected (since the miss-
ing equations are then automatically intro-
duced by setting all flow variables to zero). 

b) Providing a modifier for every non-
connector component variable with an in-
put prefix. Besides parameters and con-
stants, modifiers on other variables are no 
longer allowed. 

The above rules shall be clarified with a few simple 
examples (assuming a global definition  
import SI=Modelica.SIunits;): 

connector FluidPortA 
  SI.Pressure                p; 
  flow   SI.MassFlowRate     m_flow; 
  input  SI.SpecificEnthalpy h_inflow; 
  output SI.SpecificEnthalpy h_outflow 
end FluidPortA; 

connector FluidPortB 
  SI.Pressure                p; 
  flow   MassFlowRate        m_flow; 
  output SI.SpecificEnthalpy h_inflow; 
  input  SI.SpecificEnthalpy h_outflow 
end FluidPortB; 

The two connectors FluidPortA and FluidPortB are 
valid, since they each have 1 flow and 1 non-causal, 
non-flow variable and 2 causal variables. Note, 
whenever input/output prefixes are present, there are 
connection restrictions because the block diagram 
semantics holds (e.g. an output cannot be connected 
to an output). As a result FluidPortA can only be 
connected to one FluidPortB, but not to another Flu-
idPortA. 

connector WrongFlange // wrong connector 
   SI.Angle           angle; 
   SI.AngularVelocity speed; 
   flow SI.Torque     torque; 
end WrongFlange; 

This connector is not valid, since the number of flow 
and non-flow variables is not the same. This is a 
typical situation of “old” connectors, such as the 
connectors of the (obsolete) ModelicaAddi-
tions.MultiBody library. Both these “old” connec-
tors, as well as the “WrongFlange” connector above 
can be made valid, by using the prefix input or out-
put for one of the non-flow variables (similarly to 
FluidPortA and FluidPortB above). 

model Pin 
   SI.Voltage      v; 
   flow SI.Current i; 
end Pin; 

model Capacitor 
   parameter SI.Capacitance C; 
   SI.Voltage u; 
   Pin p, n; 
equation 
   0 = p.i + n.i; 
   u = p.v – n.v; 
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   C*der(u) = p.i; 
end Capacitor; 

The Capacitor model has 5 unknowns1 (u, p.v, 
p.i, n.v, n.i) and 2 flow variables (p.i, n.i). 
It is therefore required that this model has 5 – 2 = 3 
equations, and the model fulfills this requirement.  

model Test1 
  Capacitor C1(C=1e-6);      // o.k 
  Capacitor C2(u=sin(time)); // wrong 
end Test1; 

The declaration of C1 is correct, because a modifier 
for a parameter is given. The declaration of C2 is 
wrong, because it is no longer allowed in Modelica 3 
to provide a modifier for a variable that does not 
have a constant, parameter or input prefix. 

model VoltageSource 
   input SI.Voltage u; 
   Pin p, n; 
equation 
   u = p.v – n.v; 
   0 = p.i + n.i; 
end VoltageSource; 

The VoltageSource model has 5 unknowns (u, 
p.v, p.i, n.v, n.i), 2 flow variables (p.i, 
n.i) and 1 input variable (u). It is therefore required 
that this model has 5 – 2 – 1 = 2 equations and the 
model fulfills this requirement. 

model Test2 
  ... 
  VoltageSource V1(u=sin(time)); // o.k 
  VoltageSource V2;              // wrong 
  ... 

end Test2; 

Component V1 is correct, because the missing exter-
nal equation for the unknown input u is given as 
modifier. 
Component V2 is not correct, because no modifier or 
equation is provided for the missing unknown input 
“u”. 
The counting for non-connector inputs (such as u) is 
defined as if they always had a declaration equation. 
Thus the result would be the same for this modified 
model: 

model VoltageSource 
   input SI.Voltage u=0; // Default 
   Pin p, n; 
equation 
   u = p.v – n.v; 
   0 = p.i + n.i; 
end VoltageSource; 

                                                      
1 Alternatively, one could define „u“ as known (because it 
is a potential state) and „der(u)“ as unknown. However, 
this does not hold in general, since der(..) might have an 
expression as argument. For this reason, der(..) is used as 
operator that does not have an influence on the equation 
counting. 

This implies that we can add default values without 
modifying the use of the model. 

2.2 Correlations and non-connector inputs 

Causal variables are not limited to connectors, but 
there are also non-connector inputs and outputs – 
which can be viewed as “time-dependent parame-
ters”. The non-connector outputs have no special 
significance here (they are useful to indicate special 
interesting variables). The non-connector inputs are 
for the balancing always counted as having a binding 
equation – and must have a binding equation in the 
complete model. This simplifies the requirement for 
counting equations such that modifiers are not 
counted as providing external equations for the 
model; since they are seen as replacing old declara-
tion equations with new ones of similar size. The 
important aspect is that other alternatives, such as 
giving normal equations for them – or modifying 
some non-input would not preserve the balancing of 
equations. 
One example demonstrating this issue is correlations; 
i.e., relations constraining a set of variables to be on 
a hyper-plane of a certain dimension. The simplest is 
a correlation involving two variables; in this case the 
variables will simple be on a curve. We can arbitrar-
ily declare one as input, but the correlation normally 
is written as just an equation relating the variables 
(and the line could have straight segments in both x 
and y direction).  Note: This example is illegal in 
Modelica 3.0. 

partial model Correlation 
  input Real x; 
        Real y; 
end Correlation; 
 
model UseCorrelation 
  // Wrong in Modelica 3 
  replaceable Correlation corr;  
equation  
   corr.y=2+time; 
   /* Same number of equations as 
      modifying ”x”; could also be 
      written as modifier for y */ 
end UseCorrelation; 
 
model LineCorrelation  
  extends Correlation(x=3); 
equation 
   x+y=0; 
end LineCorrelation; 
 
model Complete=UseCorrelation 
     (redeclare LineCorrelation corr); 
// model is not balanced since 
// 2 unknowns (x,y), but 3 equations: 
//   x + y = 0; 
//   x = 3; 
//   y = 2 + time; 
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In practice we would have a set of correlations and a 
set of uses of them, and what we want to verify is 
that they are all correct without performing all the 
tests (which would lead to a combinatorial explosion 
in the number of tests). For Modelica 3.0 we wanted 
to support the model Correlation and the use in 
LineCorrelation and Complete – without the pos-
sibility of too many equations in the Complete 
model. Since we would expect these models to be 
developed by separate teams (and normally be part 
of larger systems) it represents exactly the situation 
to avoid – an unbalancing due to the interaction of 
several correct models – and without a clear descrip-
tion of where the error is. The solution is in this case 
to disallow the construct in UseCorrelation for 
non-connector inputs, and find another way of pro-
viding the correlations: Component “corr” in Use-
Correlation has one input variable and it is re-
quired to provide a modifier for this variable in order 
to make model “corr” balanced. This is not the case 
above and therefore the model is not correct.  
This restriction on modifiers to parameters, and non-
connector inputs is part of Modelica 3.0. 
The ideal solution for modeling the correlation 
would be that UseCorrelation, LineCorrelation 
(except for ‘x=3’), and Complete would all be legal, 
and rewrite Correlation to allow this. The first 
attempt was to have some way to disable the balanc-
ing test for Correlation and derived classes; that 
implied that only the class Complete could be 
checked; and in case it failed it would be impossible 
to determine whether UseCorrelation or Line-
Correlation should be modified. During the design 
of Modelica 3.0 several attempts were made of in-
troducing a special syntax for stating that Correla-
tion is lacking a certain number of equations – 
without defining ‘x’ as an input (because either x or 
y shall be defined when using the component). This 
requires the introduction of additional non-intuitive 
syntax and the final decision was to change instead 
‘x’ to a connector input and modify the language 
rules to allow unconnected connector inputs and 
provide the binding equation for the input connector 
as equation. The example then becomes (the differ-
ences in Correlation are highlighted): 

partial model Correlation 
  InputReal x; 
       Real y; 
  connector InputReal=input Real; 
end Correlation; 
 
model UseCorrelation 
  replaceable Correlation corr;  
equation  
   corr.y=2+time; 
end UseCorrelation; 

 
model LineCorrelation  
  extends Correlation; 
equation 
   x+y=0; 
end LineCorrelation; 
 
model Complete=UseCorrelation 
     (redeclare LineCorrelation corr); 

In this case LineCorrelation may not use modifi-
ers for ‘x’, since ‘x’ is a connector, and we are thus 
once more certain that the number of equations will 
automatically balance. This is used for Mode-
lica.Media, and can be used in other cases for corre-
lations as well. 
Note that UseCorrelation is exactly identical to the 
original version, but is now legal due to the change 
in the Correlation model (i.e. corr.y = 2 + time, 
is the missing equation for the input connector x). 
This approach was decided upon even though it has 
the disadvantage that we allow unconnected input 
connectors, and to count equations we thus have to 
combine the normal equations and the equations for 
missing input connections in the count of equation. 
In this case ‘corr.x’ is not connected in the Use-
Correlation model; and instead a non-connect 
equation is giving.  
This can be compared to a causal paradigm, where 
we would just require that ‘corr.x’ must be con-
nected. However, even if the use above is legal a tool 
could still inform the user that ‘corr.x’ lacks a con-
nection if UseCorrelation or LineCorrelation 
are not balanced or if the simulation model is struc-
turally singular, in order to help in pinpointing the 
error. 

3 Locally balanced models 

In the previous chapter, the counting rules have been 
sketched for the most important cases. We will now 
formulate the exact rules and what guarantee can be 
given: 
A model or block is called “locally balanced” if the 
local number of unknowns matches the local equa-
tion size (both terms are defined below). Note, that 
all counts are performed after expanding all records 
and arrays to a set of scalars of primitive types. We 
will here ignore inner and outer components, as well 
as over-determined connectors, to simplify the defi-
nitions and results – for complete definitions see the 
Modelica 3.0 specification [1]. 
The local number of unknowns is the sum of: 
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• For each declared component of specialized 
class type (Real, Integer, String, Boolean, enu-
meration and arrays of those, etc) or record it is 
the “number of unknown variables” inside it 
(i.e., excluding parameters and constants).  

• For each declared connector component, it is the 
“number of unknown variables” inside it (i.e., 
excluding parameters and constants). 

• For each declared block or model component, it 
is the “sum of the number of inputs and flow 
variables” in the (top level) public connector 
components of these components. 

The local equation size is the sum of: 
• The number of equations defined locally (i.e. not 

in any model or block component), including 
modifier equations, and equations generated 
from connect-equations.  

• The number of input and flow-variables present 
in each (top-level) public connector component, 
i.e. the externally needed equations. 

• The number of (top level) public input variables 
that neither are connectors nor have binding 
equations, i.e., further externally needed equa-
tions. 

The following restrictions are imposed in Modelica 
3.0 
• All non-partial model and block classes must 

be locally balanced. 
• In a non-partial model or block, all non-

connector inputs of model or block components 
must have binding equations (i.e. they are de-
fined in a modifier). 

• Modifiers for components shall only contain re-
declarations of replaceable elements and binding 
equations for parameters, constants (that do not 
yet have binding equations), inputs and variables 
having a default binding equation.  

• In a connect-equation the primitive components 
of the two connectors must have the same primi-
tive types, and flow-variables may only connect 
to other flow-variables, causal variables (in-
put/output) only to causal variables (in-
put/output). 

• A connection set of causal variables (in-
put/output) may at most contain one inside out-
put connector or one public outside input con-
nector. [i.e., a connection set may at most con-
tain one source of a signal, which is the “usual” 
semantics for block diagrams.] 

• At least one of the following must hold for a 
connection set containing causal variables: 

(1) the model or block is partial, 
 (2) the connection set includes variables from an 

outside public expandable connector,  
 (3) the set contains protected outside connectors, 
 (4) it contains one inside output connector, or 
 (5) one public outside input connector, or 
 (6) the set is comprised solely of an inside input 

connector that is not part of an expandable 
connector. 

i.e., a connection set must – unless the model or 
block is partial – contain one source of a signal 
(the last items covers the case where the input 
connector of the block is unconnected and the 
source is given as equation in the equation or al-
gorithm section). 

• A protected outside connector must be part of a 
connection set containing at least one inside 
connector or one declared public outside connec-
tor (i.e., it may not be an implicitly defined part 
of an expandable connector).  

4 Plug and play 

We will show that if a user uses locally balanced 
classes and follow the language restrictions and 
drags and drop components and connect them, they 
will automatically build locally balanced classes as 
shown below. We will go through this starting from 
an even more restricted case; in the conclusion we 
will explain why these rules are not present in the 
language. 

4.1 Only components and connections 

Assume we build a non-partial model (or block) 
composed solely of components of model and block 
classes (with optional legal value modifiers applied) 
and connections that satisfy all restrictions, as it is 
the case in the following figure:  

source torque

tau

inertia1

J=1

compliant

inertia2

J=2

speedSensor

w

 
Furthermore for connection sets involving causal 
variables the connection set should satisfy case 4 in 
the itemized lists above (=contain an inside output 
connector generating the signal) – i.e. explicitly ex-
cluding case 6 (since cases 1, 2, 3, and 5 cannot ap-
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ply here). The model or block is then automatically 
locally balanced. 
Note: The excluded case (6) would correspond to 
removing the source-component above, and instead 
write a textual equation for torque.tau. This also ap-
plies to case (3), which is less needed. 
In this case the local number of unknowns corre-
sponds to the number of inputs and flow variables in 
the public connectors of the components; and the 
equations to the equations generated by connection 
equations. 
We can split the connectors into causal and non-
causal parts (due to the restriction that connection 
sets may not mix the two; this restriction was added 
in Modelica 3.0 to allow this analysis). 
For the causal part we have the local number of un-
knowns corresponding to the number of inputs in the 
public connectors of the components. Among these 
variables we have ni inputs and no outputs, and the 
number of equations is thus ni + no - 1; the case 4 
above gives no = 1 yielding the local number of equa-
tions ni + no – 1 = ni + 1 – 1 = ni exactly matching 
the local number of unknowns. 
For the non-causal part we have the local number of 
unknowns corresponding to the number of flow vari-
ables in the public connectors. Assume there are n 
connectors in this set, and each connector has nf  
flow-variables and np = nf non-causal, non-flow vari-
ables (“potential variables”). We have n·nf local 
number of unknowns; one zero-sum equation for 
flow variables and n – 1 equality equations for the 
potential variables; in total this gives the size 

fffpf nnnnnnnn ⋅=⋅−+=⋅−+ )1()1(  

which exactly matches the local number of un-
knowns. 
This case is important for users combining models 
from different libraries – and ensures that as long as 
the user only combines correct models without intro-
ducing simple variables or equations, the model is 
automatically balanced. 

4.2 Connectors 

Assume we extend the above list to include compo-
nents of connectors classes (without any value modi-
fiers), that cases 3 and 6 in the itemized list above 
does not apply, and that each connector component 
is connected (case 1 does still not apply since we 
build a non-partial model or block). The cases are 
indicated below. 
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We will apply the split into causal and non-causal 
part. For the non-causal part it seems that the previ-
ous proof goes through automatically – this is true 
with one minor caveat: if a (public) outside connec-
tor had not been connected (the case we excluded) it 
would not have been part of a connection set and 
would have given 0 equations instead of the correct 
number nf. 
For the causal part it is more complex since we have 
both protected and public causal variables. If we dis-
regard case expandable connectors and use super-
script i/o for inside/outside, and subscript n for nodes 
(regardless of input/output).  
The unknowns are given by the local connectors: 

outside inputs, outside outputs,  nodes (pro-

tected connectors), and the subcomponents:  inside 
inputs. The number of equations (n-1) is extended 
with outside inputs. Thus for balancing we get the 
requirement: 
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Simple cancellations gives: , or stated 
differently: either case (5) an outside input connec-
tor, or case (4) an inside output connector. The either 
is due to the restriction about multiple sources in a 
connection set. For expandable connectors (case 2) 
the same rules apply after we have deduced the cau-
sality; this will also influence the number of un-
knowns. 
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4.3 Redeclare of components 

When redeclaring a component, the missing equa-
tions for the component must be either provided via 
modifier equations (parameters, inputs) or connec-
tors must be connected. When these restrictions are 
fulfilled, the redeclared component is automatically 
locally balanced. 
One situation has to be treated specially: If the rede-
clared component introduces additional connectors 
that are not defined in the constraining clause. 
Unless the connectors are part of a redeclared inher-
ited top-level component, it is not possible that a user 
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can connect to these newly introduced connectors. 
This is uncritical, if the not connected connectors do 
not have input variables, since the default connection 
semantic will set the flow variables to zero. Conse-
quently, the restriction is introduced in Modelica 3.0 
that additional connectors that are not defined in the 
constraining clause are default connectable, i.e. shall 
not have input variables. 
A record or connector component that is directly re-
placeable or more commonly declared using a con-
nector from a replaceable package also has a parame-
ter dependent size. In such a case a redeclaration 
may add additional unknowns – which should also 
be balanced with matching equations. This is a “pa-
rameter-dependent size” and can be handled using 
the techniques in the next section – except that only 
unknowns are added in this way – but no equations, 
and at first it seems that this will inevitably lead to 
unbalanced models. However, it is possible to handle 
this correctly: by not using replaceable connectors 
directly, but instead use a replaceable package con-
taining connectors and corresponding models (or 
functions) – similarly as in the Modelica.Media 
package. 
This is a special case and we will not discuss the de-
tails. However, it has a direct relevance to a more 
fundamental change introduce in Modelica 3.0. Pre-
viously a connector component of a replaceable 
model component was implicitly replaceable, i.e. the 
problem that a redeclare could introduce missing 
equations was present for any replaceable model 
component having connectors – even if the connec-
tors were not replaceable. 

5 Parameter dependent sizes 

An important aspect of the counting of equations is 
that it holds not only for the current set of parame-
ters, but for any legal set of parameters values. The 
restriction in Modelica 3.0 is formulated such that 
even though the model should be balanced in all 
cases, the tool does not have to verify this. The rea-
son was that at the time it was not possible to verify 
that a given set of restrictions ensures that sub-
models will always be within the restrictions, and 
that user libraries could be rewritten to conform to 
this.  
Dymola can perform this test in several cases as will 
be outlined here; and in the remaining cases it is 
verified for the actual parameter values and a warn-
ing given.  

The number of scalar variables is obtained by recur-
sively symbolically adding the number of compo-
nents of each variable: 

• A scalar variable has the size 1. 
• An array v[n] has the size: n·<the size of its 

elements>. Modelica implicitly assumes that 
n ≥ 0. A multidimensional array is in Mode-
lica considered as a nested array. For exam-
ple, a matrix M[m, n] has the size m·n·<the 
size of its elements>. If the size is declared 
using the colon operator, v[:] = …, the size 
is represented as size(v, 1)·<the size of its 
elements>. The idea is to represent the size 
expressions of arrays symbolically as de-
fined by the model developers.  

• The size of a record is the sum of the size of 
its components. 

The current restrictions when counting variables are 
evaluation of sizes of arrays of components and the 
conditions of conditional components. 
The number of components of an equation is counted 
by traversing all its subexpressions and deducing the 
dimensionality and the size of each dimension and 
propagating this information upwards without any 
evaluation. At the top level the number of compo-
nents is formed in a way analogous to that of vari-
ables. Also size constraints are collected for immedi-
ate or deferred checking. An interesting fact is that 
the size of a for-loop equation can be formed as the 
sum of the elements of an array constructor. One 
restriction is that the instantiation procedure may 
have evaluated some conditions. 
The comparison of the number of variables and 
equations is done in 3 steps: 

• First all variables which bindings cannot be 
modified (protect, final, constant) are substi-
tuted symbolically. If Dymola can symboli-
cally deduce that the problem is balanced the 
check was successful in this respect. It 
means that the model is balanced irrespec-
tive of how a user rebinds or sets parameters 
that may be rebound or set. 

• Otherwise, Dymola substitutes all non-literal 
bindings. If Dymola now can show that the 
problem is balanced, the comparison is fin-
ished. It means that the user can change pa-
rameter values that are literals, but not oth-
erwise rebind parameter values without risk-
ing making the problem non-balanced. A 
remedy is to define critical parameter bind-
ings to be final. 
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• The third step is to force evaluation of all 
size parameters and then compare. This is 
what Dymola has done previously when 
checking or translating a model. 

As an example consider model Modelica.Blocks.-
Continuous.StateSpace. The essence is: 

block StateSpace 
  parameter Real A[:, size(A,1)]; 
  parameter Real B[size(A,1), :]; 
  parameter Real C[:, size(A,1)]; 
  parameter Real D[size(C,1), size(B,2)]  
          =zeros(size(C, 1), size(B, 2)); 
  extends Interfaces.MIMO( 
                  final nin= size(B, 2), 
                  final nout=size(C, 1)); 
  output Real x[size(A, 1)]; 
equation  
  der(x) = A*x + B*u; 
       y = C*x + D*u; 
end StateSpace; 

Checking the model in Dymola 7.0 results in 
Model having the same number of 
unknowns and equations:  
  size(A, 1) + size(B, 2) + size(C, 1) 

The counting of the unknown variables which are x, 
u and y, gives  

size(A, 1) + nin + nout 

The bindings for the parameters nin and nout are 
final and can be used for substitution, which gives 
the logged result. The counting of equations gives 
first nin for the inputs. The size check of  

der(x) = A*x + B*u; 

has to check possible size constraints for each 
subexpression. First, the matrix-vector multiplica-
tion, A*x requires size(A,2)=size(x,1). Explor-
ing the declarations of A and x shows that either side 
is equal to size(A,1). The product A*x is a vector 
with size(A*x,1)=size(A,1). The product B*u 
requires size(B,2)=size(u,1). Exploring the 
declaration of u gives size(u,1)=nin and the final 
binding to nin gives nin=size(B,2). Thus the con-
straint is fulfilled. The product B*u is a vector with 
size(B*u,1)=size(B,1). Next, the sizes of the 
two terms A*x and B*u must be equal. They are both 
vectors and the size constraint is size(A*x,1)= 
size(B*u,1). Since size(A*x,1)=size(A,1) and 
size(B*u,1)=size(B,1)and since the declaration 
states size(B,1)=size(A,1), the constraint is ful-
filled. The resulting sum is a vector of size(A,1). 
Since the declaration of x specifies size(x,1)= 
size(A,1) all the size constraints of the equation 
are fulfilled symbolically for all allowed A and B ma-
trices and it has size(A,1) components. Similarly 
the equation y = C*x + D*u is type consistent and 
has size(C,1) equations. 

Dymola’s facility for checking that two symbolic 
expressions are equal is rather elaborate. However, it 
cannot handle all cases such as complicated for-
loop equations where there are, for example, condi-
tions on the loop iterator. Dymola then resorts to 
numerical evaluation. 

6 Limitations of the approach 

The previous section shows that the rules in Mode-
lica 3.0 make it possible to provide early checks of 
models that will avoid several hard to find errors 
when completing large models. The early checks are 
possible, since we only need the interface of sub-
components. However, some errors are still possible 
when assembling sub-models and the natural ques-
tion is why these errors cannot be handled in a better 
way. 

6.1 Why are not all restrictions in the  
language? 

As noted above we can prove that models are auto-
matically balanced if built subject to certain restric-
tions, but not all of these restrictions are part of the 
language. This might seem odd considering that we 
want to ensure correctness early on, but it is neces-
sary to allow textual (non-connect) equations to be 
given for low-level models. However, the check can 
still be performed at the same level – and uses the 
same description of balanced models; the only dif-
ference is that if the guidelines are followed the 
check becomes even simpler. When the guide-lines 
are not followed, a user would have to provide non-
connector equations as a replacement for connec-
tions; thus for a model with only connector equations 
the simpler restrictions hold. This makes it straight-
forward to provide good diagnostics, while preserv-
ing the low-level openness of Modelica. Further-
more, a general recommendation is to avoid mixing 
connections and textual equations (see e.g. [5]); 
which makes it easier to separate the two cases. 
The examples where this is necessary include writing 
basic models such as a resistor where equations are 
given for the connectors - instead of adding addi-
tional connections, and correlations for media-
models are built such that there are multiple potential 
inputs (see section  2.2 Correlations and non-
connector inputs). Allowing equations for input con-
nectors is also convenient in some other cases (e.g. 
when using table-lookup blocks); and by having the 
semantics above we avoid introducing a special se-
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mantic construct for defining the number of external 
equations needed for the media-models. 

6.2 Requirements beyond balanced? 

Having a balanced model is only a necessary re-
quirement to be able to simulate it, but it is not suffi-
cient. Whether a non-linear system of differential-
algebraic equations has a solution is NP-hard in gen-
eral; imposing restrictions to ensure a solution would 
impose such strict rules on the modeling (such as 
convex equations) that it would be not practical in 
general. 
For the complete model a strong requirement is that 
the system of equations is structurally regular (i.e. no 
singularity when looking at the structure and ignor-
ing the actual values). Dymola can also perform this 
check already for incomplete models and then use a 
generic coupling for local (replaceable) components, 
and for top-level connectors. This can provide useful 
diagnostics for many cases. 
However, structural regularity is not entire well-
defined, e.g. Dymola actually uses +/-1 from connec-
tions as well as zeros (finding more errors), and in 
contrast to balanced models structurally singular 
does not provide strong guarantees. Even plugging in 
parameters might turn a structurally regular system 
into a structurally singular one, since structurally 
singular only ensures that the equations are non-
singular for “most” values of the non-zero elements. 
Obviously this also applies to redeclarations, espe-
cially since one often uses simplified models as test-
cases. A simple example would be an electrical cir-
cuit testing different components with an ideal 
source: 

ground

load

so
ur

ce

+
-

 
This model (with an ideal voltage source) will be-
come structurally singular if we plug in a short-
circuit component as a load. 

6.3 Restrictions on partial models? 

Currently there are no balancing restrictions on par-
tial models in Modelica, and the contents of base-
classes are expanded prior to verifying the balancing. 
This is the formal semantics; a tool may internally 
handle this in a better way, taking special care of the 
non-trivial handling of connection sets, and of multi-
ple inheritance of the same component. 
The reason for the lack of restrictions is that the 
number of equations needed in derived models de-
pend on whether the partial model is just an interface 
(e.g. TwoFlanges in the Rotational library – this just 
has two flange connectors), or contains an incom-
plete set of equations (e.g. Rigid in the Rotational 
library – which also specifies that the angles are 
identical). If we compare with e.g. Java this implies 
that a partial class may be either an interface or an 
abstract class. 
A possible extension would be to have separate key-
word for pure interfaces, and restricted such that 
only public connectors, parameters, and causal vari-
ables are present. The number of equations needed in 
derived classes would be uniquely defined from the 
interface. In that case it would not be necessary to 
verify that the interface is “balanced”, since it would 
follow automatically from the requirement on inter-
faces, and on connector classes. 
A practical smaller extension would be to require 
that partial models may only be locally underbal-
anced, i.e. lacking equations, but not have too many 
equations. 
These possible extensions have not yet been investi-
gated in details. 

7 Conclusions 

The new restrictions in Modelica 3.0 make it possi-
ble to provide diagnostics earlier in the development 
process, while still maintaining the low-level open-
ness of Modelica. These early diagnostics both 
shortens development time, and makes it possible to 
provide an interface for end-users where certain er-
rors cannot occur – thus reducing the deployment 
and training cost for these users. 
In Dymola 7.0, the restrictions introduced in Mode-
lica 3.0 are supported, but are only imposed when 
using the Modelica Standard Library 3 (or later). 
This allows users to continue to run correct Modelica 
2 models.  

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 30 Modelica 2008, March 3rd − 4th, 2008



References 

[1] Modelica 3.0 Language Specification, Modelica 
Association, September 2007. 
http://www.modelica.org/documents/ModelicaSp
ec30.pdf 

[2] P. Bonus, P. Fritzson. Automated Static Analy-
sis of Equation-Based Components. SIMULA-
TION: Transactions of the Society for Modeling 
and Simulation Internal. Special issue on Compo-
nent-based Modeling & Simulation. Vol 80:8, 
2004. 

[3] Dymola, by Dynasim AB, Sweden. See 
www.dynasim.se for more information. 

[4] D. Broman, K. Nyström, P. Fritzson: Determin-
ing Over- and Under-Constrained Systems of 
Equations using Structural Constraint Delta. 
In Proceedings of the 5th international conference 
on Generative programming and component en-
gineering 

[5] M. Tiller: Parsing and Semantic Analysis of 
Modelica Code for Non-Simulation Applica-
tions. In Proceedings of Modelica’2003 confer-
ence. 
http://www.modelica.org/events/Conference2003/
papers/h31_parser_Tiller.pdf 

 

Appendix –  
Over-determined connectors 

Over-determined connectors have been introduced in 
Modelica 2.1 to handle a certain class of consistently 
over-determined set of differential-algebraic equa-
tions, for example 3-dim. mechanical systems: Since 
a MultiBody connector contains the transformation 
matrix between the world frame and the connector 
frame, and there are constraints between the ele-
ments of a transformation matrix, connecting com-
ponents with such a connector can lead to an over-
determined (but consistent) set of unbalanced equa-
tions that have a mathematically well-defined solu-
tion. The over-determined connectors are defined 
and used in such a way, that a Modelica tool is able 
to remove the superfluous (consistent) equations ar-
riving at a balanced set of equations, based on a 
graph analysis of the connection structure. For equa-
tion counting, it is of course important to take this 
special treatment into account: 
A type class with an equalityConstraint(..) function 
declaration is called over-determined type. A record 
class with an equalityConstraint(..) function defini-
tion is called over-determined record. The equality-
Constraint(R1,R2) functions are used to define the 
minimal number of equations stating that over-
determined types or records R1 and R2 are identical. 

A connector that contains instances of over-
determined type and/or record classes is called over-
determined connector. 
Every instance Ri of an over-determined type or re-
cord in an over-determined connector is a node in a 
virtual connection graph that is used to determine 
when the standard equation "R1 = R2" or when the 
equation "0 = equalityConstraint(R1,R2)" has to be 
used for the generation of connect(...) equations. The 
branches of the virtual connection graph are implic-
itly defined by "connect(..)" and explicitly by Con-
nections.branch(...) statements. Additionally, corre-
sponding nodes of the virtual connection graph have 
to be defined as roots or as potential roots with built-
in functions Connections.root(...) and Connections.-
potentialRoot(...), respectively. Connections are 
treated as “breakable” branches. By removing ap-
propriate breakable branches, the virtual connection 
graph is transformed into a set of spanning trees, 
each comprised of one root. 
An example is given in the figure below, where all 
“dotted” lines characterize “connect(...)” equations. 
After building up the spanning trees, the connections 
that have to be removed to arrive at a spanning tree, 
are specially handled for the generation of the con-
nection equations (see below): 

selected root
selected root

potential rootrootnode 

nonbreakable branch 
(Connections.branch) 

breakable branch (connect) 

removed breakable branch to get tree 

For potential roots the model tests if the root is se-
lected, and then uses different equations. The flow-
variables always give the same equations as normal 
connections, but for “potential” (=non-flow) vari-
ables this is different: If a connect(..) equation is 
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not “broken”, the standard equality equations hold. If 
a connect(..) equation is marked as “removed” in 
the virtual connection graph, less equations are pro-
vided by using the residual equations defined by the 
type or record specific function equalityCon-

straint() (shorted to r() below – with number of 
equations nr) taking the two “potential” variables of 
the connected connectors as input arguments. 
If we examine the same cases as in Figure 1 and con-
sider m1.c, m2.c, m3.c as unconditional roots we get 
the same result for the left and for the right-case (the 
connection must be a removed branch since two un-
conditional roots are connected): 

0 = m2.c.f + m3.c.f;    // nf equations 
0 = r(m2.c.p, m3.c.p);  // nr equations 

and thus we get: 

left model (m1): root
e fn n=   

right model (m2,m3): 2 root
e fn n= + rn

p

f

or 
root
e f

r f

n n

n n

=

=
 

If we instead have a potential root, we will in the left 
(unconnected) case select a root. If connected to a 
similar component one of them will get a root and 
the other one not, and the connection will not be 
broken (i.e. normal connection equations are intro-
duced). We then get the size-constraint: 

left model (m1): root
e fn n=   

right model (m2,m3): root non root
e e fn n n n−+ = +  

Combing the two cases results in: 

  

root
e f

r f

non root
e p

n n

n n

n n−

=

=

=

If there are several potential roots they should all 
give the same external equation count. The require-
ment on the residual size (nr = nf) is included in the 
Modelica specification [1], but additionally only the 
rooted external equation count is included 
( ) and not the non-rooted equation count.  root

en n=

Thus the balancing rules in Modelica 3.0 for over-
determined connectors are incomplete and hold only 
for a very special case (e.g. when a MultiBody com-
ponent is directly connected to the world object, 
which is a definite “root” of the virtual connection 
graph). This should be corrected in a future revision 
of the Modelica Specification. In the remaining part 

of this section, the non-rooted equation count is also 
taken into account. 
In a similar way as in section  2.1 “Restrictions on 
physical connectors”, the above derivation is also 
formulated in form of requirements on connectors 
and models (the derivation requires extending the 
above test models with a mixture of normal potential 
variables and potential variables of over-determined 
records or types): 

 

1. The number of flow variables in a connector 
must be equal to the number of (normal) non-
causal, non-flow variables + the number of re-
sidual equations of over-determined records and 
types (in the set of non-flow variables, the over-
determined records and types are not included, 
because they are included via the residual equa-
tions) 

2. The number of equations in a model = 
number of unknowns  
– number of inputs  
– number of flow variables  
– ((for every Connections.Branch(R1,R2)) and
   (for every Connections.potentialRoot(R1,..)
     where Connections.isRoot(R1) = false): 
          number of R1 variables –   
          number of R1 residual equations, 
     i.e., the number of R1 constraint equations) 

3. When using a model with over-determined con-
nectors, i.e., making an instance, all missing 
equations of this component must be provided 
to make the component “balanced”. Besides the 
standard rules, the only way to make over-
determined connectors balanced is to connect to 
these connectors or by leaving them uncon-
nected.

These rules shall be demonstrated at hand of the 
Modelica.Mechanics.MultiBody library: 
The over-determined connector “Orientation” de-
scribes the transformation matrix from one frame to 
another frame: 

record Orientation  
 Real T[3, 3] "Transformation matrix"; 
 
 encapsulated function equalityConstraint  
   import M=Modelica.Mechanics.MultiBody; 
   input  M.Frames.Orientation R1  
   input  M.Frames.Orientation R2  
   output Real residue[3]  
 algorithm 
   residue := { ... } 
 end equalityConstraint ; 
end Orientation; 

The Orientation object has a residue function with 
3 equations and is used in a MultiBody connector to 
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describe the rotation from the world frame to the 
connector frame: 

connector Frame  
  import SI = Modelica.SIunits; 
  import M=Modelica.Mechanics.MultiBody; 
  SI.Position   r_0[3] "Origin of frame" 
  flow SI.Force f  [3] "Cut-forces" 
 
  M.Frames.Orientation R  "Orientation" 
  flow SI.Torque     t[3] "Cut-torque"; 
end Frame; 

Connector frame has 3+3 = 6 flow variables (f,t), 3 
normal, non-flow variables (r_0) and 3 residual 
equations (from R). Therefore, the connector fulfills 
rule 1 above. 
FixedTranslational is a MultiBody model that trans-
lates one frame along a given position vector: 

model FixedTranslation 
  import SI=Modelica.SIunits;  
  import M=Modelica.Mechanics.MultiBody; 
  M.Interfaces.Frame_a frame_a  
  M.Interfaces.Frame_b frame_b  
  parameter SI.Position r[3] 
    "Vector from frame_a to frame_b"; 
equation  
  Connections.branch 
               (frame_a.R, frame_b.R); 
  frame_b.r_0 = frame_a.r_0 +  
         M.Frames.resolve1(frame_a.R, r); 
  frame_b.R = frame_a.R; 
  zeros(3) = frame_a.f + frame_b.f; 
  zeros(3) = frame_a.t + frame_b.t +  
                     cross(r, frame_b.f); 
end FixedTranslation; 

The number of equations in FixedTranslation is 
required to be: 

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t) 
  - 2*(3+3)   // 2*(f+t) 
  - (9-3)     // (R.T – R.residuals) 
= 18 equations  

and the model fulfils this requirement. 
World is the MultiBody model that defines the iner-
tial frame as: 

model World 
  import M=Modelica.Mechanics.MultiBody; 
  M.Interfaces.Frame_b frame_b; 
equation 
  Connections.root(frame_b.R); 
  frame_b.r_0 = zeros(3); 
  frame_b.R   = M.Frames.nullRotation(); 
end World 

The number of equations in World is required to be: 
= 3+3+9+3   // r_0+f+R.T+t 
  - (3+3)   // (f+t) 
= 12 equations  

and the model fulfils this requirement. 
LineForce is a MultiBody model that defines a 
force along a line between two frames. The difficulty 
is that if LineForce elements are directly coupled to 

each other, then the transformation matrix between 
two LineForce elements is arbitrary. This can be 
made mathematically well-defined, by setting one of 
the LineForce transformation matrices (= the se-
lected root) to an arbitrary value:  

model LineForce 
  import SI=Modelica.SIunits;  
  import M=Modelica.Mechanics.MultiBody; 
  M.Interfaces.Frame_a frame_a  
  M.Interfaces.Frame_b frame_b  
    ... 
equation  
 Connections.potentialRoot(frame_a.R,10); 
 Connections.potentialRoot(frame_b.R,10); 
 
  frame_b.f = ...; // force law 
  0 = frame_a.f + frame_b.f; 
 
  if isRoot(frame_a.R) then 
    frame_a.R = Frames.nullRotation(); 
  else 
    frame_a.t = zeros(3); 
  end if; 
   
  if isRoot(frame_b.R) then 
    frame_b.R = Frames.nullRotation(); 
  else 
    frame_b.t = zeros(3); 
  end if; 
end LineForce; 

The number of equations in LineForce depends on 
the selected roots. If isRoot(..) is false for both 
frames the number of equations are required to be: 

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t) 
  - 2*(3+3)   // 2*(f+t) 
  - 2*(9-3)   // 2*(R.T – R.residuals) 
= 12 equations  

and the model fulfils this requirement. 
If isRoot(..) is false for one and true for the other 
frame, the number of equations are required to be: 

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t) 
  - 2*(3+3)   // 2*(f+t) 
  - 1*(9-3)   // 1*(R.T – R.residuals) 
= 18 equations 

and the model fulfils this requirement.  
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Abstract 

This paper presents a derivative language of Modelica 

that is called Sol. It has been especially designed for the 

convenient expression and simulation of variable-structure 

systems within an object-oriented, equation-based model-

ing framework. Starting from a formal definition of the 

grammar and type-system, the paper advances to an ex-

planation of Sol’s semantics. Finally the current state of 

implementation and corresponding processing mecha-

nisms are presented. Keywords: language design, vari-

able-structure systems, causalization mechanisms. 

1 Motivation  

Many contemporary models contain structural 

changes at simulation run-time. These systems are 

typically denoted by the collective term: variable- 

structure systems. The motivations that lead to the 

generation of such systems are manifold. Typical 

cases are represented by ideal switching or breaking 

processes, variability in the number of entities, dy-

namic multi-level models or user interaction [5]. 

Let us focus on the modeling-paradigm that is repre-

sented by Modelica: declarative models that are 

based on differential algebraic equations (DAEs) 

with hybrid extensions. Within this paradigm, a 

structural change is reflected by a change in the set 

of variables and by a change in the set of relations 

(i.e., equations) between the time-dependent vari-

ables. Such replacements may lead to severe changes 

in the model structure. This concerns the causaliza-

tion of the equation system, as well as the perturba-

tion index of the DAE system. 

Current contributions of this research domain include 

the development of the language MOSILAB [8] or 

Hydra [7]. Also some specific techniques, like in-

line-integrators [4] that can be included in Modelica 

prove to be helpful in certain situations. However, 

most of these approaches leave the standard domain 

of Modelica, since the modeling of variable-structure 

systems within the current Modelica framework is 

very limited [10]. This is partly due to a number of 

technical restrictions that mostly originate from the 

static treatment of the DAEs. But these technical re-

strictions are not the only limiting factor. Another 

major problem is the lack of expressiveness in the 

Modelica-language itself. 

To express structural changes, a corresponding mod-

eling language has to meet certain requirements. For 

instance, it must be enabled to state relations be-

tween variables or sub-models in a conditional form, 

so that the structure can change depending on time 

and state. In addition, variables and sub-models 

should be dynamically declarable, so that the corre-

sponding instances can be created, handled, and de-

leted at run time. Such requirements partly contradict 

with fundamental assumptions made in the design-

process of Modelica.  

Therefore we decided to develop a new language 

called Sol [11]. It is a language primarily conceived 

for research purposes that attempts to be of minimal 

complexity with a high degree of expressiveness. We 

want to explore the full power of a declarative mod-

eling approach and how it can handle potential, fu-

ture problem fields. The implementation of Sol will 

be a small and open project that should enable other 

researchers to test and validate their ideas with a 

moderate effort. The longer term goal of our research 

is to significantly extend Modelica’s expressiveness 

and range of application. Furthermore, the Sol-

project gives us a development-platform for techni-

cal solutions that concerns the handling of structur-

ally changing equation systems. This includes solu-

tions for dynamic recausalization or the dynamic 

handling of structural singularities.  

Although Sol forms a language of its own, it is de-

signed to be as close to Modelica as reasonably pos-

sible. This should drastically ease the understanding 

for anyone in the Modelica community. It is not our 

goal to immediately change the Modelica standard or 

to establish an alternative modeling language. Our 

scientific work is intended to merely offer sugges-

tions and guidance for Modelica’s future develop-

ment. 
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Example 1: Model of a simple machine driving a fly-wheel with a fluctuating torque. 

model SimpleMachine  Definition of the main model: “SimpleMachine” 
 

   (1) Header: 

 define inertia as 1.0;  ● Definition of a constant   

  
    

interface: (2) Interface Section: 

 parameter Real meanTorque;  ● Declaration of parameters 

 static Real w;  ● Declaration of a public member  
    

implementation: (3) Implementation part: 

 static Real torque;  ● Declaration of private members 
 static Real a;  

 torque = inertia*z;  ● Stating Newton’s law of motion… 
 w = int(x=z);  

 phi = int(x=w); 

 torque = (1+cos(p=phi))*meanTorque;  ● Equation for the fluctuating torque 

 

end SimpleMachine End of the model-definition 
 

… 
 

static SimpleMachine M1{ meanT << 10}; ● An example declaration of the machine model. 

cout << SimpleMachine.w; ● Simple Output Generation. 
 

 
 

2 The Language: Sol  

2.1 Principle Components 

Essentially, Sol redefines the fundamental concepts 

of Modelica on a dynamic basis. Following the spirit 

of Modelica, it forms a language of strong declara-

tive character and therefore completely abandons any 

imperative parts. Unlike many other declarative 

modeling languages, Sol enables the creation, ex-

change and destruction of components at simulation 

time. To this end, the modeler describes the system 

in a constructive way, where the structural changes 

are expressed by conditionalized declarations. These 

conditional parts can than get activated and deacti-

vated of during run-time. This constructive approach 

avoids an explicit description of modes and transi-

tions and yet proves to be fairly powerful and flexi-

ble.  

In contrast to Modelica, the grammar of Sol (cf. ap-

pendix) is significantly stricter. In its aim for sim-

plicity, it prohibits any ambiguous ordering of its 

major sections. Also any grammar elements that one 

would typically denote by the term syntactic sugar 

are largely omitted. Whereas the strict section order-

ing definitely leads to a good modeling style, the 

lack of syntactic shorthand notations may sometimes 

result in clumsy formulations. 

On the top-level, the Sol language features only a 

single language component that represents the defini-

tion of a model in a very generic way. Such one-

component approaches are frequent for experimental 

languages (e.g. [1]), since they typically result in a 

uniform structure that eases further processing. In 

addition, they yield to a clear and simple grammar.  

The example above gives a first glance at Sol and 

enables us to take a closer look at the structure of a 

model-definition. A model-definition consists of 

three parts, where each of them is optional: 

• The header section is essentially composed out 

of further definitions. These may be constants or 

further models. Definitions of the header-part can 

be publicly accessed and belong the model defini-

tion itself and not to one of its instances. In addi-

tion, the header enables you to state an extension 

of an existing definition. 

• The interface section enables the modeler to de-

clare the members of a model that can be publicly 

accessed. The members can either be basic vari-

ables or sub-models. Any of these members can 

be marked as a parameter that is passed at the 

model’s instantiation and remains constant for the 

object’s lifetime. Hence extra means for class-

parameterization as in Modelica become obsolete.  

• The implementation part contains then the actual 

relations between the variables and describes the 

dynamics of the system. 
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This general structure of a model-definition enables 

it to be used also for degenerated tasks like the defi-

nition of packages or connectors. A model in Sol 

represents a uniform approach that is similar to the 

class concept of Modelica. On the other hand side, 

the term “model” is almost overstressed and became 

so general that it lost some of its actual meaning. To 

regain expressiveness, Sol offers you different 

model-specifiers that enable the explicit denotation 

of certain sub-kinds. The usage of these specifiers 

involves consequently a number of restrictions. 

However, the syntax and semantics still remain uni-

form.  

2.2 Object-Oriented Organization 

The object-oriented and hierarchic organization of 

modeling code is substantially supported by two 

model-specifiers: 

• package: Packages are used to collect models in 

a meaningful entity. A package-definition is re-

duced to the header part. It features neither an in-

terface nor an implementation.  

• connector: A connector typically collects mem-

bers that are intended to be related by a connec-

tion-statement. A connector consists essentially 

of an interface. There’s no implementation part.  

The creation of an object-oriented hierarchy is illus-

trated in example 2 where the machine-model is split 

up into its principle components: An engine, a fly-

wheel and additionally a simple gear model. These 

models use a uniform connector model and are based 

upon partial models that have been collected in an 

extra template package.  Example 2 makes frequent 

use of the keyword extends that demonstrates the 

appliance of type-generation. 

 

Example 2: Package structure in Sol 

package MechTemplate 

 

  package Interfaces 
 

    connector Flange 

    interface: 

      static potential Real phi;  

      static flow Real t;  

    end Flange; 
 

    partial model OneFlange 

    interface: 

      static Flange f; 

    end OneFlange; 

    

    partial model TwoFlanges 

    interface: 

      static Flange f1; 

      static Flange f2; 

    end TwoFlanges; 
 

  end Interfaces; 
 

end MechTemplate; 

 

package Mechanics extends MechTemplate; 
 

  model Engine1  

    extends Interfaces.OneFlange; 

  interface: 

    parameter Real meanT; 

  implementation: 

      f.t = meanT;  

  end Engine1; 
 

  model Engine2  

    extends Interfaces.OneFlange;  

  interface: 

    parameter Real meanT; 

  implementation: 

    static Real transm; 

    transm = 1+cos(x = f.phi); 

    f.t = meanT*transm;  

  end Engine2; 
 

  model FlyWheel  

    extends Interfaces.OneFlange; 

  interface: 

    parameter Real inertia; 

    static Real w; 

  implementation: 

    static Real z; 

    f.phi = int(x=w); 

    w = int(x=z); 

    -f.t = z*inertia; 

  end FlyWheel;  
 

  model Gear  

    extends Interfaces.TwoFlanges; 

  interface: 

    parameter Real ratio; 

  implementation: 

    ratio*f1.phi=f2.phi; 

    -f1.t=ratio*f2.t; 

  end Gear; 
 

end Mechanics; 
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Sol offers three simple but 

effective mechanisms for 

type-generation. The most 

important of them is the 

type-extension better known 

as inheritance. Any model 

can extend any other model 

as long as there are no cir-

cular or recursive depend-

encies. Since packages rep-

resent models as well, in-

heritance can be applied to complete packages as 

well. The remaining two mechanisms consist in the 

redeclaration of members and the redefinition of 

models. Also these mechanisms can be applied to all 

feasible elements. In contrast to Modelica the rede-

claration is used for type-generation only and not for 

class-parameterization.  

Figure 1 depicts the resulting package structure of 

our example. The solid lines denote the memberships 

whereas the dotted arrows represent inheritance. 

 
Figure 1: Exemplary package-hierarchy in Sol 

Whereas the example has been over-elaborated for 

the purpose of demonstration, the combined usage of 

type-generation mechanisms forms a powerful tool 

for certain application domains like fluid-dynamics 

[3]. There, a package for a certain material may 

serve as a potential template. A modeler can then 

quickly adapt to other materials by a package-

extension and a redefinition of the basic material 

model.  

 

2.3 Type-System 

Like Modelica, Sol features a structural type-system 

[2]. It is solely based on the model’s interfaces. The 

development of implementations and interfaces can 

therefore be separated and disjoined lines of imple-

mentation may yield into compatible types. The pro-

vided mechanisms of inheritance and redeclaration 

enable a satisfactory degree of polymorphism. 

The type of a model is composed out of its members 

in the interface section. Any type-extension will 

yield to the creation of a sub-type of the inherited 

model. Also redeclarations and redefinition are lim-

ited to be only possible by sub-types of their original 

representation. Figure 2 illustrates the resulting type-

structure of Example 2. 

A proper and user-evident type-system becomes in-

creasingly important in a dynamic framework like 

Sol. In situation where assignments are applied on 

complete sub-models to perform a model-exchange 

the corresponding assignments should be guarded by 

the type-rules.  

2.4 Implementation part 

The implementation part represents a block. A block 

may contain declarations of private members, rela-

tions (e.g. equations) or further nested conditional 

blocks in any arbitrary order. Let us analyze each 

component in more detail. 

Private Declarations: 

Declarations of private members do hardly differ 

from their counterparts in the header sections. Only 

the parameter attribute and the access-specifiers are 

now meaningless and therefore disabled. 

The declaration of a member links a model instance 

to a given identifier. This linking is either static or 

dynamic. This selection has to be stated before the 

actual declaration. In contrast to a static linking, a 

dynamic linking enables to modeler to (re-)assign a 

new instance to the corresponding identifier. 

 

Figure 2: Exemplary type-hierarchy in Sol 
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Conditional Blocks: 

Sol features if-else-branches and when-else-

branches. The condition of an if-branch is immedi-

ately applied. It forms a safe condition that can be 

assumed to hold for its content. Hence the condition 

must be independent on any of its branches’ content. 

When-statements are used to catch an event. The 

events are triggered during the update-procedure and 

are scheduled for the next one. Thus, when-

conditions are not safe. Unlike Modelica, there are 

no syntactical restrictions on the content of the 

branches, but all branches shall finally lead to correct 

system of equations. 

Statements:  

Three fundamental operators are provided for setting 

up relations between members: 

• The operator = states an equation between two 

expressions of type real.  

• The causal copy-transmission << is setting up 

causal relationships between real variables and 

can be used to link a copy of a model-instance to 

an identifier. 

• The causal move-transmission <- is used to link 

a model-instance to a new identifier and to re-

move the former linking. 

Member-access in statements:  

To access the public members of your sub-models, 

three options are provided:  

• As in Modelica the . operator is the most 

straightforward way of access, but not always 

convenient. 

• The connection(…) statement exist also in Sol 

and has practically the same meaning as its 

counterpart in Modelica. 

• The ( ) operator enables a function-like nota-

tion. It is especially suited for anonymously de-

clared members. 

Whereas the . operator represents a universal form of 

member access, the other two forms serve conven-

ience and their proper appliance is determined by  

specifiers at the corresponding member-declarations. 

The connection statement only refers to variables 

that have been marked by the specifiers flow or  

potential.  The specifiers in and out determine 

the applicability of the access by round-brackets. 

3 Example Model 

The presented language elements are sufficient for 

the formulation of highly variable systems. However, 

given the brief introduction above, it may not be evi-

dent how objects can be dynamically created, ex-

changed and deleted as there appears to be no ex-

plicit tool for these purposes. Let us therefore look at 

an example. 

We reassemble the machine-model from example 1 

that consists of an engine that drives a fly-wheel. 

This time we use the components of the Mechanics 

package in example 2. Furthermore we add a simple 

gear to our model. We recognize that the package 

provides two models for an engine: The first model 

Engine1 applies a constant torque on the flange. In 

the second model Engine2, the torque is dependent 

on the positional state, roughly emulating a piston-

engine. Both models share the same type (see figure 

2). Our intention is to use the latter, more detailed 

model at the machine’s start and to switch to the 

simpler, former model as soon as the wheel’s inertia 

starts to flatten out the fluctuation of the torque. This 

exchange of the engine-model represents a simple 

structural change on run-time. 
 

Example 3: Machine with a structural change 

model Machine 

implementation: 

  static Mechanics.FlyWheel F{inertia<<1}; 

  static Mechanics.Gear G{ratio << 1.8}; 

  connection(G.f2,F.f); 
   

  static Boolean fast; 

  if fast then 

    static Mechanics.Engine1 E{meanT<<10}; 

    connection(E.f,G.f1); 

   else then 

    static Mechanics.Engine2 E{meanT<<10}; 

    connection(E.f,G.f1); 

  end; 
   

  if initial then fast << false; end; 

  when F.w > 40 then fast << true; end;  

end Machine; 

The resulting model is presented above. It includes 

two conditional branches, one for each mode. The 

current mode is stored in the Boolean variable fast. 

The corresponding transition is modeled by the 

when-statement. 

3.1 Simulation Result 

Using an interpreter program, the system was simu-

lated for 10 seconds by the excessive number of 

10’000 integration steps with the forward Euler 

method. The computational effort sums up to a total 

of 0.2 seconds on a standard CPU, where the effort 

for parsing and preprocessing is almost completely 
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negligible. Figure 3 displays a plot of the angular 

velocity. The structural change reveals more clearly 

in the magnification. The actual change in the struc-

ture of equations is presented by the two causality-

graphs of figure 5 and 6. Their closer examination is 

part of section 4. 

 
Figure 3: Angular velocity of the flywheel.  

3.2 Alternative modeling approach 

In the prior example, model-instances have been im-

plicitly created and removed by the if-statement. Us-

ing local engine-models in the two branches is a very 

natural modeling approach, but often leads to redun-

dant formulations (e.g. the connection statement) and 

therefore not all structural changes can be formulated 

in such a way. Thus, Sol enables the dynamic linking 

of an identifier to its instance. This offers a more 

convenient and general approach.  

Let us model the machine for a second time, this 

time using a dynamic engine-model E that is initially 

linked to an Engine2 model. At the transition-event, 

the Engine1 model is dynamically created by an 

anonymous declaration. Since it is linked to the 

member E by a move-transmission, its lifetime ex-

ceeds the event and the newly created model replaces 

the former one. The replacement is valid because the 

types of the two engine models are equivalent. 
 

Example 4: Alternative version of the machine-model 

model Machine  

implementation: 

  static FlyWheel F{inertia<<1}; 

  static Mechanics.Gear G{ratio << 1.8}; 

  dynamic Engine2 E{meanT << 10};  

  connection(E.f,G.f1); 

  connection(G.f2,F.f); 

  when F.w > 40 then  

    E <- Engine1{meanT << 10};  

  end;  

end Machine; 

The deletion of a model-instance is mostly done im-

plicit by replacing the linking to an instance (as 

above) or by the removal of the corresponding iden-

tifier. However, example 5 presents the predefined 

trash object that is of type void and can be used for 

the explicit deletion of any object. 
 

Example 5: Explicit deletion of a model-instance 
 

  trash <- E; 
 

This mechanism for the dynamic linking of a model-

instance represents a pointer-free modeling ap-

proach. The linking obeys clear ownership principles 

and therefore the simulation system can assure a 

memory-safe execution. Furthermore, the modeler is 

freed from the tedious and error-prone task of mem-

ory-management.  

4 Processing Schemes 

Sol is currently processed by an interpreter.  The in-

terpreter was named Solsim and represents a com-

mand-line program running under Linux or Win-

dows. The input-file can be written in a standard 

text-editor. The simulation is performed and its out-

put can be written into a file readable by the pro-

grams Matlab™ or Gnuplot.  In addition to its main 

task, the interpreter provides also tools for the analy-

sis of the model-hierarchy, type-structure and causal-

ization mechanisms 

Whereas the pair of a compiler and a simulator is the 

preferred choice for high-end simulation tasks, an 

interpreter is an appropriate tool (cf. [6]) for research 

work on language design. The development process 

becomes easier, faster and more flexible. Hence the 

development of the interpreter can proceed in paral-

lel with a further refinement of the language. Fur-

thermore, new debugging techniques become crucial 

in a more dynamic framework. This can be easier 

provided by an interpreter, since all necessary meta-

information is available.  Figure 4 displays a simpli-

fied overview of the main processing scheme that is 

composed out of six blocks. The following sections 

discuss these parts in more detail. 

4.1 Parsing and Lexing 

The Lexer processes the elementary elements of the 

language and discards all comments and formatting. 

Since the remaining part of the language forms an   

L1-Grammar, the actual parsing forms a rather trivial 

task. The parser is handwritten and features an auto-

matic error-generation.  
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Figure 4: Processing scheme of Sol 

4.2 Preprocessing 

In the next stage, the mechanisms for type-

generation are applied. This concerns primarily the 

resolving of type-identifiers and the appliance of the 

type-extensions. However these two processes can-

not be implemented in a linear fashion. They usually 

have to be processed in several, interleaved steps.  

Since a type-extension can be applied even on a 

complete package, the extension itself may generate 

new type-identifiers that may have to be resolved 

elsewhere. Thus, the algorithm has to “crawl” 

through the dependencies. Circular or recursive ex-

tensions lead to an inevitable downfall of this proc-

ess and are therefore detected.  

Furthermore the mechanisms for model-redefinition 

and member-redeclaration are processed. All meth-

ods for type-generation undergo a validation process, 

where consistency of the type-structure is checked. 

The resulting tree-structure of the package-hierarchy 

and of the type-system can be displayed by the inter-

preter. Please note that figure 1 and 2 represent 

graphs that have been automatically generated. 

4.3 Instantiation and flattening 

At the beginning, the top model is instantiated. The 

instantiation of a model evokes the following steps: 

First, all members (i.e. variables or sub-models) are 

instantiated recursively. Second all the statements in 

the implementation are processed.  

The process of instantiation is aligned with the flat-

tening of the system. Hence common statements like 

transmissions or equations are collected in a global 

set. The processing of an if-statements leads prelimi-

nary just to the instantiation of its corresponding  

condition. The actual content is instanced at a latter 

evaluation cycle. 

In the dynamic framework of Sol the instantiation of 

models isn’t restricted to the initial build up phase. 

Later instantiations will most likely occur. Conse-

quently also their removal has to be managed. This is 

done in the exact reverse way.  

4.4 Dynamic Causalization 

The result of the previous stage is a flattened model 

represented by a global set of equations and trans-

missions. The dynamic causalization analyzes this 

set of equations generates a data-structure that is 

suited for later evaluation cycles. The final target of 

this processing stage is depicted by the causality-

graph in figure 5 and 6. There, the actual change in 

structure is revealed. 

The resulting graph sketches the dependencies be-

tween the equations and transmissions. It includes 

also logical dependencies (dotted-lines) that result 

out of the conditional branches. This graph can then 

be further simplified by removing alias-variables or 

constant parts.  

Any change in the set of equations will yield to an 

update of the causality-graph. The new equations 

need to be causalized and integrated into the graph. 

Furthermore the causality of previously causalized 

equations may now change. To handle all these cases 

in an efficient manner, the algorithm for the dynamic 

causalization is strongly optimistic. This means that 

it preserves existing structures, as long as possible, 

even if they temporarily loose their causal roots. 

Hence we can ensure that a small local change will 

not cause a global change unless the structure of the 

equation system makes this inevitable. For instance, 

the exchange of the engine model will not affect the 

causality of the fly-wheel or the gear model.  There-

fore the update considers only a sub-graph and can 

be treated locally. The details of this algorithm re-

main to be published. 

4.5 Update and Evaluation  

Based on the causality-graph, the system can be 

evaluated. This may consider the whole system or 

only a small subpart. Arbitrary updates can be trig-

gered. If several updates are triggered at once, they 

are evaluated synchronously. The update procedure 

evaluates all dependent relations and successfully 

avoids any multiple evaluations of relations where 

separate update-paths meet. 
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Logic-dependencies in the causality graph form si-

lent dependencies. This means that an update of the 

corresponding Boolean expression does not directly 

trigger updates on its logical dependent equations. 

Silent dependencies are purposed only to ensure a 

correct update flow. 

Furthermore, the causality graph contains also rela-

tions that own side-effects. Those relations may typi-

cally trigger an instantiation or removal of equations. 

The condition of an if-branch represents a prime ex-

ample for this. 

4.6 Time-Integration 

The evaluation of the system (or a part of it) is trig-

gered by two major sources. One is the insertion of 

new relations through instantiation. The other one, 

and much more frequent, is the time-integration of 

the corresponding state-variables. Currently, only 

simple explicit methods for integration are available. 

Since the system may reconfigure during an integra-

tion step, most integration algorithms with multiple 

steps cannot be implemented in a straightforward 

manner. It should be ensured that only the final step 

may trigger structural changes. Also certain methods 

for step-size control need to be adapted for the new 

framework.  

5 Limitations and Efficiency 

5.1 Current limitations  

The current version of Solsim provides a framework 

for a more dynamic handling in equation-based 

modeling. The language itself enables the statement 

of drastic structural changes in a general way. Thus, 

the causalization of several equations may change in 

dependence of the structure. Also various sub-

models may be instantiated or removed on run-time 

leading to a variable number of instances.  

However, there are severe restrictions that consider 

the type of equation systems that are currently sup-

ported. Solsim is yet unable to treat any equation 

system that contains algebraic loops. Also there is no 

index-reduction mechanism. And therefore the dif-

ferential equations are temporarily formulated by the 

explicit statement of an integrator. 

These restrictions reduce severely the applicability of 

the current system. In most practical situations, 

structural changes hardly lead to an isolated recon-

figuration like a simple causality change. Often a 

complete set of tasks has to be accomplished at once 

[5]. This concerns, for instance, the dynamic han-

dling of algebraic loops, a dynamic state-selection 

 

 

 

Figure 5 (left): Causality-graph of the machine at time 1 

having “Engine2” as submodel.  

Figure 6 (right): Causality-graph of the machine at time 8 

using the simpler model “Engine1” as submodel.  

Both graphs originate from an automatically generated 

version, where the gear-model has been omitted. The 

graphs have been slightly simplified to increase clarity and 

readability.   
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and mechanisms for index-reduction or robust, re-

dundant re-initialization. In mechanics, the problem 

of multiple contact points with ideal-friction even 

yields to a complicated optimization task [9]. 

5.2 Efficiency 

Whereas it is too early to give serious benchmark 

results, this section may at least give an impression 

about the current speed of our interpreter on a stan-

dard CPU. In general, we can state that the number 

of equations that can be evaluated per second is in 

the order of magnitude from 10
5
 to 10

6
. The mecha-

nisms for instantiation, flattening and causalization 

manage altogether to handle between 10
4
 and 10

5
 

equations per second. 

Most important is that the efficiency is high enough 

to let us exceed the complexity of trivial models. Of 

course, the interpreter, like any other interpreter suf-

fers from a certain computational overhead that will 

prevent its usage for highly demanding simulation 

applications.  

Please note that the outlined processing scheme is 

not an exclusive solution. It is a very general ap-

proach and consequently represents overkill for 

many specific applications. However, a declarative 

language as Sol is very well suited to enable various 

optimization techniques, since the semantics do not 

directly stipulate the processing scheme. A number 

of optimizations may therefore be developed.  For 

instance, a potential optimization is a run-time com-

piler. One might also try to include certain parts of 

the causalization, simplification and flattening into 

the preprocessing stage. Another interesting topic is 

the automatic identification and pre-compilation of 

situations where the system can be described by a 

finite set of sub-modes.  

5.3 Future Tasks 

Our primary target is to enhance the general applica-

bility of our approach with respect to the set of DAE-

systems that can be properly handled. Therefore we 

have a strong incentive to develop algorithms for the 

tearing of algebraic loops and index-reduction that 

are flexible and can be well integrated into our dy-

namic framework.  

Furthermore the presentation of the core language 

omits a number of language elements that have still 

remained in the state of design. This concerns, for 

example, a general solution for collections of models 

(e.g. arrays).  

6 Conclusions 

The Sol language is built upon declarative principles 

and is strongly influenced by Modelica. It incorpo-

rates a general modeling methodology for variable-

structure systems. The Sol research project offers a 

dynamic framework that enables the convenient ac-

quaintance of knowledge in language design and 

processing techniques that we think will be essential 

for Modelica’s future development.  

Such a methodology benefits prevalent application 

areas and is likely to enlarge application field for 

equation-based modeling. To this end, future devel-

opments that concern primarily language design and 

processing techniques are required.  

Appendix 

The following listing of rules in extended Backus-

Naur form (EBNF) presents the core grammar of the 

Sol modeling language. The rules are listed in a top-

down manner listing the high-level constructs first 

and breaking them down into simpler ones. Non-

terminal symbols start with a capital letter and are 

written in bold. Terminal symbols are written in 

small letters. Special terminal operator signs are 

marked by quotes. Rules may wrap over several 

lines.  

Common fundamental expressions like the model for 

the mathematical function sin() or given global vari-

ables as time or initial form predefined elements 

within the language itself and are therefore not part 

of the grammar. The same holds for the fundamental 

types in Modelica. These are: Real, Integer, Boo-

lean, String and Void. 
 

Listing 1: EBNF-Grammar of Sol 

Model = ModelSpec Id Header  

  [Interface] [Implemen] end Id ";" 

ModelSpec = [redefine] [partial]   

    (model | package | connector | record)  
 

Header  =  {Extension} {Define} {Model} 

Extension  =  extends Designator ";" 

Define  =  define (Const | Designator) as Id  ";" 
 

Interface  =  interface ":" {(IDecl | ParDecl) ";"} {Model}     

ParDecl = parameter Decl 

IDecl =  [redelcare]  LinkSpec [IOSpec] [CSpec] Decl 

ConSpec = potential | flow  

IOSpec  =  in | out 
 

Implemen =  implementation ":" StmtList 

StmtList =  [Statement {";" Statement }] 

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems
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Statement  =  [Condition | Event | Declaration | Relation] 
 

Condition =  if Expression then StmtList ElseCond 

ElseCond  =  (else Condition) | ([else then StmtList] end [if])  

Event =  when Expression then StmtList  ElseEvent 

ElseEvent  =  (else Event)|([else then StmtList] end [when]  
 

Declaration = [redeclare] LinkSpec Decl 

LinkSpec  =  static | dynamic 

Decl  =  Designator Id [ParList] 
 

Relation  =  Expression Rhs 

Rhs  =  ("=" | "<<" | "<-")  Expression 
 

ParList  =  "{" [Designator Rhs {"," Designator Rhs }]  "}" 

InList  = "(" [Designator Rhs {"," Designator Rhs }]  ")" 
 

Expression = Comparis {(and|or) Comparis }  

Comparis  = Term [("<"|"<="|"=="|"<>"|">="|">")Term]  

Term  =  Product {( "+" | "-" ) Product }  

Product  =  Power { ("*" | "/")  Power } 

Power =  SElement {"^" SElement }  

SElement =  [ "+" | "-" | not ] Element 

Element  =  Const | Designator [InList] [ParList]  

  | "(" Expression ")"   
 

Designator  = Id {"." Id } 

Id  =  Letter {Digit | Letter} 

Const =  Number | Text | true | false 

Number  =  ["+"|"-"] Digit { Digit }  

  ["." {Digit }] [e ["+"|"-"] Digit { Digit }]  

Text =  "\"" {any character} "\""  

Letter  =  "a" | ... | "z" | "A" | ... | "Z" | "_" 

Digit =  "0" | ... | "9" 
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Abstract

In this paper, an extension of Modelica, entitled Opti-
mica, is presented. Optimica extends Modelica with
language constructs that enable formulation of dy-
namic optimization problems based on Modelica mod-
els. There are several important design problems
that can be addressed by means of dynamic optimiza-
tion, in a wide range of domains. Examples include,
minimum-time problems, parameter estimation prob-
lems, and on-line optimization control strategies. The
Optimica extension is supported by a prototype com-
piler, the Optimica compiler, which has been used suc-
cessfully in case studies.
Keywords: Optimica, Language extension, Dynamic

optimization, The JModelica compiler

1 Introduction

Modelica is becoming a standard format for describ-
ing and communicating high-fidelity models of large-
scale dynamic systems. Expert knowledge is being en-
coded into Modelica libraries, both in industry and in
academia. The growing body of Modelica models also
represents significant capital investments, and accord-
ingly, Modelica models and libraries represent valu-
able assets for many companies. As a consequence,
Modelica models are turning into legacy code, which
cannot easily be replaced, simply because the cost of
re-encoding the models in a different format is too
large.
While the primary usage of Modelica models today is
simulation, several other usages are emerging. Since
it is not feasible, for the reasons mentioned above,
to re-encode models for each new model usage, fu-
ture Modelica tools, and also the Modelica language
itself, should accommodate and promote new usages

of Modelica models. This requirement has profound
consequences for software design of Modelica tools,
and also for the language design itself. In particular,
some new usages may require new constructs, at the
language level, in order to enable modeling of particu-
lar design problems.

One example of an emerging usage of Modelica mod-
els is dynamic optimization. A characteristic feature
of realistic dynamic optimization problems is that the
procedure of formulating such problems is highly iter-
ative. It is common that extensive tuning of the cost
function and constraints is required in order to ob-
tain an acceptable solution. If a numerical algorithm
is used to solve the dynamic optimization problem,
there is an additional dimension that requires attention:
the design of the transcription scheme. The scheme
used to discretize the control and state variables often
strongly influences the properties of the resulting solu-
tion. The choice of discretization method also affects
the execution time for solving the problem, which is an
important aspect in on-line applications. For these rea-
sons, dynamic optimization problems are very rich in
the sense that there are several aspects that require at-
tention. Also, the user needs, and should be enabled to,
model, using high-level language constructs, the opti-
mization problem both in terms of cost functions and
constraints and at the transcription level.

Sophisticated numerical optimization algorithms often
have cumbersome APIs, which do not always match
the engineering need for high-level description for-
mats. For example, it is not uncommon for such nu-
merical packages to be written in C, or in Fortran, and
that they require the dynamic system to be modeled
as an ODE/DAE, which is also encoded in C or For-
tran. In addition, it may be required to also encode
first and second order derivatives. Although there are
efficient tools for automatic differentiation, encoding
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of dynamic optimization problems in low-level lan-
guages1 like C or FORTRAN is often cumbersome and
error-prone. An important goal of developing high-
level languages for dynamic optimization is therefore
to bridge the gap between the engineering need for
high-level descriptions and the APIs of numerical al-
gorithms.

There are several software packages supporting dy-
namic optimization, for example Dymola [6] and
gPROMS [12]. However, most available software
tools are restricted in the sense that they usually only
support a particular optimization algorithm. While a
particular algorithm may work well in some cases, the
appropriate choice of numerical algorithm is usually
dependent on the particular problem at hand. An anal-
ogy with differential equation solvers can be made.
Stiff systems call for sophisticated, but potentially
computationally demanding solvers, whereas less dif-
ficult systems may be more efficiently solved by a sim-
pler algorithm. An additional goal in the development
of tools supporting high-level formulation of dynamic
optimization problems is therefore to provide an open
architecture, where several different algorithms can be
integrated.

In this paper, an extension of Modelica, entitled Opti-
mica, will be presented. Optimica consists of a num-
ber of new language elements, which enable high-level
formulation of dynamic optimization problems based
on Modelica models. The syntax as well as the se-
mantics of Optimica will be described. In addition,
a prototype implementation of an Optimica compiler,
which is a modular extension of the JModelica com-
piler [2, 1], will be presented.

The paper is organized as follows. In Section 2, issues
related to extensions of languages are discussed. Dif-
ferent options regarding language extensions in Mod-
elica are also treated. In Section 3, the scope of Opti-
mica is discussed, i.e., the class of optimization prob-
lems that can be expressed using Optimica is defined.
In Section 4 the syntax and the semantics of the Optim-
ica extension are presented. Implementation issues re-
lated to the modular Optimica extension of the JMod-
elica compiler are discussed in Section 5. The paper
ends with a summary and conclusions in Section 6.

1The term low-level is relative, but is here used in relation to
domain-specific languages like Modelica.

2 Motivation of the Optimica Exten-

sion

2.1 Isn’t Modelica Enough?

Although being a very rich language in terms of ex-
pressive power for describing complex hybrid dynam-
ical systems, Modelica lacks important features de-
sirable for expressing optimization problems. This
is quite natural, since Modelica was not developed
with optimization in mind. For example, the notion
of cost functions, constraints, variable bounds and ini-
tial guesses are not included in the Modelica language.
Some of these quantities may indeed be modeled us-
ing standard Modelica, to some extent. For example, a
particular variable may be given the meaning of cost,
and the min and max attributes may be interpreted as
variable bounds. However, while this approach may
work in simple cases, it becomes intractable for more
complex optimization problems. For example, com-
plicated constraints, several use cases, and tailoring
of the transcription method would be difficult to ex-
press. Further, the min and max attributes are usually
used to express regions of validity for a model, and
giving them a new semantic meaning would be poten-
tially misleading.

2.2 What About Annotations?

Modelica offers a mechanism for adding information
to model, which may not be part of the actual math-
ematical description, but which is convenient to store
in the model. Typical examples include graphical an-
notations and documentation. Annotations can also be
used to supply information that can be used by a par-
ticular tool, for example, in order to influence proper-
ties of the translation process. In principle, it would
be possible to specify parts of an optimization prob-
lem by introducing suitable annotations. For example,
a variable could be marked as a cost function, and the
semantic meaning of the equality operator in an equa-
tion could be changed to that of the inequality opera-
tor. There are two reasons why it is not a good idea
to strictly use this approach. Firstly, and most impor-
tantly, annotations are designed to supply complemen-
tary information, whereas in this case, the elements of
an optimization problem are rather primary informa-
tion, that is essential for solving the actual problem.
Also, since annotations are not intended for formula-
tion of design problems, they do not provide a con-
venient modeling environment for the user. Secondly,
annotations cannot currently be changed by means of
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modifications. Since modification is one of the corner-
stones of Modelica, this is a severe restriction. Also,
it is not currently well defined how annotations are
treated in the case of inheritance. Since one of the
main objectives of the Optimica extension is to enable
convenient formulation of dynamic optimization prob-
lems using high-level constructs, using only annota-
tions does not seem to be a feasible alternative.

Whereas the above arguments are applicable to core
elements of an optimization problem, such as cost
function and constraints, annotations may well be used
to specify a solution algorithm, and associated param-
eters. This type of information is not part of the actual
optimization formulation, but it might still be essential
in order to efficiently solve the problem numerically.
By introducing annotations for specifying, for exam-
ple, the collocation scheme used in a direct method,
the user is able to model both the actual optimization
problem at hand and the transcription method in a uni-
fied high-level description language. This approach is
also in line with the intentions of Modelica annota-
tions, because of the separation between formulation
of the actual problem (by means of dedicated language
constructs), and specification of the solution technique
(by means of annotations).

2.3 Tool-oriented Support for Optimization?

Another potential strategy for enabling dynamic op-
timization of Modelica models is to develop tool-
oriented solutions, for example Graphical User Inter-
faces (GUIs), within a simulation-based software tool.
This approach is used, for example, to enable opti-
mization of Modelica models in Dymola. The user
would then set up the optimization problem by enter-
ing information in dedicated fields in the GUI. Using
this approach, the software tool needs to maintain an
internal model of the optimization problem, as spec-
ified by the user. While this solution may be an at-
tractive choice for interfacing a particular optimization
method with existing simulation-based tools, it does
not offer the flexibility, or portability, which is inher-
ent in the Modelica language. It is therefore desirable
to define, at the language level, a generic extension,
which has a well defined syntax and semantics. Nev-
ertheless, it may still be desirable to offer GUIs, in
order to increase productivity in the design process, in
the same way as current Modelica tools typically offer
GUIs to simplify critical modeling tasks.

2.4 To Extend or to Complement?

A key issue is whether to extend Modelica by introduc-
ing new language constructs, or to define a new, sep-
arate, language which complements Modelica. By in-
troducing a new language, the syntax and semantics of
Modelica would be kept entirely intact, which may be
advantageous since it makes design and maintenance
of the language simpler. Also, if several extensions are
introduced, defining the interaction between the ex-
tensions, both at a syntactic and semantic level, may
be difficult. On the other hand, Modelica has many
generic built-in constructs, e.g., classes, functions and
declarative equations, which are widely applicable in
many contexts. Reinventing such constructs in new
languages does not seem to be an attractive alterna-
tive. Another argument in favor of language extension
is that Modelica offers strong support for modulariza-
tion of models. In the case of dynamic optimization,
the user may construct the model separately from the
formulation of the optimization problem, in which the
model is used. In this way, the same model may still
be used for other purposes than optimization, such as,
for example, simulation.
It is essential, however, that language extensions tar-
geted at particular usages of Modelica models do
not interfere unnecessarily with the original language.
Preferably, extensions should be modular, in the sense
that the new constructs are only allowed in a well de-
fined language environment.

3 Scope of Optimica

3.1 Information Structure

In order to formulate a dynamic optimization prob-
lem, to be solved by a numerical algorithm, the user
must supply different kinds of information. It is natu-
ral to categorize this information into three levels, cor-
responding to increasing levels of detail.

• Level I. At the mathematical level, a canonical
formulation of a dynamic optimization problem
is given. This include variables and parameters to
optimize, cost function to minimize, constraints,
and the Modelica model constituting the dynamic
constraint. The optimization problem formulated
at this level is in general infinite dimensional, and
is thereby only partial in the respect that it cannot
be directly used by a numerical algorithm without
additional information, for example, concerning
transcription of continuous variables.
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• Level II. At the transcription level, a method for
translating the problem from an infinite dimen-
sional problem to a finite dimensional problem
needs to be provided. This might include dis-
cretization meshes as well as initial guesses for
optimization parameters and variables. It should
be noticed that the information required at this
level is dependent on the numerical algorithm that
is used to solve the problem.

• Level III. At the algorithm level, information
such as tolerances and algorithm control parame-
ters may be given. Such parameters are often crit-
ical in order to achieve acceptable performance in
terms of convergence, numerical reliability, and
speed.

An important issue to address is whether information
associated with all levels should be given in the lan-
guage extension. In Modelica, only information cor-
responding to Level I is expressed in the actual model
description. Existing Modelica tools then typically use
automatic algorithms for critical tasks such as state se-
lection and calculation of consistent initial conditions,
although the algorithms can be influenced by the user
via the Modelica code, by means of annotations, or
attributes, such as StateSelect. Yet other informa-
tion, such as choice of solver, tolerances and simula-
tion horizon is provided directly to the tool, either by
means of a graphical user interface, a script language,
or alternatively, in annotations.
For dynamic optimization, the situation is similar, but
the need for user input at the algorithm level is more
emphasized. Automatic algorithms, for example for
mesh selection, exist, but may not be suitable for all
kinds of problems. It is therefore desirable to include,
in the language, means for the user to specify most
aspects of the problem in order to maintain flexibil-
ity, while allowing for automatic algorithms to be used
when possible and suitable.
Relating to the three levels described above, the ap-
proach taken in the design of Optimica is to extend
the Modelica language with a few new language con-
structs corresponding to the elements of the mathemat-
ical description of the optimization problem (level I).
The information included in levels II and III, however,
may rather be specified by means of annotations.

3.2 Dynamic System Model

The scope of Optimica can be separated into two parts.
The first part is concerned with the class of models
that can be described in Modelica. Arguably, this

class is large, since very complex, non-linear and hy-
brid behavior can be encoded in Modelica. From a
dynamic optimization perspective, the inherent com-
plexity of Modelica models is a major challenge. Typ-
ically, different algorithms for dynamic optimization
support different model structures. In fact, the key to
developing efficient algorithms lies in exploiting the
structure of the model being optimized. Consequently,
there are different algorithms for different model struc-
tures, such as linear systems, non-linear ODEs, gen-
eral DAEs, and hybrid systems. In general, an algo-
rithm can be expected to have better performance, in
terms of convergence properties and shorter execution
times, if the model structure can be exploited. For ex-
ample, if the model is linear, and the cost function is
quadratic, the problem can be obtained very efficiently
by solving a Riccati equation. On the other hand, op-
timization of general non-linear and hybrid DAEs is
still an area of active research, see for example [3].
As a result, the structure of the model highly affects
the applicability of different algorithms. The Optim-
ica compiler presented in this paper relies on a direct
collocation algorithm in order to demonstrate the pro-
posed concept. Accordingly, the restrictions imposed
on model structure by this algorithm apply when for-
mulating the Modelica model, upon which the opti-
mization problem is based. For example, this excludes
the use of hybrid constructs, since the right hand side
of the dynamics is assumed to be twice continuously
differentiable. Obviously, this restriction excludes op-
timization of many realistic Modelica models. On the
other hand, in some cases, reformulation of disconti-
nuities to smooth approximations may be possible in
order to enable efficient optimization. This is particu-
larly important in on-line applications. The Optimica
extension, as presented in this paper, could also be ex-
tended to support other algorithms, which are indeed
applicable to a larger class of models.

3.3 The Dynamic Optimization Problem

The second part of the scope of Optimica is concerned
with the remaining elements of the optimization prob-
lem. This includes cost functions, constraints and vari-
able bounds. Consider the following formulation of a
dynamic optimization problem:

min
u(t),p

ψ(z̄, p) (1)

subject to the dynamic system

F(ẋ(t),x(t),y(t),u(t), p, t) = 0, t ∈ [t0, t f ] (2)
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and the constraints

cineq(x(t),y(t),u(t), p) ≤ 0 t ∈ [t0, t f ] (3)

ceq(x(t),y(t),u(t), p) = 0 t ∈ [t0, t f ] (4)

c
p
ineq(z̄, p)≤ 0 (5)

cpeq(z̄, p) = 0 (6)

where x(t) ∈ Rnx are the dynamic variables, y(t) ∈ Rny
are the algebraic variables, u(t) ∈ Rnu are the con-
trol inputs, and p ∈ Rnp are parameters which are
free in the optimization. In addition, the optimiza-
tion is performed on the interval t ∈ [t0, t f ], where t0
and t f can be fixed or free, respectively. In addi-
tion, the initial values of the dynamic and algebraic
variables may be fixed or free in the optimization.
The vector z̄ is composed from discrete time points
of the states, controls and algebraic variables; z̄ =
[x(t1), ..,x(tNp ),y(t1), ..,y(tNp ),u(t1), ..,u(tNp )]

T , ti ∈
[t0, t f ], where Np denotes the number of time points
included in the optimization problem.

The constraints include inequality and equality path
constraints, (3)-(4). In addition, inequality and equal-
ity point constraints, (5)-(6), are supported. Point con-
straints are typically used to express initial or terminal
constraints, but can also be used to specify constraints
for time points in the interior of the interval.

The cost function (1) is a generalization of a terminal
cost function, φ(t f ), in that it admits inclusion of vari-
able values at other time instants. This form includes
some of the most commonly used cost function formu-
lations. A Lagrange cost function can be obtained by
introducing an additional state variable, xL(t), with the
associated differential equation ẋL(t) = L(x(t),u(t)),
and the cost function ψ(t f ) = xL(t f ). The need to in-
clude variable values at discrete points in the interior
of the optimization interval in the cost function arises
for example in parameter estimation problems. In such
cases, a sequence of measurements, yd(ti), obtained at
the sampling instants ti, i ∈ 1 . . .Nd is typically avail-
able. A cost function candidate is then:

Nd

∑
i=1

(y(ti)− yd(ti))TW (y(ti)− yd(ti)) (7)

where y(ti) is the model response at time ti andW is a
weighting matrix.

Another important class of problems is static optimiza-

tion problems on the form:

min
u,p

ϕ(x,y,u, p)

subject to

F(0,x,y,u, p, ts) = 0
cineq(x,u, p) ≤ 0
ceq(x,u, p) = 0

(8)

In this case, a static optimization problem is derived
from a, potentially, dynamic Modelica model by set-
ting all derivatives to zero. Since the problem is static,
all variables are algebraic and accordingly, no tran-
scription procedure is necessary. The variable ts de-
notes the time instant at which the static optimization
problem is defined.

3.4 Transcription

In this paper a direct collocation method (see for ex-
ample [4]) will be used to illustrate how also the tran-
scription step can be encoded in the Optimica exten-
sion. The information that needs to be provided by
the user is then a mesh specification, the collocation
points, and the coefficients of the interpolation poly-
nomials.

4 The Optimica Extension

In this section, the Optimica extension will be pre-
sented and informally defined. The presentation will
be made using the following dynamic optimization
problem, based on a double integrator system, as an
example:

min
u(t)

∫ t f
0
1dt (9)

subject to the dynamic constraint

ẋ(t) = v(t), x(0) = 0
v̇(t) = u(t), v(0) = 0

(10)

and
x(t f ) = 1, v(t f ) = 0
v(t)≤ 0.5, −1≤ u(t)≤ 1 (11)

In this problem, the final time, t f , is free, and the ob-
jective is thus to minimize the time it takes to transfer
the state of the double integrator from the point (0,0)
to (1,0), while respecting bounds on the velocity v(t)
and the input u(t). A Modelica model for the double
integrator system is shown in Listing 1.
In summary, the Optimica extension consists of the
following elements:
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model DoubleIntegrator

Real x(start=0);

Real v(start=0);

input Real u;

equation

der(x)=v;

der(v)=u;

end DoubleIntegrator;

Listing 1: A Modelica model of a double integrator
system.

• A new specialized class: optimization

• New attributes for the built-in type Real: free
and initialGuess.

• A new function for accessing the value of a vari-
able at a specified time instant

• Class attributes for the specialized class
optimization: objective, startTime,
finalTime and static

• A new section: constraint

• Inequality constraints

• An annotation for providing transcription infor-
mation

4.1 A New Specialized Class

It is convenient to introduce a new specialized
class, called optimization, in which the proposed
Optimica-specific constructs are valid. This approach
is consistent with the Modelica language, since there
are already several other specialized classes, e.g.,
record, function and model. By introducing a
new specialized class, it also becomes straightfor-
ward to check the validity of a program, since the
Optimica-specific constructs are only valid inside an
optimization class. The optimization class cor-
responds to an optimization problem, static or dy-
namic, as specified in Section 3.3. Apart from the
Optimica-specific constructs, an optimization class
can also contain component and variable declarations,
local classes, and equations.
It is not possible to declare components from
optimization classes in the current version of Op-
timica. Rather, the underlying assumption is that an
optimization class defines an optimization problem,
that is solved off-line. An interesting extension would,
however, be to allow for optimization classes to be

instantiated. With this extension, it would be possible
to solve optimization problems, on-line, during sim-
ulation. A particularly interesting application of this
feature is model predictive control, which is a control
strategy that involves on-line solution of optimization
problems during execution.
As a starting-point for the formulation of the optimiza-
tion problem (9)-(11), consider the optimization

class:

optimization DIMinTime

DoubleIntegrator di;

end DIMinTime;

This class contains only one component representing
the dynamic system model, but will be extended in the
following to incorporate also the other elements of the
optimization problem.

4.2 Attributes for the Built-in Type Real

In order to superimpose information on variable decla-
rations, two new attributes are introduced for the built-
in type Real2. Firstly, it should be possible to spec-
ify that a variable, or parameter, is free in the opti-
mization. Modelica parameters are normally consid-
ered to be fixed after the initialization step, but in the
case of optimization, some parameters may rather be
considered to be free. In optimal control formulations,
the control inputs should be marked as free, to indi-
cate that they are indeed optimization variables. For
these reasons, a new attribute for the built-in type Real,
free, of boolean type is introduced. By default, this
attribute is set to false.
Secondly, an attribute, initialGuess, is introduced
to enable the user to provide an initial guess for vari-
ables and parameters. In the case of free optimiza-
tion parameters, the initialGuess attribute provides
an initial guess to the optimization algorithm for the
corresponding parameter. In the case of variables, the
initialGuess attribute is used to provide the numer-
ical solver with an initial guess for the entire optimiza-
tion interval. This is particularly important if a simul-
taneous or multiple-shooting algorithm is used, since
these algorithms introduce optimization variables cor-
responding to the values of variables at discrete points
over the interval. Notice that such initial guesses may
be needed both for control and state variables. For
such variables, however, the proposed strategy for pro-
viding initial guesses may sometimes be inadequate.

2The same attributes may be introduced for the built-in type
Integer, in order to support also variables of type Integer in the
optimization formulation
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In some cases, a better solution is to use simulation
data to initialize the optimization problem. This ap-
proach is also supported by the Optimica compiler. In
the double integrator example, the control variable u is
a free optimization variable, and accordingly, the free
attribute is set to true. Also, the initialGuess at-
tribute is set to 0.0.

optimization DIMinTime

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

end DIMinTime;

4.3 A Function for Accessing Instant Values

of a Variable

An important component of some dynamic optimiza-
tion problems, in particular parameter estimation prob-
lems where measurement data is available, is variable
access at discrete time instants. For example, if a mea-
surement data value, yi, has been obtained at time ti, it
may be desirable to penalize the deviation between yi
and a corresponding variable in the model, evaluated
at the time instant ti. In Modelica, it is not possible to
access the value of a variable at a particular time in-
stant in a natural way, and a new construct therefore
has to be introduced.
All variables in Modelica are functions of time. The
variability of variables may be different—some are
continuously changing, whereas others can change
value only at discrete time instants, and yet others are
constant. Nevertheless, the value of a Modelica vari-
able is defined for all time instants within the simula-
tion, or optimization, interval. The time argument of
variables are not written explicitly in Modelica, how-
ever. One option for enabling access to variable val-
ues at specified time instants is therefore to associate
an implicitly defined function with a variable declara-
tion. This function can then be invoked by the stan-
dard Modelica syntax for function calls, y(t_i). The
name of the function is identical to the name of the
variable, and it has one argument; the time instant at
which the variable is evaluated. This syntax is also
very natural since it corresponds precisely to the math-
ematical notation of a function. Notice that the pro-
posed syntax y(t_i) makes the interpretation of such
an expression context dependent. In order for this con-
struct to be valid in standard Modelica, y must refer to
a function declaration. With the proposed extension,
y may refer either to a function declaration or a vari-
able declaration. A compiler therefore needs to clas-
sify an expression y(t_i) based on the context, i.e.,

what function and variable declarations are visible. An
alternative syntax would have been to introduce a new
built-in function, that returns the value of a variable at
a specified time instant. While this alternative would
have been straightforward to implement, the proposed
syntax has the advantages of being easier to read and
that it more closely resembles the corresponding math-
ematical notation. This feature of Optimica is used in
the constraint section of the double integrator example,
and is described below.

4.4 Class Attributes

In the optimization formulations (1)-(6) and (8), there
are elements that occur only once, i.e., the cost func-
tion and the optimization interval in (1)-(6), and in the
static case (8), only the cost function. These elements
are intrinsic properties of the respective optimization
formulations, and should be specified, once, by the
user. In this respect the cost function and optimization
interval differ from, for example, constraints, since the
user may specify zero, one or more of the latter.
One option for providing this kind of information is
to introduce a built-in class, call it Optimization,
and require that all optimization classes inherit from
Optimization. Information about the cost function
and optimization interval may then be given as modi-
fications of components in this built-in class:

optimization DIMinTime

extends Optimization(

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1));

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

end DIMinTime;

Here, objective, startTime and finalTime are as-
sumed to be components located in Optimization,
whereas cost is a variable which is looked up in the
scope of the optimization class itself. Notice also
how the cost function, cost, has been introduced,
and that the finalTime attribute is specified to be
free in the optimization. This approach of inheriting
from a built-in class has been used previously, in the
tool Mosilab [11], where the Modelica language is ex-
tended to support statecharts. In the statechart exten-
sion, a new specialized class, state, is introduced,
and properties of a state class (for example whether
the state is an initial state) can be specified by inherit-
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ing from the built-in class State and applying suitable
modifications.
The main drawback of the above approach is its lack
of clarity. In particular, it is not immediately clear
that Optimization is a built-in class, and that its con-
tained elements represent intrinsic properties of the
optimization class, rather than regular elements, as
in the case of inheritance from user or library classes.
To remedy this deficiency, the notion of class at-
tributes is proposed. This idea is not new, but has been
discussed previously within the Modelica community.
A class attribute is an intrinsic element of a specialized
class, and may be modified in a class declaration with-
out the need to explicitly extend from a built-in class.
In the Optimica extension, four class attributes are
introduced for the specialized class optimization.
These are objective, which defines the cost function,
startTime, which defines the start of the optimiza-
tion interval, finalTime, which defines the end of
the optimization interval, and static, which indicates
whether the class defines a static or dynamic optimiza-
tion problem. The proposed syntax for class attributes
is shown in the following optimization class:

optimization DIMinTime (

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

end DIMinTime;

The default value of the class attribute static is
false, and accordingly, it does not have to be set in
this case. In essence, the keyword extends and the
reference to the built-in class have been eliminated,
and the modification construct is instead given directly
after the name of the class itself. The class attributes
may be accessed and modified in the same way as if
they were inherited.

4.5 Constraints

Constraints are similar to equations, and in fact, a
path equality constraint is equivalent to a Model-
ica equation. But in addition, inequality constraints,
as well as point equality and inequality constraints
should be supported. It is therefore natural to have
a separation between equations and constraints. In
Modelica, initial equations, equations, and algorithms
are specified in separate sections, within a class

body. A reasonable alternative for specifying con-
straints is therefore to introduce a new kind of section,
constraint. Constraint sections are only allowed in-
side an optimization class, and may contain equal-
ity, inequality as well as point constraints. In the dou-
ble integrator example, there are several constraints.
Apart from the constraints specifying bounds on the
control input u and the velocity v, there are also termi-
nal constraints. The latter are conveniently expressed
using the mechanism for accessing the value of a vari-
able at a particular time instant; di.x(finalTime)=1
and di.v(finalTime)=0. In addition, bounds may
have to be specified for the finalTime class attribute.
The resulting optimization formulation may now be
written:

optimization DIMinTime (

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

constraint

finalTime>=0.5;

finalTime<=10;

di.x(finalTime)=1;

di.v(finalTime)=0;

di.v<=0.5;

di.u>=­1; di.u<=1;

end DIMinTime;

4.6 Annotations for Specification of the Tran-

scription Scheme

The transcription scheme used to transform the
infinite-dimensional dynamic optimization problem
into a finite-dimensional approximate problem usu-
ally influences the properties of the numerical solu-
tion. Nevertheless, transcription information can be
considered to be complimentary information, that is
not part of the mathematical definition of the optimiza-
tion problem itself. Also, transcription information is
closely related to particular numerical algorithms. It
is therefore reasonable not to introduce new language
constructs, but rather new annotations for specifica-
tion of transcription schemes. This solution is also
more flexible, which is important in order easily ac-
commodate transcription schemes corresponding to al-
gorithms other than the direct collocation method cur-
rently supported.
Following the guidelines for vendor-specific annota-
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Figure 1: The transformation fromModelica/Optimica
code to optimization result.

tions in the specification of Modelica 3.0 [13, p. 147],
a hierarchical annotation for supplying the informa-
tion needed to specify a direct collocation method
based on interpolation polynomials has been intro-
duced. This annotation is defined by the following
Modelica record:

record DirectCollocationInterpolationPolynomials

parameter Real mesh[:];

parameter Real collocationPoints[:];

parameter Real

polynomialCoefficientsAlgebraic[:];

parameter Real

polynomialCoefficientsDynamic[:];

end DirectCollocationInterpolationPolynomials;

This annotation enables the user to influence the par-
ticular properties of the corresponding transcription
scheme. For additional details, see [1].

5 The Optimica Compiler

A new Modelica compiler, entitled the JModelica
compiler is currently under development [2, 1]. The
compiler is developed in the compiler construction
framework JastAdd, see [9], and in Java. One of the
primary targets of the JModelica compiler is to provide
an extensible compiler, which is suitable for modular
implementation of new language features. A funda-
mental design concept is that of modular extensibility,
which enables the core JModelica compiler to be kept
intact, since new extensions may be implemented fully
modularized.
A prototype implementation of the JModelica com-
piler, that also supports the Optimica extension has
been developed. The extended compiler will be re-
ferred to as the Optimica compiler in the following. In
terms of the front-end, the compiler supports a subset
of Modelica, and an early version of Optimica. The

syntax of Optimica that is supported by this compiler
is different than the one presented in this paper, al-
though the functionality is essentially the same. The
new, improved syntax and semantics that have been
presented in this paper, were defined based on the
comments and experiences from the users of the very
first version of Optimica. A new version of the Optim-
ica compiler, supporting the revised Optimica syntax
is currently under development, with the intention of
replacing the initial prototype.

5.1 Code Generation to AMPL

One of the main features of the Optimica compiler is
that it performs automatic transcription of continuous
variables, using a direct collocation method. The user
is thus relieved from the burden of encoding the col-
location equations, which is a tedious and error-prone
procedure. Whereas the prototype version of the Op-
timica compiler supported one particular collocation
scheme, future versions will support the annotation in-
troduced above to specify the transcription method.
In order to solve the transcribed optimization prob-
lem by means of a numerical algorithm, the Optim-
ica compiler generates AMPL [7] code. The tran-
scribed problem is purely static, and can therefore be
encoded using the constructs available in AMPL. The
AMPL representation of the optimization problem can
be viewed as an additional intermediate representa-
tion format. The purpose of using AMPL is twofold.
Firstly, AMPL provides an additional debugging level,
that is very useful during compiler development. In
particular, the AMPL tool offers a shell, where vari-
ables and constraints can be inspected. Secondly, the
AMPL solver interface provides solvers with sparsity
information, as well as first and second order deriva-
tives. This information may be essential for perfor-
mance and convergence of a numerical optimization
algorithm. The numerical algorithm IPOPT [14] has
been used to solve the non-linear program resulting
from the transcription procedure. The result is then
written to file for further analysis or implementation.
See Figure 1 for an illustration of the transformation
steps involved when using the Optimica compiler and
AMPL to solve a dynamic optimization problem.

6 Summary and Conclusions

In this paper an extension of the Modelica language,
Optimica, that enables high-level formulation of dy-
namic optimization problems, has been presented. The
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Optimica extension enables the user to specify impor-
tant elements of a dynamic optimization problem such
as cost functions, constraints and optimization inter-
val. The dynamic model, upon which the dynamic op-
timization problem is based, is expressed using stan-
dard Modelica. Optimica also supports an annotation
that enables the user to specify the properties of a tran-
scription method, based on direct collocation. Because
of these properties, Optimica supports formulation of
dynamic optimization problems, using high-level con-
structs, both at the mathematical level and at the nu-
merical transcription level.
A prototype implementation of the Optimica compiler
has been used in the work on start-up optimization of
a plate reactor [8], in two master’s thesis projects (see
[5] and [10]) and in the PhD course “Optimization-
Based Methods and Tools in Control”, that was given
at the Department of Automatic Control, Lund Univer-
sity in September 2007.
An important objective of the JModelica compiler is
to offer a modularly extensible Modelica compiler. In
this respect, the experiences and results from devel-
oping the Optimica extension are very promising. In
particular, the coding effort needed to implement the
extension of the compiler front-end, including exten-
sion of the name analysis framework and the flattening
algorithm, was very moderate.
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Abstract 

This paper describes the development and ap-
plication of detailed models for the simulation of 
turbocharged spark-ignited engines in Modelica.  
Following a brief overview of previously-published 
modeling capabilities, a new engine architecture that 
provides the flexibility required for simulating 
boosted systems is detailed.  Techniques for turbo-
charger modeling are discussed followed by sample 
steady state and transient simulations that illustrate 
potential model usage in design and control applica-
tions.   
Keywords: cycle simulation; turbocharging; engine; 
thermodynamics 

1 Introduction 

The convergence of increasingly-stringent fuel 
economy and CO2 emissions standards and an over-
all increase in the awareness and impact of global 
warming trends have led to increased focus on ad-
vanced vehicle concepts for improved fuel economy. 
Given the historical growth in market share of large 
trucks and sport utility vehicles in the US shown in 
Figure 1 [1], the focus on improved fuel economy is 
especially acute.  Vehicle fuel economy is clearly a 
system attribute that is affected by a myriad of dif-
ferent factors, including powertrain system configu-
ration, vehicle weight, aerodynamic drag, rolling 
resistance, controls and calibration features, and 
various component efficiencies in the system.  While 
OEMs are exploring opportunities in all aspects of 
the fuel economy picture, one area of continued fo-
cus is on the fuel consumption of the primary 
powerplant.   

A potential opportunity for increasing fuel 
economy of spark-ignited engines is by turbocharg-
ing in combination with engine downsizing.  The 
first patent [2] for a turbocharger on an internal 
combustion engine was filed in 1905 by Alfred Bu-
chi, a Swiss engineer.  Figure 2 shows a sample 
schematic of a turbocharged engine [3].  The exhaust 

from the engine is routed through a turbine where 
exhaust energy is extracted to drive the compressor.  
The compressed air is typically fed through an inter-
cooler before being routed to the engine. When com-
pared with naturally-aspirated engines, turbocharged 
engines have increased volumetric efficiency and 
specific power output thereby enabling engine down-
sizing.  Benefits from engine downsizing include 
reduced pumping (throttling) losses for part load op-
eration, potential friction reductions, and also poten-
tial reductions in powertrain system weight.  It 
should be noted that turbocharging does not come 
without cost.  A few commonly-cited disadvantages 
of turbocharged engines are increased backpressure 
to the engine, hardware and controls complexity and 
cost, and the potential for "turbo lag", broadly de-
fined as the time required from the initial driver 
throttle demand to spin up the turbo, increase the 
boost, and deliver the requested torque. 

 
Figure 1.  US light vehicle market share, 1975-2006 [1] 

 
 

 
Figure 2.  Turbocharged engine schematic [3] 
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The turbocharger introduces strong feedback 
between the exhaust and intake systems.  Coupled 
with the different time scales in the engine system, 
robust design and control of turbocharged engine 
systems is challenging, even more so with an intense 
scrutiny on fuel economy benefits.  Thus analytic 
capability for detailed simulation of turbocharged 
engines is a key enabler for upfront powertrain sys-
tem design.  Potential simulation applications in-
clude analytic turbocharger matching and optimiza-
tion, advanced engine concept assessment, and as-
sessment of transient turbocharger performance.   

This paper describes the development and ap-
plication of detailed models for simulation of turbo-
charged spark-ignited engines in Modelica [4].  Fol-
lowing a brief overview of previously-published en-
gine cycle simulation capability, new architecture 
changes are detailed that allow for configurable, effi-
cient modeling of turbocharged engines.  Modeling 
of the turbochargers is also discussed, and some 
sample steady state and transient results are shown. 

2 Engine Model Architecture 

Detailed cycle simulation modeling and applica-
tions have been discussed in depth in previous publi-
cations [5]-[7].  These publications describe an en-
gine model architecture for flexible modeling of the 
intake, mixture preparation, combustion, and exhaust 
processes for spark-ignited engines.  The crankangle-
resolved model includes submodels for breathing 
past the intake and exhaust valves based on dis-
charge coefficients as a function of valve lift, flow-
based turbulence generation and dissipation, mixture 
preparation and injection dynamics, predictive com-
bustion with laminar and turbulent flame propaga-
tion, and heat transfer and thermal warm-up.  These 
models have been used in both steady-state and tran-
sient applications for design optimization and ro-
bustness, performance, fuel economy, and cold start.    

2.1 Restructuring 

Previous applications of the engine model were 
focused on naturally aspirated applications.  The ex-
isting engine architecture divided the engine into 
cylinders with each individual cylinder model con-
taining the intake, exhaust, and combustion chamber 
submodels.  The architecture supported both single 
and multi cylinder applications via engine templates 
with replaceable cylinder models.  Inside a 
given engine template, the instantiated cylinders 
were wired to the external connectors for the crank-

shaft, engine block, and intake and exhaust ambient 
reservoirs.     

The existing architecture provided highly flexi-
ble for naturally aspirated engines but did not pro-
vide the necessary configurability for boosted appli-
cations.  Figure 3 shows the new, restructured engine 
model architecture.   The new structure divides the 
engine along the head (in-
take_exhaust_system component) and block 
(bottom component).  The connection between the 
head and block is an array based on the number of 
modeled cylinders.  The head contains the model of 
the intake and exhaust system such as the throttle, 
plenum, and individual cylinder heads, which con-
tain the fuel injectors and intake/exhaust ports and 
valves.  The block component consists of the indi-
vidual combustion chambers which primarily contain 
the respective cylinder volumes and combustion 
models.  One addition to the engine structure is a 
replaceable boost device model situated be-
tween the intake and exhaust reservoir connectors 
and the head component.  The constraining class for 
this component is of sufficient generality that it can 
be replaced by a class which can simulate naturally 
aspirated, supercharged, turbocharged, or turbocom-
pounded behavior. 

 

 
Figure 3.  New engine model structure 

2.2 Surrogate Modeling 

Single cylinder models are often used to repre-
sent multi-cylinder engines due to their computa-
tional efficiency.  While this representation is more 
appropriate for steady-state applications and some 
transient applications with prescribed intake and ex-
haust conditions, it is typically not appropriate for 
turbocharged applications where the transient blow-
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down pulses from the cylinders provide the exhaust 
energy that drives the turbocharger.  Crankangle-
resolved representation of turbocharged engines re-
quires the modeling of the filling and emptying dy-
namics of the intake and exhaust manifolds to accu-
rately represent the downstream compressor and up-
stream turbine conditions respectively. 

In an effort to retain the computational effi-
ciency of single cylinder modeling for turbocharged 
engines, a new structure is introduced consisting of 
both primary and surrogate cylinder-head representa-
tions.  The detailed breathing calculations are per-
formed in the primary cylinder head, which is con-
nected to the detailed combustion model.   The re-
sulting flows of chemical species and energy from 
the breathing calculations in the primary cylinder are 
then replicated in the surrogate cylinder head repre-
sentations at the appropriate phasing as surrogates 
for the contributions of the missing cylinders.  The 
implicit assumption is that the manifold conditions 
are quasi-steady on the time scale of a single, com-
plete firing cycle of the engine.   

Figure 4 shows the surrogate flow structure.  
Figure 4a shows an engine head model with a single 
cylinder intake system mimicking a multicylinder 
engine.  The intake and exhaust surrogate models are 
positioned between the manifolds and the head 
model for the primary cylinder. Figure 4b shows a 
single instance of the surrogate model.  The primary 
flow path is broken by a flow sensor that is used by 
the surrogate flow source that is instantiated in paral-
lel.     

 

  
(a)  (b) 

Figure 4.  Surrogate flow structure 
 

Figure 5 illustrates the surrogate flow concept.  
Figure 5a depicts a surrogate flow representation for 
the intake of an I6 engine.  There is a single primary 
flow with five replicated and phased surrogate flows.  
For clarity, only the primary flow is shown from the 
first cycle followed by all the flows in the second 

cycle.  The total flow is the superposition of all the 
flows.  Figure 5b shows a surrogate exhaust flow 
representation for a single bank of a V6 engine.  The 
total exhaust flow is not pictured as it obscured the 
ability to see clearly the individual surrogate flows.  
The dynamic exhaust events from the individual cyl-
inders that are used to drive the turbine are clearly 
captured. Note that the phasing changes appropri-
ately based on the number of replicated cylinders.    
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(a)  Intake flow (I6) 
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(b)  Exhaust flow (single bank V6) 

Figure 5.  Sample intake (a) and exhaust (b) flows 
 
Several alternatives for the surrogate flow cal-

culations were implemented in Modelica. The alter-
natives differ in the way in which the surrogate flows 
are calculated and provide slightly different numeri-
cal results.  The traces shown in Figure 5 are from 
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the DelayedSurrogateFlow model.  This 
model uses the built-in delay operator to phase the 
mass flow rates for the surrogate cylinders based on 
the primary cylinder calculation.  It is worth noting 
that this implementation yields numerical Jacobians 
in Dymola (and in the authors' opinion should not).    

3 Turbocharger Modeling 

In addition to the engine restructuring to support 
inclusion of boost device models, various boost de-
vice models were implemented in Modelica.  Figure 
6 shows a model for an exhaust-driven turbocharger.  
The ConfigurableTurboCompressor model 
provides a template for turbocharger modeling.  It 
consists of a turbine component connected to the 
compressor component by the tur-
bine_shaft. There is also a wastegate com-
ponent on the turbine side and an intercooler 
component on the compressor side.  Extensive use of 
replaceable models allow for flexibility in con-
figuring the template to simulate specific hardware.  

     

 
(a)  Diagram 

 
(b)  Code excerpt 

Figure 6.  Turbo model 
 

Detailed modeling of turbocharger behavior 
based on geometric information typically requires 
CFD-type simulations.  For lumped systems models, 
steady-state mapped data, typically provided by the 
component supplier from gas stand testing, is often 
used to simulate component model behavior.  The 
mapped data for the turbine and compressor consists 
of mass flow rate and efficiency data over a range of 
shaft speeds and pressure ratios [8].  Figure 7 shows 
a sample compressor efficiency map with annota-
tions showing the various features of the map 
(i.e.surge line, choke line, efficiency islands, speed 
lines, etc.) [9]. 

 

 
Figure 7.  Sample compressor efficiency map [9] 

 
Typically the mapped data exists for a rather 

limited range of speeds and pressure ratios and must 
be extended analytically to ensure model robustness.  
There are a variety of ways to implement and/or fit 
the map data for component modeling [10].  The fol-
lowing discussion and figures provide some sample 
results from the fitting procedure used by the au-
thors. 

To account for differences in inlet conditions, 
turbine map data is often provided in reduced form.  
The map data gives reduced mass flow and effi-
ciency as a function of reduced speed and pressure 
ratio as defined in the following equations:  

 
inlet

r
T

N
N =  (1)  

 
inlet

inlet
r P

Tm
m

�
� =  (2) 

where N is the shaft speed in RPM, m� is the flow 
rate through the turbine in kg/s, and the inlet pressure 
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and temperature conditions are denoted by Pinlet and 
Tinlet, respectively.  Blade speed ratio (BSR) is de-
fined as the blade speed divided by the isentropic 
enthalpy drop across the turbine and can be com-
puted as follows [11]: 
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where D is turbine diameter, hin is the inlet enthalpy, 
and PR is the pressure ratio across the turbine.  Note 
that BSR is an independent variable that combines 
both the pressure ratio and the shaft speed.  In an 
attempt to collapse the data onto a single line to fa-
cilitate fitting, efficiencies and reduced mass flow 
rates are normalized.  The normalized variables can 
then be fit based on a normalized blade speed ratio as 
shown in Figure 8. 
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(a)  Normalized efficiency 
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(b)  Normalized reduced mass flow 

Figure 8.  Sample turbine fits for normalized variables 
 
Compressor map data is often corrected to ref-

erence conditions to account for differences in inlet 
conditions.   
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where Preference and Treference denote the reference con-
ditions.  Similar techniques to those described previ-
ously for the turbine can be used to fit the normal-
ized compressor efficiency.  A tabular implementa-
tion is used for the corrected mass flow data as a 
function of shaft speed and pressure ratio.   

To facilitate the modeling of new turbocharger 
hardware, an external tool has been developed to 
generate the fits to the mapped data.  Given the raw 
map data from the supplier, the tool calculates the 
various required fit coefficients for efficiency and 
flow rate using least square regression.  As shown in 
the code in Figure 6b, the replaceable models 
for CompressorRelations and TurbineRe-
lations are used to specify the mapped compo-
nent behavior.   Base classes for various types of raw 
data (i.e. corrected, reduced, mass flow, volume 
flow) and fitting techniques have been created.  By 
extending from the appropriate base class and pro-
viding the fit coefficients, the component map for a 
given piece of hardware can be defined and selected 
for use in the ConfigurableTurboCompres-
sor. 

4 Simulation Results 

The new engine architecture and turbocharger 
modeling capability in conjunction with predictive 
combustion cycle simulation provide a tool for up-
front assessment of advanced engine concepts.  
Simulation results from a few sample applications 
are provided.  The simulations were performed using 
Dymola [12]. 

4.1 Steady State 

Early concept assessment typically occurs on an 
engine dynamometer long before vehicle work be-
gins.  These assessments are usually steady state for 
performance, fuel economy, and calibration.  Surro-
gate hardware is often used prior to vehicle hardware 
availability thereby necessitating a configurable 
modeling environment for maximum flexibility. 

Figure 9 compares the results from a simulated 
load sweep at a fixed engine speed for two different 
turbocharged engine concepts.   The model was ini-
tially calibrated based on experimental data from an 
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early hardware iteration of Engine A.  Following a 
major hardware update, the model was updated to 
the latest hardware level, and the original calibration 
was validated via prediction at a different engine 
operating condition.  The percent difference between 
the model prediction and the experimental data is 
shown in Table 1 for various pressure, temperature, 
flow, and combustion statistics.  The model agrees 
well with the experimental data.  The model predic-
tions in Figure 9 are purely analytic based on virtual 
hardware changes for Engine A and concept Engine 
B over operating conditions which were only simu-
lated.  The predicted fuel consumption for Engine B 
is roughly 3-4% less than that of Engine A.  Figure 
9b shows the steady state shaft speeds for the two 
engine concepts. 
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(b)  Shaft Speed 

Figure 9.  Load sweep at a fixed speed 
 

Table 1.  Model validation (depicted as percent differ-
ence between model prediction and experimental data) 

airflow kg/s/cyl
BMEP bar
gIMEP bar
PMEP bar
ISFC g/kW.h
BSFC g/kW.h

burn010 deg
ca50 degATDC

caPmax degATDC
MAP kPa

CompoutP kPa
CompoutT K
ICoutletT K
TurbinP kPa
TurbinT K

%err
0.078212
-0.051359
-0.241572

0.430916
0.240178
-0.662252
1.421053
2.137423
-0.676617
-0.620951
-0.393695
-0.099168
3.410164
0.095168  

4.2 Transient 

In addition to steady state characterization, tran-
sient performance metrics play a crucial role in con-
cept assessment.  The ability to provide analytic as-
sessments of transient response is a key enabler for 
upfront powertrain system design and optimization. 
In particular, transient response metrics are espe-
cially important in turbocharged engine applications 
to ensure robust hardware and control system design 
to mitigate the impact of any potential turbo lag is-
sues. 

Figure 10 shows the results for a simulated 
throttle transient with Engine A.  The simulations 
were run at a fixed engine speed.  As the throttle 
opens, the engine load quickly increases as the mani-
fold pressure approaches compressor outlet pressure.  
The resulting rise in exhaust mass flow drives the 
turbine shaft to higher speeds, producing additional 
boost and increasing the load even further.  The tran-
sient behavior results from the inertia of the turbo-
charger shaft, filling and emptying of the intake and 
exhaust manifolds, turbocharger performance dy-
namics, intercooler dynamics, and combustion phas-
ing dynamics.  Given the highly-coupled nature of 
turbocharged systems, a transient, physical model is 
an extremely valuable tool for understanding the 
various feedback mechanisms and key parameters 
for robust design and system control.      
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Figure 10.  Throttle transient, Engine A 

5 Conclusions 

Development and implementation of a new en-
gine architecture in Modelica for the detailed simula-
tion of turbocharged, spark-ignited engines has been 
presented.  In conjunction with previously-developed 
capability for predictive engine cycle simulation, the 
models provide a highly-capable platform for ana-
lytic, upfront design assessment and optimization for 
turbocharged engines.  The model predictions have 
been validated with experimental data, and the re-
sults from several sample applications provide some 
insight into potential model usage.  
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Thermal Modelling of an Automotive Nickel Metall Hydrid
Battery in Modelica using Dymola
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Abstract

This paper deals with the thermal modelling of an au-
tomotive nickel metall hydrid battery. The thermal
modelling will be done in two different approaches.
The result of the distinct approaches will be the same,
though.
The thermal models are implemented in Modelica sim-
ulation language and simulated using the Dymola sim-
ulation environment, [1].
Thermal and electrical measurements have been
carried out to validate the simulation results of the
thermal modelling and will be presented in this paper.

Keywords: simulation, modelling, nickel metall hydrid
battery, validation

1 Simple thermal cell models

The first approach is the thermal modelling of a nickel
metall hydrid battery package taking into account the
geometry and temperature distribution during the op-
eration of a single cell.
In this paper a thermal model of a cubical-shaped
package of a battery will be modelled, simulated
and evaluated. The thermal battery model comprises
algebraic and ordinary differential equations. All
components of the thermal battery model are taken
from the ModelicaStandardLibrary, such as Model-
ica.Thermal.HeatTransfer.
The thermal model of the battery is modelled by means
of discrete volume elements. In this model the coeffi-
cients of heat transfer for each discrete volume are cal-
culated. The cell model, cell in figure 1, represents
the thermal model with all inner thermal behaviors.
The heat flow inside the cell in all three directions was
implemented. The model was parametrized using ge-
ometrical and thermal measured data of the cell, such
as length, width, thermal conductivity, density of the

Figure 1: Thermal model of the cubical-shaped cell in
Modelica

material etc. The heat losses of the anode and the cath-
ode of the cell are implemented in the external mod-
els (anode and cathode in figure 1). The natural
convection in this model is included. Each discrete
volume, which is located on the surface of the mod-
eled cell, contains heat transfer with the surrounding
air. This heat transfer is identified as convection,
figure 1.
Figure 2 shows the temperature distribution of a
cubical-shaped cell in all three directions, x-length,
y-length and z-length. The model considered
500 discrete volumes. Due to the origin of the losses
in the area of anode and cathode the temperatures are
higher in these discrete volumes.
The thermal model of the cell presented in this case
simulates the thermal behavior of a cubical-shaped cell
until the cell temperature reaches its stationary final
value.
For the investigation of the thermal behaviour of the
battery package which includes cylindrical cells, at
first a detailed thermal model of one cell is imple-
mented. This base model includes the same equations
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Figure 2: Simulation, temperature distribution in the
cubical-shaped cell

and models as the cubical-shaped cell model. The an-
ode and cathode of the cylindrical cell model are used
in this case as spiral plates.
The heat losses distribution of the anode and cathode
in this cell is implemented homogeneously. The heat
flow in x and y direction, cross directions, has the same
size and conductivity coefficents . Therefore the model
of the cell is reduced from a 3D to a 2D problem.
This reduced model of the cylindrical cell is used
in this paper for implementation of a battery pack-
age which contains more alike cells. Figure 3 shows
the temperature distribution of a cylindrical cell in
all three directions, x-length, y-length and
z-length. The model considered 400 discrete vol-
umes. The discrete volumes in the centre area have
a higher temperature due to the improved losses heat
from anode and cathode, because the heat losses of
each volume of this cell has the same size. As depicted
in figure 3, the heat flow from the center in y direction
is much higher than in z direction. That ocours, be-
cause the heat conduction coefficients in x and y direc-
tion are much higher than that in the z direction.

2 Thermal model of a nickel metall
hydrid battery package

The simple thermal cell model was used for the im-
plementation and validation of the nickel metal hy-
drid battery package. This package contains 153 cells,
which were integrated in a steel housing. The cells
have a cylindrical shape in this case. The housing box
has the following geometrical sizes, length 468mm,
width 108mm and height 65mm.

Figure 3: Simulation, temperature distribution in the
cylindrical cell

Each component of the battery package such as cells
and housing needs a set of thermal and geometrical
parameters which have to be determined prior to the
simulation. They are used of base from cell and hous-
ing material specifications, according to [2], [3], [4]
and [5]. For the parameterisation of the final simu-
lation model the parameters have been adjusted and
corrected through measurements results.
The natural convection coefficient in this model is
4.5W/m2 ·K and the ambient temperature 20◦C. The
size of this coefficent is used from quiet ambient air,
according to [2]. The thermal conductivity coeffi-
cients of the battery package box housing in length,
width and height direction are 254W/m ·K, accord-
ing to [3]. The thermal conductivity coefficients of the
used cylindrical cells in cross direction are 40W/m ·K
and in length direction 4W/m ·K, according to [4].
The thermal losses of the entire battery package are de-
termined through measured minimum and maximum
temperatures of the entire battery surface. The bat-
tery package model was simulated until the simulated
minimum and maximum temperatures were the same
size as the measured temperatures. Then the heat loss
of the entire battery package was determined to be
105.57W . The heat losses of a cell determined using
simulation is 0.69W . The maximum simulated tem-
perature of the battery package is 56◦C.
The first model of the battery package was simulated
using more than 2800 discrete volumes. The problem
of this discretization of the battery package was that
each volume has more than 50 equations. The entire
battery model has therefore more than 140000 equa-
tions and, hence, the simulation of this model was im-
possible. The size of the model was reduced remov-
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Figure 4: Simulation, temperature distribution in the
battery package

Figure 5: Assembly of the nickel metal hydrid battery
package

ing surfaces where the heat flow rate was zero. With
this optimization of the battery model the final model
has less than 700 discrete volumes and therefore about
35000 equations.
Afterwards, simulation results were compared with
measurement results of the real battery package. Fig-
ure 4 shows the temperature distribution of this simu-
lated nickel metall hydrid battery package.

3 Test setup and testing of the nickel
metal hydrid battery package

Thermal and electrical measurements have been car-
ried out to validate the simulation results of both ap-
proaches of the thermal modelling. The nickel metal
hydrid battery package consists of 153 single cells.

Figure 6: Thermographic picture of the nickel metal
hydrid battery package

The cells are electrically connected in such a manner
that the requirements for the given automotive applica-
tion are fulfilled. In Figure 5 one can see the electrical
and mechanical assembly of the nickel metal hydrid
battery package.

The electrical internal resistance of a single cell de-
pends on the state of charge of the cell, and the tem-
perature of the cell.

The current profile for charging and discharging the
the nickel metal hydrid battery package is a symmet-
rical current profile. Therefore the average state of
charge of the cells stays constant. In this case the elec-
trical internal resistance only depends on the cell tem-
perature.

Several temperature sensors are applied in the battery
package to control the temperature. The maximum
temperature of a single cell must not exceed 60◦C. The
nickel metall hydrid battery is charged and discharged
until the exponential temperature course reaches its
stationary final value. The amplitude of the charge
and discharge current is 9.66A. With this current pro-
file the mean temperature of the battery package after
reaching the stationary final value is 55◦C.

During the heating-up of the battery pack a thermo-
camera takes pictures of the pack to get the temper-
ature distribution within the pack. Figure 6 shows a
picture of the temperature distribution of the nickel
metal hydrid battery package shortly before the mean
temperature within the pack reaches its stationary final
value of 55◦C.
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4 Electrical and thermal modelling
of the nickel metal hydrid battery
package

The stationary final temperature value of the battery
modelled with this second approach will be the same
as the stationary final temperature value simulated
with the first model approach descriped in chapter 2.
The second model approach takes into account thermal
and electrical components. The nickel metal hydrid
battery package is modelled in Dymola/Modelica as a
lump thermal mass with an internal heat source.
The heat supply is caused by the ohmic loss of the
internal resistance of the nickel metal hydrid battery
package, the temperature distribution is assumed to be
homogeneous.
The internal resistance model is temperature depen-
dent, consequently the generated ohmic loss depends
on the temperature. Heat will be taken away from
the nickel metall hydrid battery package due to natural
convection.
The solved heat equation for a lump thermal mass with
an internal heat source and heat exchange to the ambi-
ence is

ϑ = ϑa + P
α·A ·

(
1− e−B·t)

where
ϑ is the temperature of the nickel metal hydrid battery
package,
ϑa is the ambient temperature,
α is the heattransfer coefficient,
A is the surface area of the package,
B is the heat up exponent and P is the heating power.
P is given as P = RiI2.
Ri is the temperature dependent internal resistance of
the nickel metal hydrid battery package
and I is the terminal current of the battery package.
The temperature dependence of Ri is approximated
with a cubical function as one can see in Figure 7.
The Dymola/Modelica model of the nickel metall hy-
drid battery pack is charged and discharged until the
exponential temperature course reaches its stationary
final value. The simulated temperature course is al-
most identical with the measured temperature course
of the nickel metall hydrid battery pack.
Figure 8 depicts the simulated temperature course with
a red line and the measured temperature course with a
blue line.
The stationary final value of the battery pack is 56◦C
which is identical with the simulated results of the
thermal model presented in chapter 2.

Figure 7: Temperature dependency of the internal
package resistance, Ri

Figure 8: Simulated temperature course and measured
temperature course of the nickel metall hydrid battery
pack
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5 Conclusions

In this contribution two thermal models of a nickel
metall hydrid battery pack were presented. The results
of the distinct approaches were the same, though.
The first model approach took into account the geom-
etry and temperature distribution during the operation
of the battery.
The second model approach took into account ther-
mal and electrical components. Special emphasis was
given to the temperature dependency of the electrical
internal resistance of the battery pack.
Thermal and electrical measurements have been car-
ried out to validate the simulation results of the ther-
mal modelling and were presented.
The thermal models were implemented in Modelica
simulation language and simulated using the Dymola
simulation environment.
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Abstract

The topic of this paper is the object oriented model-
ing of a Common Rail Direct Injection System of a
gasoline engine. The injection system of a gasoline
engine is described; the main functional elements are
detailed and an object oriented implementation using
the Modelica language is proposed. The availability
of a fast and easily reconfigurable simulator allows to
study how different parts of the system interact and
notably speeds up the design of the final system. The
use of the Modelica language allows to seamlessly put
together mechanics, fluid dynamics, and control al-
gorithms. The design problem can be therefore ap-
proached as a whole, in a genuine and modern co-
design approach.
Keywords: automotive; fluid dynamics; common rail
injection system simulation.

1 Introduction

In this work we present an object oriented simulator of
a Direct Common Rail Injection System of a gasoline
engine.
The key to designing a clean and efficient ICE (Inter-
nal Combustion Engine) lies in precise control of the
combustion. This can be achieved by accurate control
of the flow of fuel and air in the combustion chambers.
Pre-2000 injection systems (such as mechanical car-
buretors [10] and Multi Point Injection technology [9])
cannot meet today’s stringent pollution regulations [8].
The introduction of the Common Rail Injection Sys-
tem technology for Diesel engines [1, 7] in the 90’s
represented a great breakthrough. Now, it is possible
to precisely mix fuel and air directly in the combus-
tion chamber. Only a few years had to pass before
the same technology could be applied to gasoline en-
gines [4, 5, 12], thus increasing fuel efficiency and re-
duce emissions. The cost of these advantages is a more
complex system, both from the standpoint of mechan-
ics and electronics. The higher complexity makes it

more difficult to foretell the effects of a modification
of the elements of the system. The design of such a
complex system can greatly benefit from the availabil-
ity of a reconfigurable simulator. The design process
can be sped up and the cost cut down.
The goal of this work is to describe an object oriented
simulator of a modern Common Rail Injection System
and to show how it can be helpful in the design of the
injection system.
The work is structured as follows. Section 2 describes
the overall architecture of the system. In Section 3, the
mathematical model of the system is derived and its
Modelica [2] implementation illustrated. In Section 4,
it is shown how the model reconfigurability can be ex-
ploited for fast sensitivity studies. Finally, conclusions
are drawn in Section 5.

2 Common Rail Injection System

A Common Rail Injection System schematics is de-
picted in Fig.1; the injection system goal is to deliver
fuel to the injectors at a desired high pressure. The
system can be divided into two sections; a high pres-
sure circuit and a low pressure one. The low pressure
circuit is composed of the fuel tank, a low pressure
pump, filters and a pipeline. The low-pressure circuit
is not critical for the overall engine performance and
therefore it is out of the scope of this work. From the
system dynamics standpoint, the most interesting part
is the high-pressure circuit; it goes from the the high-
pressure pump to the injectors. Its main elements are
now briefly described:

• HIGH PRESSURE PUMP. It is a volumetric
pump that connects the two main circuits of the
system. It is used to increase gasoline pressure
from 6 bar to [30-150] bar, according to the work-
ing load and engine speed. The piston of the
pump is mechanically connected to the engine
camshaft through a cam and follower system. In
modern common rail pressure control system the
control valve is built in the high pressure pump.
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Figure 1: The Common Rail Injection System architecture.

Three main elements compose the pump: the
piston, the control valve and the one-way valve.
When the control valve is open, the output of the
pump is redirected back to the low-pressure cir-
cuit. It has only two states: open or closed and
the switching instant is the control variable of the
system. The one-way valve is used to avoid un-
wanted refluxes.

Two phases are periodically alternated: an aspira-
tion and a compression phase. In the first phase,
the piston moves downward while the control
valve is open. This allows the gasoline to flow
from the low pressure circuit to the pump cham-
ber. After the piston has reached its lower dead
point, the compression phase starts. Initially the
control valve is open and the gasoline flows back
to the low pressure circuit. At any time during
this phase the controller can command the clo-
sure of the control valve. When it is done, the
pressure in the chamber increases. As soon as
it surpasses the pressure in the high pressure cir-
cuit, the one way valve opens, letting the gasoline
flow into the high pressure circuit. Notice that
the control variable of the system is the closing
instant of the control valve. The controller must
be synchronized with the pump: when the piston
is at its upper dead point (end of compression),
the ECU (Electronic Control Unit) samples the
pressure sensor output and computes the control
action. The control action will be executed, at the
earliest, when the piston reaches its lower dead
point.

• MANIFOLD. The outlet flange of the high-
pressure pump is connected to the common rail
through the manifold. The one-way valve pre-

vents the gasoline from flowing back from the
manifold to the pump. The manifold is equipped
with a safety valve that opens whenever the pres-
sure in the manifold reaches a threshold. This
valve is designed to function as a safety device
and its opening should be avoided in nominal
conditions.

• DIAPHRAGM. The common rail and the mani-
fold are connected through a diaphragm that re-
duces the diameter of the pipeline. This compo-
nent provides for a better damping of the system
and a partial decoupling between the pressures of
the manifold and the pressure of the rail. This is
achieved at the price of a decreased energy effi-
ciency of the whole system.

• COMMON RAIL. It is the core of the system.
It is connected to the manifold through the di-
aphragm. All the injectors are connected to the
common rail. In order to achieve precise injection
control, the pressure in the common rail must be
regulated at the desired reference value, minimiz-
ing oscillations.

• PRESSURE SENSOR. It measures the pressure
in the common rail at its end. It is the only pres-
sure measure available for control.

3 Object Oriented Modeling

In this section the mathematical modeling of the sys-
tem and its implementation in the Modelica language
are described. First, the core of a simplified fluid dy-
namics library is described and then it is shown how
it is possible to use the library (along with the Model-
ica Standard Library) to implement the injection sys-
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tem. Modelica turns out to be well suited for aiding
the design of injection systems. Injection systems are
inherently multi-domain systems and the possibility to
change each element of the system without having to
redesign all the interconnections allows to easily study
the effects of different design choices. The use of such
a fast and user-friendly virtual prototyping system can
save numerous iterations of the design-prototyping-
testing cycle.

3.1 Simplified Fluid Dynamics Library

Being fluid dynamics the most important dynamic
phenomenon of the system, a new simplified fluid dy-
namics library has been developed. The library is
built on the two new connectors: the flange_in and
flange_out defined as:

connector flange_in

"Connector for the simplified

fluid dynamics library"

import Modelica.SIunits.AbsolutePressure;

import Gasoline_turbo.Types.MassFlow;

flow MassFlow q

"Mass flow into the flange";

AbsolutePressure p

"Pressure at the flange interface";

end flange_in;

The absence of a temperature variable in the connec-
tor deserves a comment; the library is not designed to
model thermal interaction. This choice is based on the
consideration that, although thermal interaction does
take place in the system, the focus of this study is on
pressure waves. Wave propagation is faster than any
thermal interaction that may happen in the system and
therefore heat exchanges can be neglected.
In addition to the connectors, two partial pack-
ages have been introduced: the BaseFluid and
BaseMaterial. The former representing the fluid
properties and the second representing the properties
of the material of the pipeline.

partial package BaseFluid

import Modelica.SIunits.AbsolutePressure;

import Modelica.SIunits.BulkModulus;

import Modelica.SIunits.KinematicViscosity;

import Modelica.SIunits.Density;

replaceable partial function getDensity

"Return density as function

of absolute pressure"

extends Modelica.Icons.Function;

input AbsolutePressure p "Pressure";

output Density rho;

end getDensity;

replaceable partial function getBulk

"Return BulkModulus as function

of absolute pressure"

extends Modelica.Icons.Function;

input AbsolutePressure p "Pressure";

output BulkModulus beta;

end getBulk;

replaceable partial function getViscosity

"Return Viscosity"

output KinematicViscosity vcin;

end getViscosity;

end BaseFluid;

The main properties used in the modeling are density,
bulk modulus and kinematic viscosity. The package
allows to add new properties where needed and rede-
fine how the properties are computed. For example,
the designer can choose to use a constant value for the
density or model it as a function of the pressure. This
gives the user a certain amount of freedom whenever
the fluid properties are not readily available. In this in-
jection system study a gasoline package has been im-
plemented assuming a linear dependence of the bulk
modulus on the pressure.
Similarly the BaseMaterial package is defined as:

partial package BaseMaterial

import Gasoline_turbo.Types.*;

replaceable partial function getYoung

extends Modelica.Icons.Function;

output Young y;

end getYoung;

replaceable partial function getPoisson

extends Modelica.Icons.Function;

output Poisson p;

end getPoisson;

end BaseMaterial;

end BaseFluid;
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The main properties of the material are assumed to be
the Young and Poisson moduli. They characterize the
material elasticity, which plays an important role in
pressure waves propagation. In the final implemen-
tation, the two moduli are assumed constant, but the
replaceable feature allows to take into account more
complex models. The partial package has been ex-
tended into two different types of steel: the manifold
steel and the common rail steel.

3.2 Models Description

As already mentioned the most important dynamics af-
fecting the system is the propagation of pressure waves
in narrow, long, circular section pipelines filled with a
compressible fluid. According to the description given
in Section 2, the injection system is obtained by con-
necting the following elements: pipelines, diaphragm,
high pressure pump, and valves. The closed-loop pres-
sure control and synchronization algorithms also need
to be modeled.
Fig. 2 is a graphical representation of the Common
Rail Injection System. The most important elements
of the system are depicted in figure and are described
in the following.

3.2.1 Common Rail and Manifold

The DistributedPipe is constituted by two connec-
tors, a flange_in and a flange_out and the two re-
placeable packages, BaseFluid and BaseMaterial;
this allows to specify the fluid and material properties
independently of the wave dynamics model.
The distributed pipe model equations are derived un-
der the following assumptions:

1. single component, single phase fluid;

2. one-dimensional spatial model;

3. negligible heat exchange phenomena;

4. straight and constant section pipelines.

Under these assumptions, the dynamics of the fluid in
the pipeline are described by mass and momentum bal-
ances, which can be written as [11]:

{
A
c2

∂P
∂ t + ∂w

∂x = 0
∂
∂ t

(w
A

)
+ ∂

∂x

(
w2

A2ρ

)
+ ∂P

∂x +Ff = 0
(1)

In system (1), ρ is the gasoline density expressed in
kg/m3; w is the gasoline mass flow expressed in kg/s; P
is the gasoline pressure expressed in Pa; c is the sound

velocity in the fluid expressed in m/s; A is the section
area of the pipe expressed in m2; and Ff is the load loss
due to friction. The sound velocity term c depends on
the properties of the fluid and the elasticity of the pipe
and it is given by:

c =

√
β

1+Kβ
1
ρ

(2)

where β is the bulk modulus that describes the com-
pressibility of the fluid and K is the stiffness of the
pipe that depends on its material and on its geometric
properties. In addition, assuming turbulent flow (this
assumption is verified a-posteriori) the frictional load
loss can be written as:

Ff = 2
w|w|
ρA2D

f (3)

where D is the inner diameter of the pipe and f is the
pipe Fanning friction factor. The final equations are
partial differential equations. The infinite-dimensional
system can be transformed in a finite-dimensional one
by means of the finite-difference method [3, 6]. The
pipeline is divided in N cells, each assumed to have
a uniform pressure and an inflow and outflow. The
finite-difference approximations used herein are (the
dependence of P and w on t is omitted for the sake of
notational simplicity) :

∂P
∂x ≈

P(i+1)−P(i)
∆x

∂w
∂x ≈

w(i)−w(i−1)
∆x

for i = 2...N (4)

In (4), ∆x represents the cell length; P is the mean
pressure within the i-th cell; and w(i) and w(i− 1)
are the inlet and the outlet flows of the i-th cell, re-
spectively, and N is the number of cells considered.
The discretization must be completed by boundary
conditions; this is done using the flange_in and
flange_out connectors already introduced:

w(1) = flange_in.q
w(N +1) =−flange_out.q
p(1) = flange_in.p
p(N +1) = flange_out.q

(5)

These boundary conditions allow to freely connect dif-
ferent elements without having to worry about causal-
ity of the elements, as one would have to do in a signal
based modeling environment.
The distributed pipe is used to model both the man-
ifold and the common rail. The manifold is simply
modeled by a long distributed pipe; it is connected to
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Figure 2: A graphical representation of the Injection System Model.

the high pressure pump on one side and to the ori-
fice on the other. The modeling of the common rail
is more interesting because it must be provided with
the connectors used by the injectors. Fig. 3 is a
graphical representation of the CommonRail model. It
shows the model interface and its components. The

Figure 3: A graphical representation of common rail
model.

model is composed of 5 distributed pipes and 4 in-
jectors. The interface is represented by the two main
flanges of the common rail, the 4 flanges of the injec-
tors (which will be described later) and 4 logical sig-
nals representing the command signals to the injectors.
The model encapsulates the geometric properties of
the rail (length, diameter and inclination) and the two
replaceable packages Basefluid and BaseMaterial.
As shown in Fig. 1, in the final assembly, one of the
main flanges of the common rail is connected to the
diaphragm, the other to the pressure sensor. The injec-
tors flanges are connected to a constant pressure rep-
resenting the piston chambers.

3.2.2 Diaphragm

The diaphragm is a choking of the pipe. Its func-
tion is to increase the damping and by doing so it
also achieves a certain amount of decoupling between
the manifold and the rail dynamics. The narrowing is
coaxial to the fluid flow; thus it can be modeled as con-
centrated load loss [11]. Having defined ∆p = P1−P2,
the flow characteristic can be written as

w =





ρπ D2
i

4

√
2|∆p|/ρ

1−(Di/Do)4 if ∆p > 0

−ρπ D2
i

4

√
2|∆p|/ρ

1−(Di/Do)4 if ∆p ≤ 0
(6)

where Di is the diameter of the inlet and Do the diam-
eter of the choking.
The resulting model has two flanges; one is connected
to the manifold and one to the common rail. It is im-
portant to notice that this element must manage flow
inversion. Flow inversion happens when the pressure
gradient between the two flanges changes sign. From
equation (6), it is immediate to see that when ∆P ap-
proaches 0 the Jacobian of the function approaches
singularity. In order to treat this case a linear junc-
tion has been implemented. When |∆P| < ε , the flow
characteristic is approximated by a linear function.

3.2.3 Injectors

The injectors are one of the elements of the system
most likely to be subject of study; in order to increase
the configurability of the model, the partial model
BaseInjector has been implemented. Its interface
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is composed of two flanges and of a boolean signal.
In a standard configuration, one of the flanges is con-
nected to the common rail and the other to the cylinder
chamber.
For this study a simple injector model has been im-
plemented. It is modeled as a valve whose opening
request is assumed to be a two-valued variable (open-
close). The dynamics of the orifice area is approxi-
mated by a first order filter with a pure delay. The rela-
tionship between the actual orifice area and the output
fuel flow is assumed to be a non-dynamic relationship
and modeled by a static customizable map depending
on the pressure difference between the two flanges.
Notice that the cylinder chamber can be modeled as
a constant pressure. Although the pressure in the
chamber changes during a piston revolution; the high
pressure in the common rail guarantees that the flow
through the injectors is independent from the chamber
pressure. It is also interesting to note that the injectors
are not subject to flow inversion and thus their imple-
mentation is straightforward.

3.2.4 Engine Carrier

In engine control applications, it is a common practice
to write all the control logic algorithms in term of the
engine crankshaft angle. In order to meet this standard,
a mechanism to relate the time independent variable
(needed to simulate wave propagation) and the engine
crankshaft angle independent variable (needed to sim-
ulate injection, spark, pumping and control) is neces-
sary. The EngineCarrier model achieves this goal.
The crankshaft is computed as a function of the instan-
taneous RPM of the motor (an user supplied variable).
By defining an inner EngineCarrier instance in the
model, the user can conveniently provide all the mod-
els with the needed independent variable.

3.2.5 High Pressure Pump and Control Valve

The high-pressure pump is one of the most impor-
tant elements of the system; and, according to the ob-
ject oriented paradigm, it has been defined as a partial
model BasePump. The partial model only defines its
interface (2 flanges, a command signal, and a real sig-
nal describing the velocity of the piston) and its main
components (the replaceable packages fluid and mate-
rial). This approach allows to easily define and imple-
ment different models of the pump.
For the goals of this study the compression dynamics
inside the pump chamber is neglected along with the
dynamics of the low pressure circuit. This is done be-

Figure 4: High pressure pump cam profiles (4-lobes,
3-lobes, 2-lobes).

cause the chamber volume is negligible with respect
to the volume of the rest of the system. As described
in Section 2, the piston is driven by a camshaft and
the instantaneous gasoline flow is determined by the
velocity of the piston.

wh = 0, wl =−ρApist
dh
dt

, if control = open

wh = ρApist
dh
dt

, wl = 0, if control = closed

where wl and wh are, respectively, the flow through the
flange connected to the low and high pressure circuit;
Apist is the area of the piston; h is the height of the
piston and control is the state of the control valve.
The other two models needed in order to have a func-
tional high pressure pump are the PumpCamshaft and
the ControlValve models. These two models require
the crankshaft angle provided by an EngineCarrier

instance. PumpCamshaft computes the velocity of the
piston as a function of the crankshaft angle; this is im-
portant because different high pressure pump camshaft
profiles may be available, and the ability to easily
switch between them is helpful. Three different cam
profiles have been implemented: 2, 3, and 4 lobes.
They are depicted in Fig. 4. The ControlValve

model determines the state of the control valve. Its in-
terface is defined by 2 input signals (DC and camshaft
angle) and one boolean output signal which represents
the state of the valve. As explained in Section 3.2.7
the DC signal is the control variable; it is the closing
time of the valve expressed as a ratio to the whole high
pressure pump period. The model can be extended to
define more complex behaviors.

3.2.6 Injection logic

The InjectorLogic model generates the command
signals for the injectors. It is possible to specify a
time variant or constant injection time, in seconds, and
an injection phase, in crankshaft degrees. It is there-
fore possible to simulate engine steady state or tran-
sient regimes. It requires the presence of an inner
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EngineCarrier instance in the model. In the present
implementation, which is based on real-world specifi-
cations, the four injection times are equal and sequen-
tially delayed by 180◦.

3.2.7 Control Algorithm

The goal of the common rail pressure controller is to
regulate the pressure to a set point which is computed
as a function of engine rpm and the throttle position. A
known and steady pressure in the common rail allows
to control the injected gasoline with precision by ac-
tion of the injection time. This can be explained by the
above considerations regarding the injectors; thanks
to the great pressure difference in the rail and in the
piston chambers, the amount of injected fuel depends
mainly on the pressure in the rail and the injection
time. If the pressure in the common rail is maintained
constant without oscillations, then the injected fuel can
be controlled by varying the injection time. Regulation
of the gasoline pressure in the common rail is achieved
in closed-loop, with an additional feed-forward com-
ponent. The only measurement available for feedback
is provided by the rail pressure sensor whose reading is
sampled when the high pressure pump piston reaches
its upper dead point (start of the expansion phase).
The sampling time of this sensor hence is time-varying
(whereas it is camshaft-angle-invariant). The control
variable is the closing time of the valve measured as
a Duty Cycle. The Duty Cycle (DC) is referred to the
whole high pressure pump cycle, starting with the as-
piration phase; therefore a DC of 50% means that the
control variable is closed as soon as the compression
phase begins, whereas a DC of 75% implies that the
control valve is closed in the middle of the compres-
sion phase. Hence, this actuator implements a sort of
Pulse-Width-Modulation (PWM). It is clear that, ac-
cording to this control strategy, the aspiration phase is
a pure delay. Also in this case, notice that the duty-
cycle is time-varying but camshaft-angle-invariant.
The control algorithm is implemented in the
Controller model. It has 3 inputs (pressure
measurement, pressure set point and throttle position)
and one output, the Duty Cycle, an Controller

instance provides the variable for scheduling. Fig.
5 depicts the control system block diagram. The
control algorithm is based on a Proportional + Integral
control action whose parameters are scheduled on the
engine speed. The feed-forward component allows
to compensate for the injected fuel. The injected
fuel can be seen as a load disturbance acting on the
plant; although, technically, this disturbance cannot be

Figure 5: Control system block diagram.

measured, it can be estimated by knowing the gasoline
pressure in the common rail and the injection time.
The feed-forward term guarantees a faster disturbance
rejection than the one achievable only by the closed
loop term.

4 A Case Study

The implemented model can be used for different
kinds of sensitivity analysis. In this section the sim-
ulation results are presented and commented.
Before doing any sensitivity analysis, the fluid param-
eters have been identified and the model validated.
The model is characterized by a large number of pa-
rameters. They belong to two categories: geometric
and fluid-dynamic parameters. Geometric parameters
are easily known; fluid dynamic parameters cannot be
measured easily and inexpensively and therefore they
were experimentally estimated. The parameters that
have been estimated from data are: the gasoline bulk
modulus and the Fanning friction factor of the mani-
fold and of the rail. Note that, although the bulk mod-
ulus of the gasoline is known [11], it must be corrected
to account for the elasticity of the pipes which is hard
to be directly measured. All model uncertainties and
simplifications are concentrated in the identified pa-
rameters. Fig. 6 shows the final validation results,
by plotting the manifold and rail pressures. Pressures
are normalized with respect to the set point pressure.
The validation data is the result of a workbench test
on a modern turbocharged direct ignition gasoline en-
gine. It is important to note that only closed loop tests
are available for validation; therefore all the follow-
ing considerations are to be referred to the closed loop
case. The results show that the model is able to ac-
curately replicate the main resonances and damping.
The relevant dynamics are correctly captured. Spec-
tral analysis confirms that the frequency range of va-
lidity of the model is approximately 0-1000Hz. It can
be seen from figure that the model is able to repro-
duce higher frequency dynamics, but the fitting be-
tween the simulated and the measured data is not as
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Figure 6: Simulated and measured pressures in the manifold and in the rail (time-domain; 4000rpm).

good as with lower frequency dynamics. In order to
improve the model accuracy beyond 1KHz, the Fan-
ning friction coefficient dependence on the Reynolds
number needs to be accounted for. Although the iden-
tification of such dependence requires considerable ef-
forts; the model can be easily modified to account for
that dependence.
This validation test also shows that the prototype suf-
fers from high pressure peaks. In fact, the pressure in
the manifold raises to levels up to 1.4 times the nom-
inal pressure. The final system will be equipped with
an exhaust valve set to open at about 1.35 time the
nominal pressure. The opening of the safety valve is
to be avoided.
This problem is well suited to be studied with the de-
scribed model. The dependence of the pressure peaks
has been studied as a function of the diameter of the
manifold. Results are show in Fig. 7, where pressures
are normalized with respect to the safety valve thresh-
old. Thanks to this analysis, it is possible to draw some
interesting guidelines for the design of the manifold:

• the pressure peak problem is sensitive to the en-
gine speed. The higher the engine speed is the
higher the pressure peak is;

• the maximum pressure depends hyberbolically on
the diameter of the manifold;

• an increase of the manifold diameter of 2mm with
respect to the baseline manifold solves the prob-
lem.

This is an example of the kind of possible sensitivity
analyses that can be run using the model. Other ele-
ments that can be easily studied are: the radius of the
rail, the number of lobes of the high pressure pump
and the static characteristic of the injectors.

Figure 7: Manifold maximum pressure as a function of
the manifold diameter increment for different engine
speeds.

5 Conclusions

In this work an object oriented model of a Common
Rail Injection System for a gasoline engine has been
proposed. The focus has been on providing an eas-
ily reconfigurable simulation tool that can help the de-
sign process. The system has been described in de-
tail and a 1-Dimensional model of the pressure waves
propagation has been derived from fluid dynamics ba-
sic principles. The simulator has been validated us-
ing bench tests. A case of study in which the model
is used to study the dependence of the maximum pres-
sures reached in the manifold as a function of the man-
ifold diameter has been presented. The case of study
shows that the proposed model is accurate enough to
help co-design of the system, where mechanics, fluid
dynamics and control logic are looked at as an ensem-
ble. These kind of analyses allowed to draw useful
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guidelines for the design of such a complex system.
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Abstract

This paper describes the needs, ideas, implementation
and application of a multi-level concept used for air-
craft electrical systems design. The goal is to eas-
ily switch between three model levels in a complex
system model, in order to arrive at dedicated models
for the needed simulation tasks: a simple and super
fast model for energy consumption design, a detailed
model for fast network stability analysis and a very
detailed model for network quality assessment. Spe-
cial care was spent on the modeling assumptions and
a suitable library concept fitting to the needs. For sim-
plified unitary testing and configuration management
of the multi-level models a concept was developed.
The approach is demonstrated with an aviation equip-
ment use case. The usage of the models for stability
and quality studies is sketched.
Keywords: Multi-level modeling, Electrical Network,
Aircraft, DC-DC buck converter, stability analysis,
quality analysis

1 Introduction to multi-level model-
ing

For industrial design, evaluation and certification pro-
cess of energy distribution networks, often several
models exist which represent different modeling ac-
curacies of the same system. It is not always useful
to take the most detailed one, as it may not improve
the overall accuracy but will slow down the simula-
tion drastically. Depending on the desired evaluation
of an electrical network (power consumption, network
stability, network quality), system simulations with
models of different levels of accuracy are much better

suited. The simulation time of the simplest, architec-
tural level of a model is usually 2 to 3 orders of magni-
tude faster than the most complicated, behavioral level
of the model.
The following model levels are taken into account:

• Level 1: Architectural level
Steady-state power consumption. Usually, alge-
braic equations describing the energy balance be-
tween ports without dynamic response.
Typical use: power budget.

• Level 2: Functional level
Steady-state power consumption and mean-value
transient behavior (e.g. inrush current, consump-
tion dynamics with regard to input voltage tran-
sients). Switching is not included.
Typical use: network logic studies, network sta-
bility studies.

• Level 3: Behavioral level
Representing actual wave forms including
switching and HF injection behavior.
Typical use: network power quality studies.

Note: This nomenclature may be used differently in
the literature.
In Figure 1 on page 2 the tree-level concept is illus-
trated at hand of simulations of a DC/DC buck con-
verter. The architectural layer input current shows
large simulation steps neglecting the detailed effects
which can be seen at the behavioral layer model sim-
ulation. The functional layer model covers the wave-
form of the detailed model without switching effects.
In order to improve the simulation process for de-
sign and validation of the Electrical System, there was

A Multi Level Approach for Aircraft Electrical Systems Design

The Modelica Association 95 Modelica 2008, March 3rd − 4th, 2008



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a) architectural layer b) functional layer c) behavioral layer

Figure 1: Illustration of the 3 layer concept at hand of simulations of a DC/DC buck converter

identified a need for methods to simplify unitary test-
ing and configuration management of suppliers’ mod-
els in order to enhance the coherency of electrical be-
havior of the various modeling levels of one single
equipment.

2 Modeling assumptions

While the architectural layer is defined to contain only
static energy balance equations and the behavioral
models are close to the hardware level, the definition
of the functional models is not as straight forward.
These models have to be applicable for linearization
for stability investigations with methods of control the-
ory for linear time invariant systems. For DC systems,
those have to be deduced from the complex models by
averaging the switching models on a time interval and
order reduction techniques.
For AC systems, the time variant characteristics of
the sinusoidal alternating currents prevents a time in-
variant steady state condition and hence linearization.
Therefore it is proposed to use an equivalent represen-
tation which expresses a rotating electric machine in
a static rotor fixed system (also called Park transfor-
mation)1. Transforming the system equations to a net-
frequency fixed system results e.g., in "i(t) = i (ωnet)
+ ∆i(t)". The model uses ∆i(t) as state and not i(t). In
stationary operation with constant load and constant
speed, ∆i(t) = 0 and i(t) = i (ω). This time invari-
ant system also results in much faster simulation. The
transformation output is a representation in d, q and
zero system. The zero system may be skipped for this
application since it is mainly relevant for asymmetric
loads not treated by functional models. Park trans-

1Some results were inspired by the EU Project Realsim (Real-
time Simulation for Design of Multi-Physics Systems). It resulted
in the open source library “SPOT” of H. J. Wiesmann of ABB
Switzerland, http://www.modelica.org/libraries/spot

formation is the standard way of modeling generators
and motors and used for control but is also applica-
ble to 3phase-line impedances. Asymmetric loads are
allowed but will not result in a steady state condition
for this transformation. For an aeroplane multi-phase
power transmission system the following components
are of importance:

• Power source: The generators supply sinusoidal
voltage at net frequency. Calculation of voltage
and current is usually performed in a rotor-fixed
system (synchronous machine)

• Loads: For symmetrical resistive, inductive and
capacitive loads as well as synchronous mo-
tors current/voltage relations are fixed to net fre-
quency.

• Other loads: Switches, diodes, unsymmetrical
loads, time variant loads do not have simple
steady-state dependencies upon net frequency.
But: Calculation of the generator demands the
use of transformations anyway. So, incorporating
other components to the dq0-system will not nec-
essarily essentially speed up the simulation but
will not break it either.

Limitations for level-triggered switching devices may
be circumvented by averaged models. Especially for
self commutating rectifiers there is a need for calcu-
lating the mean output voltage/current, averaged on a
commutation interval. Theory on electric components,
the transformation and averaged models can be found
for instance in [1].
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3 Library concept

3.1 Comparison of methods

Following the demands from chapter 1, methods for
multi-level modeling were investigated which could
replace the current models (behavioral, functional, ar-
chitectural) by one single multi-level model. This
multi-level model shall integrate the separate layers to
be activated independently from each other. There-
fore a methodology is investigated to join models of
different abstraction levels within a single "container"
model and supply tools for the automatic selection of
the desired level. Three alternatives were identified to
meet the demands:

Alternative 1: Every level is implemented as a sep-
arate sub-model. A "generic" model (or template
model) is utilized in a user model via the Modelica lan-
guage construct “replaceable”. Via a selection box the
"generic" model can be defined to be one of the level
models. The connectors of the different levels are ei-
ther identical or, if this is not possible, they are also
"replaceable". Details may be found in the Modelica
tutorials. Typical problems are:

• It is not possible to select the level by an expres-
sion, i.e. it is not possible to select the model
based on the setting of the global default. In-
stead, at every component the model level has to
be manually changed to the required one.

• Whenever the selection is changed (e.g. from ar-
chitectural to behavioral and then back to archi-
tectural), all parameter definitions from the previ-
ous selection are lost.

• All levels need the same connectors or the con-
nectors must be replaceable, which makes the de-
sign complicated.

Alternative 2: All layers are described in the same
model. Via flags different parts of the model are acti-
vated. In the simplest case, there is just an if-clause:
parameter Integer level(min=1, max=3) = 1 "Model

level";

...

equation

if (level == 1) then

// equations for architectural model

elseif (level == 2) then

// equations for functional model

else

// equations for behavioral model

end if;

The simulation program selects at compile time the
corresponding if-branch, if the branch is determined
by a parameter expression (i.e., in the generated code,
only the equations of the selected branch is present).
Advantages:

• The level can be set by an Integer expression.
This allows, e.g., to refer to a global setting of
the level.

• The parameters of all 3 levels are visible and can
be set. They remain present, even if the level is
changed. This alternative is useful for base com-
ponents, such as a capacitor or an inductor, that
are described by equations and do not contain
other model instances.

Alternative 3: This is a variant of alternative 2. Ev-
ery level is a separate model. There is a "container"
model that is used in a user model. The container
model contains all models of the different levels in
form of conditional models. Via a flag, the desired
model level is activated and the connect statements to
the deactivated submodels are removed automatically.
Advantages:

• Every model level can be built and tested inde-
pendently from the other levels. Only the con-
nection interfaces need to be the same.

• When switching between levels, the parameter
settings of the other levels remain.

• Parameters that are common to all levels can
be defined in the container object and can then
be propagated to the level models (via Modelica
modifications)

Disadvantages:

• In the plot window there is an unnecessary hier-
archy, e.g., motor.level2.flange_a.w (on the other
hand, it becomes very clear which level is con-
tained in the model).

• The connection lines from the level models to
the interfaces are redundant information (e.g. not
present in alternative 1)

Due to severe disadvantages with implementing this
so called “conditional declaration” with existing lan-
guage constructs, an initiative was started in the Mod-
elica Association to improve this situation. As a result,
in the Modelica language version 2.2 from Feb. 2005,

A Multi Level Approach for Aircraft Electrical Systems Design

The Modelica Association 97 Modelica 2008, March 3rd − 4th, 2008



“conditional declarations” have been introduced into
the Modelica language. This language construct has
been supported in Dymola since March 2005 (Dymola
version 5.3c).

3.2 Implementation

Due to their advantages, it was decided to use alter-
native 2 for basic components, such as capacitors and
inductors and to use alternative 3 for all other multi-
level components (using the new Modelica feature of
conditional declarations). Also test equipment, such
as load resistances as function of time, may depend on
the accuracy level as well as the connectors. In this
section all the details are explained including library
structuring.

The basic approach is to use multi-level equipment
components in a system model and select in a global
menu the default accuracy level. At every instance of
an equipment model it is possible to define whether the
default accuracy level shall be used (= default behav-
ior) or another one via the “level” parameter. Possible
options are

“global option”: Use globally defined level
“level 1”: Use architectural model level
“level 2”: Use functional model level
“level 3”: Use behavioral model level

. “outer” references the "global_options" component
in the enclosing environment. Equations and/or dec-
larations of a model are activated and deactivated de-
pending on parameter “actualLevel” or the derived bi-
nary flags level1active, level2active or level3active.
Since “actualLevel” is a parameter expression (=
an expression depending only on literals, constants
and parameters), Dymola evaluates conditions of if-
clauses that depend on “actualLevel” at compile time
and therefore selects the corresponding if-branch also
at compile time. This means that any change of “actu-
alLevel” requires re-compilation of the system model.

In order to simplify the multi-level model develop-
ment, some partial models and classes can be reused.
Models can inherit the multi-level components like the
“outer” parameter “level” to define the desired model-
ing level via “extends partialmodel” . This is demon-
strated hereafter with the multi-level model “issue1”:

model issue1 "my model with several levels"

extends mylib.interfaces.partial_3_levels;

...

equation //for base components:

if level1active then

...;

else

...;

end if;

public //for hierarchical multi-level models:

componentsIssue1.architecturalModel ModelLevel1

if level1active;

componentsIssue1.functionalModel ModelLevel2 if

level2active;

componentsIssue1.behaviouralModel ModelLevel3 if

level3active;

...

end issue1;

which extends partial_3_levels:
partial model partial_3_levels

"Parent class that should be included via extend

for a multi-level model with 3 levels"

import Choice = mylib.types.level_choice;

parameter Choice.temp level="global option" ;

"Model level to use (global setting,

architectural/functional/behavioral level)"

protected

outer mylib.components.global_options

global_options;

parameter String actualLevel = if

(level == Choice.global_options) then

global_options.defaultLevel else level;

parameter Boolean level1active = (actualLevel ==

Choice.level1);

parameter Boolean level2active = (actualLevel ==

Choice.level2);

parameter Boolean level3active = (actualLevel ==

Choice.level3);

parameter mylib.components.global_options

global_options_temp( defaultLevel=level);

end partial_3_levels;

The possible choices are defined in level_choice:
package level_choice

constant String global_options="global option";

constant String level1="level 1";

constant String level2="level 2";

constant String level3="level 3";

type temp

extends String;

annotation (choices(

choice="global option" "use global option

setting",

choice="level 1" "level 1 (architectural

level)",

choice="level 2" "level 2 (functional level)",

choice="level 3" "level 3 (behavioral

level)"));

end temp;

end level_choice;

With the future implementation of Modelica enumera-
tions in simulation environments the need for complex
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naming of the choices will become obsolete.
The “global_options” object which defines the global
setting has to be dragged to the highest hierarchy
level and set to "inner". This defines a "global"
structure that is accessible by all components on the
same or a lower hierarchical level. To generate the
“inner” object automatically when dragging (“inner
mylib.global_options global_options; “), the following
declaration is used (this property is defined via an an-
notation in the model):
model global_options

"Global options settings"

annotation (defaultComponentName="global_options",

defaultComponentPrefixes="inner",

missingInnerMessage="A \"global_options\"

component was introduced with default options.",

...

);

parameter mylib.types.level_choice_default.temp

defaultLevel= "level 1" "Default model level

(architectural/functional/behavioral level)";

end global_options;

Almost identical to level_choice, the global_options
object supports choices for the three levels but of
course no choice for global_option itself:
package level_choice_default

constant String level1="level 1";

constant String level2="level 2";

constant String level3="level 3";

type temp

extends String;

annotation (choices(

choice="level 1" "level 1 (architectural

level)",

choice="level 2" "level 2 (functional level)",

choice="level 3" "level 3 (behavioral

level)"));

end temp;

end level_choice_default;

As explained earlier, the multi-level container object
for the alternative 3 has to be the superset of the
connectors of the single models. To avoid unneces-
sary variables, the concept of “expandable connec-
tors” can be employed (e.g. expandable connector
positive_plug_expandable "Positive expandable elec-
tric plug"). The content of this Modelica connector is
defined by the sum of connected variables. With this,
non identical connectors of the level-dependent mod-
els may be connected to the container object connector
but only the data of the level selected are present after
compilation. E.g. for the transformed/not transformed
three phase system, dq transformed components de-
mand one extra variable in the connector: the rotor
angle. On the other hand just the dq system uses 2 cur-
rent/voltage connectors while the non transformed abc
system uses three of them.
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Figure 2: Test circuit for chopper use case (for all 3
levels)

4 Demonstration

In the following chapter the library concept shall be
demonstrated with a generic chopper model (electri-
cal non-isolated DC/DC buck converter). The con-
verter is used for transformation of the 270 Volts DC
supply to a 28 VDC load network. It was designed
to include the most important obstacles, e.g. differ-
ent levels have different interfaces, components, and
load profiles. The behavioral model contains nonlinear
switching semiconductors. Only with this the ripple
detection for high frequency noise is applicable. The
functional model is averaged with the output voltage
as the duty ratio times the input voltage. The architec-
tural model lacks of any dynamics. The converter is
modeled with an energy balance. A test model for the
chopper can be seen in figure 2.
Base components that are solely described by equa-
tions are implemented with if-clauses that depend on
parameter “actualLevel”. For example, the inductor is
defined by:
if level1active then v = 0;

else // level 2 or 3

L*der(i) = v;

end if;

This means, for level 1 the dynamics equation is re-
moved. In the icon of the inductor, the instance name
(here: “inductor”), the inductance (here: “1.2e-6) and
the value of parameter “level” (here: global option) are
displayed.
Other components are implemented with container ob-
jects and conditional declarations as sketched in alter-
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Figure 3: Multi-level chopper component with condi-
tional declaration

native 3 above. So, the structure of the chopper model
can be seen from figure 3.
In the left part of the figure, the icon of the chopper
is shown. Besides the model instance name, the value
of parameter “level” is displayed in the icon. In the
right part of the figure, the container object is present.
It contains models of every level. All models are con-
nected to the connectors (p_in, p_out, m, duty, bus) de-
fined in the icon and are defined by “conditional dec-
larations”:
model issue2

extends mylib.utilities.interfaces.partial_3_levels;

parameter Modelica.SIunits.Voltage v_out_desired

= 28;

...

mylib.chopper.componentsIssue1.level1 Level1(

v_out_desired = v_out_desired) if level1active;

mylib.chopper.componentsIssue2.level2 Level2

( v_out_desired = v_out_desired, k_integrator

= k_integrator, L_filter = L_filter, R_filter =

R_filter) if level2active;

...

equation

connect(Level1.p_out, p_out);

...

end issue2;

For example, component “Level1” is an instance of
“mylib.chopper.comonentsIssue1.level1” and is only
present if “level1active=true”. If a component is
used in a connection, such as “connect(level1.p_out,
p_out)”, this connect statement is automatically re-
moved if one or both of the models referenced in the
connect(..) statement are deactivated. Therefore, it is
no longer necessary to manually include an if-clause
around such connect(..) statement as in previous ver-
sions of Modelica. Note that the interface of level 1
does not include the “duty” pin but for the multi-level
container object the pin is skipped if the level is level

Figure 4: Menu of multi-level chopper component

Figure 5: Menu of time_table component

1. It is convenient for the user if the parameters of all
levels are defined as parameters of the container ob-
ject and are propagated to the corresponding models.
For example, when clicking on the icon of the chopper
example above, the menu shown in figure 4 is opened.

When using model level 1, only parameter
“v_out_desired” is actually utilized. For model
level 3, all parameters in this menu are taken
into account. If the parameters of the levels are
different, it is useful to display them in different
“tabs”. For example, in the menu of component
“mylib.utilities.components.multi_level_time_table”
shown in figure 5, different tables can be defined
for the various levels (the purpose is, e.g., to have
different load resistances for the various levels).
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5 Application

Without going into detail, this chapter is a short out-
look on the usage of the models for stability and qual-
ity studies.
A regulated buck converter is a typical critical com-
ponent in a power system. Due to the negative resis-
tance at low frequencies the regulated buck converter
could be unstable in combination with the input fil-
ter. Therefore it is necessary to investigate the stabil-
ity of the whole electric network both at small signal
level for steady state conditions and large signal level
for transients, impacts and network reconfiguration.
The library concept proposed above is a good tool for
its usage since validity of functional models can first
be demonstrated by comparison of simulation results
with the behavioral models. The Modelica functional
models can be used for stability studies with meth-
ods for linear time invariant systems. For eigenvalue
based methods, including modal analysis and eigen-
value sensitivity, the eigenvalues have to be calculated
numerically by the simulation program. µ analysis is a
powerful method of robust control for stability investi-
gations of parametric varying systems. The Modelica
functional models can be directly applied for µ anal-
ysis after extraction of the symbolic code and using it
in Maple and Matlab. Compared with other methods
for small signal stability, e.g. Middlebrook criterion
and Modal Analysis, the µ sensitivity approach gives
a much more global and direct result for the influence
of all components on stability. For details on the meth-
ods, see [2].
In contrast to these approaches, for industrial use sta-
bility of a system often is defined as the ability of a
system to keep a certain system variable within desired
limits given by industrial standards. These are com-
bined criteria of network stability, power quality and
performance. This makes them difficult to proof with
methods of linear control theory. Therefore a simu-
lation based approach often is the only possibility to
proof “industrial” stability and also large signal sta-
bility including failure protection devices. Instead of
random or gridded parameter variation on the varying
environment and system parameters, an other method
is to search for the most critical parameter combination
directly. The basic idea is to use an optimizer to find
the criterion from the standards which is most critical
and make it worst by changing the uncertain parame-
ters in the possible range. In case the criterion is vi-
olated, stability/quality/performance can be shown to
be not guaranteed. On the other hand, the tolerable de-
sign range for parameters could be investigated as the
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Figure 6: Quality and stability studies overview

bounds leading to standard violations.
An overview on the methods is shown in figure 6.
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7 Conclusion

In this paper a multi-level concept used for aircraft
electrical systems design based on conditional decla-
rations was shown. The three level concept was ex-
plained and modeling demands and methods were pro-
posed, especially using park transformation for AC
systems. The implementation was demonstrated with
a multi level DC/DC chopper use case. The model ling
concept improves modeling of large systems and al-
lows easy comparison of different levels simulation re-
sult. An overview on typical applications of the mod-
els for stability and quality studies was given..
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Abstract 

A novel method is being developed to combine tech-
niques of safety and reliability analysis with the 
Modelica language, which is now widely used for 
the modelling and simulation of technical systems. 
The new method allows to perform reliability calcu-
lations based on the system model that is created and 
used for simulation studies. The reliability analysis 
procedure is started “at the push of a button” and de-
termines the so called minimum path sets and the 
failure probability of a system automatically. 
The incorporated reliability computation methods are 
realised initially by a new modelling and analysis 
tool supporting concept design studies of aircraft on-
board electric power systems. 
 
Keywords: reliability, fault modelling; model object 
structure; minimum path set; failure probability 
 

1 Introduction 

Much of the information needed for reliability calcu-
lations is contained already in compound system 
models that are usually built in Modelica [1]. The 
specific modelling additions needed, as well as the 
fundamentals of an automated reliability analysis 
procedure are described by this paper. 
The procedure evaluates the physical behaviour of a 
modelled system in multiple simulations. An addi-
tion needed to the modelling is the faulty behaviour 
of components, as described in chapter 2.1. 
Prior to evaluating the system model by numerous 
simulations, its object structure is appraised in order 
to detect those combinations of components, that 
represent candidates of so called minimum path sets. 
Chapter 2.4 gives an overview of the method and 
definitions, as well as a way of minimising the com-
puting effort that is involved with this kind of auto-
mated reliability analysis. 

2 Modelling Approach and Inte-
grated Reliability Analysis Concept 

2.1 Component Fault Modelling 

A variety of object-oriented model libraries have 
been developed in the Modelica language, as gener-
ally known. In each component model, the normal 
operational behaviour is described by differential 
and/or algebraic physical equations. 
For the purpose of performing reliability analyses, 
the component models have to be enhanced such that 
also the failure behaviour is described by physical 
equations. Basic examples are given hereafter by the 
modelling assumptions made for some common elec-
trical components: 
An electric wire can be described as an ohmic resis-
tor. For the normal function of the wire, its nominal 
resistance Rnom is in the order of 10-1 Ω. An open cir-
cuit failure of the wire is characterised by a very 
large resistance, e.g. 106 Ω. 
 
 

 
Figure 1: Modelica Object Diagram of an Electric Resistor 
 
In essence, the following code defines the model: 
model Resistor "Ideal linear resistor" 
  Interfaces.Electrical.PositivePin p; 
  Interfaces.Electrical.NegativePin n; 
  input Boolean FAILED; 
  parameter Real lambda = 2e-5 “failure 
    rate”; 
  parameter SI.Resistance Rnom = 0.1; 
  SI.Resistance R = if FAILED then 1e6  
  else Rnom; 
equation 
  v = p.v - n.v; 
  0 = p.i + n.i; 
  i = p.i; 
  R*i = v; 
end Resistor; 

p n
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A generator can be represented by its DC substitute 
properties and the efficiency of converting mechani-
cal into electric power. A basic description of a gen-
erator failure is the loss of output voltage, which 
stems from an internal failure of the generator or 
from insufficient generator drive speed. 
 

 
Figure 2: Modelica Object Diagram of a Generator 
 
The following code basically defines this model: 
model Generator "DC generator with 
losses" 
  Interfaces.Rotational.Flange_a 
    flange; 
  Interfaces.Electrical.DC_Plug_a plug; 
  input Boolean FAILED; 
  parameter Real lambda = 1e-4 “failure 
    rate”; 
  parameter SI.Power Pnom = 5e4; 
  parameter SI.Voltage Vnom = 270; 
  NonSI.AngularVelocity_rpm speed; 
  SI.Voltage v; 
  SI.Power Pelec; 
  SI.Power Plosses; 
  SI.Power Pmech; 
equation 
  speed = max(0.1 , 
    to_rpm(der(flange.phi)); 
  v = if FAILED then 0 else (1- 
    exp(-speed/1000))^2*Vnom; 
  v = plug.pin_p.v - plug.pin_n.v; 
  Pelec = v*plug.pin_n.i; 
  Plosses = 3000*speed*Pelec/(14600* 
    Pnom); 
  Pmech = Pelec + Plosses; 
  Pmech = -flange.tau*from_rpm(speed); 
end Resistor; 
 

Each component model has a boolean input signal 
FAILED to control its status, i.e. operation or failure. 
The status can be shifted during simulation. Failure 
rates lambda are stored in each component model as 
modifiable parameters. Using constant failure rates is 
adequate w.r.t the assumption of an exponentially 
distributed component lifetime. Other hypotheses on 
the dependency of failure rates on lifetime can also 
be taken into account. 

Thus, a new Modelica library of electric component 
models, that are augmented with a basic failure be-
haviour, is being developed. In doing so, the funda-
mental concept of creating component models that 
are usable regardless of the application case or 
physical context, is being followed. Compatibility 
with exisiting model libraries is maintained as well. 
 

 

2.2 Integrated Tool Concept 

The new library of electric component models, as 
well as integrated reliability analysis procedures are 
part of a new developed concept design tool for air-
craft on-board electric power systems. Besides reli-
ability, the tool is prepared to evaluate architecture 
concepts w.r.t. the electric behaviour and weight, as 
illustrated by Figure 3. 

flange 

Large compound models of electric power systems 
can be assembled using the graphical model editor of 
Modelica/Dymola [2] in the known fashion. 

 
Figure 3: Elements of Modelica based Concept Design 
Tool for Electric Power Systems 
 
Aircraft electric power systems are of particular in-
terest for reliability analysis, since they supply a 
multitude of loads, many of which fulfil a function 
that is essential for safe flight and landing. Also, the 
electric demands tend to increase, due to the recent 
trend in the design of transport aircraft to replace hy-
draulic and pneumatic supplies by electric power [3]. 
Electric power systems on aircraft are typically split 
into several independent channels, each comprising 
an engine driven generator, a distribution network 
and a number of loads. If failures occur, the electric 
power system is reconfigured automatically to isolate 
the fault and to secure power supply to most of the 
loads, with priority to the essential ones. The redun-
dancies and reconfiguration capability of such sys-
tems have to be included in the system model ac-
cordingly, by means of open/close logics for the 
electric network contactors. Thus, the behaviour in 
various operational scenarios, e.g. normal, abnormal 
or emergency, can be examined in simulations. 
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2.3 Modelling Example: Electric Power System 

In the following, the integrated modelling and reli-
ability analysis concept is illustrated by the example 
of an electric power system of a generic twinjet 
aeroplane. The system model, see Figure 4, has been 
devised based on a description available in [4]. 
 

2.3.1 System Model Features 
 

 

 
 
Figure 4: Electric System Model of a Twinjet Short-Range 
Aeroplane, schematic shows Normal Operation in flight 
 
Figure 4 also shows the object-oriented structure of 
the system model, which is commensurate with the 
general philosophy of Modelica. Note that the elec-
tric connections include two poles. 

The electric system model includes the following, 
most important components and features: 

• Two integrated drive generators IDG1 and 
IDG2, which are driven by Engine1 and En-
gine2, respectively. Each generator provides 
115V / 400Hz AC power (substituted in the 
model by 270V DC) 

• through a dedicated generator contactor, GC1 
and GC2 

• on the generator buses, GBus1 and GBus2. 
• The main non-essential AC loads, represented by 

PowerUser1 and PowerUser2, as well as 
indicator lamp 

• the AC transfer buses, TBus1 and TBus2 are 
connected to the respective generator buses. In 
normal operation with both engines running (as 
shown in Figure 4), each transfer bus is supplied 
by its associated generator bus through a genera-
tor bus contactor, GBC1 and GBC2. 

generated 
power [W] 

mode button 

consumed 
power [W] 

• The AC cross transfer contactors, TC12 and 
TC21, are open in this normal operating case. 

• 28V DC power is provided by two transformer 
rectifier units, TRU1 and TRU2, through dedi-
cated switches TRC1 and TRC2, on the DC bus-
bars DCBus1 and DCBus2. 

• The two DC busbars can be cross-connected 
through the DCBTC switch. In normal operation 
(Figure 4), the cross-connection is inactive i.e. 
the DCBTC switch is open. 

• Finally, a stand-by busbar DC_STBY_Bus pro-
vides for the essential loads DC_Ess_Loads, 
which must operate even after a complete loss of 
generated power, to maintain safe flight and 
landing. In such a scenario, the essential loads 
are powered by a battery BATT through the 
DC_STBY_Bus. 

 DC_STBY_Bus 

The following apparent features are included in the 
system model: 
• Each contactor has an animated rocker switch to 

depict its open / closed status. 
BATT 

FailureTopEvent 

• Each component model is fitted with an indicator 
lamp. During simulation of the model, the opera-
tional (green), passive (grey) or failed (red) 
status of each component is shown by the asso-
ciated indicator lamp. 

A component is defined as operational when turning 
(e.g. engine), energised with voltage (e.g. busbar) or 
conducting current (e.g. switch), whatever is appli-
cable. The passive status is specified as the compo-
nent being intact but not energised. If a component 
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has failed, it cannot be energised with voltage or 
conduct current, whatever is applicable. 
Each component model is provided also with a mode 
button for an interactive control of its operative / 
failed status. Pressing the mode button of a compo-
nent, by mouse-click, during simulation will toggle 
the status (operational or passive ↔ failed) of the 
component. 
By means of the mode buttons and indicator lamps 
that are provided with the component models, the 
behaviour of a system model can be examined inter-
actively during simulation. This is useful when de-
veloping the network switching logics, since the re-
sulting behaviour at system level can be checked 
quickly and readily. 
Furthermore, the following features are included in 
the system model: 
• Generic power users, which can be connected to 

any busbar as needed. The power users are de-
scribed by basic resistive properties, which can 
be set by parameter entries or interactively: The 
PowerUser2 shown in Figure 4 has an adjustable 
slider bar, which is set by mouse-dragging dur-
ing simulation. 

• Each power user model, as well as the generator 
(IDG) models have a numerical indication of the 
generated / consumed power in W(att). 

• A FailureTopEvent definition at system level 
[5], so that the system reliability w.r.t. this event 
can be computed. In the present example shown 
by Figure 4, the system failure top event is de-
fined as a loss of voltage on the DC_STBY_Bus. 

 
As can be seen in Figure 4, the definition of the sys-
tem FailureTopEvent has been implemented by con-
necting a specific voltage sensor named LossOfVolt-
age to the DC_STBY_Bus. The sensor will flag a 
voltage drop-out below a defined threshold by its 
logical output signal. This specific voltage sensor 
model class is provided by the model library. 
Other system failure event definitions are conceiv-
able, e.g. a loss of voltage on other busbars or com-
bined events, such as the loss of voltage on DCBus1 
and DCBus2. Any meaningful failure event defini-
tion can be implemented in an accordant manner, by 
use of the provided sensor class and logical gates. 
 

2.3.2 Degraded System Operation 
In Figure 5, a degraded operational mode of the elec-
tric system, caused by failures of Engine2 and TRU1, 
is shown. The component failures have been injected 

in the model by pressing the corresponding mode 
buttons during simulation. 

 

FailureTopEvent 

 

Figure 5: Twinjet Aeroplane Electric System Model, 
Engine2 and TRU1 have failed 
 
The failure effects are, as can be seen in Figure 5: 
• IDG2 does not operate. Consequently, the 

GBus2 is de-energised, as well as the connected 
PowerUser2. 

• TBus2 is now energised by the opposite side 
through the TC12 switch, which has been closed 
automatically. 

• All DC busbars DCBus1, DCBus2 and 
DC_STBY_Bus are now supplied by IDG1 
through TRU2. 

• Although degraded, the system is still opera-
tional in the complementary sense of the defined 
FailureTopEvent. 
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2.4 Reliability Analysis Procedure 

The reliability analysis procedure is capable of 
automatically determining the so called minimum 
path sets for a given system model. A minimum path 
set is a combination of operative components that 
causes a system to operate in the complementary 
sense of the defined failure top event. Further on, the 
procedure computes reliability measures, i.e. system 
failure probability w.r.t. the defined top event, as 
well as component importances. For further illustra-
tion, results are shown in chapter 2.5 for the model-
ling example introduced in chapter 2.3. 
The reliability analysis procedure draws on two 
kinds of information contained in a system model, as 
will be depicted: Chapter 2.4.1 explains a method to 
evaluate the system model behaviour in terms of op-
eration or failure by multiple simulations. Then, 
chapter 2.4.2 introduces a method to interpret the ob-
ject structure of the system model. Finally, chapter 
2.4.3 describes how the two methods are combined 
to an automated reliability analysis procedure. 
 

2.4.1 System Model Evaluation by Simulations 
A simulation based method evaluates the system 
model for combinations of operative and failed com-
ponents in a specific order. Minimum path sets are 
detected by the occurrence of system operation, i.e. 
the logical signal FailureTopEvent flagged as false. 
Each system model contains the n components C1, 
C2, … , Cn. At first, the system model is simulated 
for single (k = 1) intact components. Each row 1, 2, 
… , n in Table 1 represents one set of operative (OK) 
and failed (-) components to test in the simulation.  
 
Table 1: Intact/Failed Components to Simulate, k = 1 

 C1 C2 … Cn

1 OK -  - 
2 - OK  - 

…   …  
n - -  OK 

 
If the system is operational for a row of Table 1, then 
the intact component of that row is stored as a mini-
mum path set. 
The method continues with simulating for two (k = 
2) intact components, as depicted in Table 2. Again, 
each row stands for one set of operative and failed 
components to test. If minimum path sets of lower 
order (k < 2) were found, then those rows of Table 2 
that contain all intact elements of a previously de-

tected minimum path set are not tested in the simula-
tion. This way, it is ensured that each detected path 
set is minimum, meaning that it does not contain any 
subset of other path sets. 
 
Table 2: Intact/Failed Components to Simulate, k = 2 

 C1 C2 … Cn

1 2 OK OK  - 
…   …  
1 n OK -  OK 
…   …  
2 n - OK  OK 
...   …  

 
If the system is operational for a row of Table 2, then 
the intact components of that row are stored as a 
minimum path set. 
In an analogous manner, the method continues with 
the determination of minimum path sets by simulat-
ing the system model for intact components up to an 
order of k = n, see Table 3. 
 
Table 3: Intact/Failed Components to Simulate, k = n 

 C1 C2 … Cn

1 2 … n OK OK … OK 
 
Apparently, this simulation based method has a char-
acter of systematic trial and error. Yet, the comput-
ing effort increases significantly with the number of 
components contained in a system model. For a sys-
tem model comprising n components, a total of up to 
N sets (rows) have to be checked by simulations: 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

n

1k k
n

N  

 
Table 4: Estimation of Computing Effort 

n 1 2 3 4 … 10 … 20 
N 1 3 7 15  1023  1048575

 
Consequently, this method of minimum path set de-
termination is only practical for systems including 
relatively few components. On its own, this method 
is not suitable for analysing the example model 
shown in Figure 4, which represents an electric sys-
tem including 25 components. 
So far, the system model is checked only in simula-
tions. A further possibility is to evaluate the object 
structure of the system model, as described in 2.4.2. 
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2.4.2 Object Structure of the System Model 
Another method exploits the object structure of the 
system model, i.e. the arrangement of components 
and connections. Advantage is taken of the fact that 
the structure of object-oriented models is similar, al-
though not exactly identical, to minimum path sets. 
Thus, a specific algorithm is devised to analyse the 
succession of connected components. As a result, the 
algorithm yields the different paths of consecutive 
and non-repeating components that exist in a system 
model. The paths that are determined in this manner 
are considered as minimum path set candidates. 
The fundamentals of this kind of algorithm are de-
scribed hereafter. It is realised as a recursive model 
parser in Modelica. In the listing, the notations com-
ponent1, component2 and path indicate variables. 
1. Begin at the FailureTopEvent gate of the system 

model and add it as component1 to the path. 
2. Find all components connected to component1. 
3. If no components are connected to component1 

then terminate the actual recursion branch. 
4. If one component is connected to component1 

then take it as component2 and continue with the 
actual recursion branch, 

5. else if more than one components are connected 
to component1 then start a new recursion branch 
for each component taken as component2, re-
spectively. 

6. If component2 is not contained in path yet then 
add component2 to path and resume at step 2 
taking component2 as the next component1, 

7. else terminate the actual recursion branch. 
The result of this system model object structure 
analysis are paths that are considered as minimum 
path set candidates. These are illustrated graphically 
in Figure 6 for the electric system introduced in 
chapter 2.3. A representative selection of the 29 
paths determined for this example is shown. 
 
 
 
 
 
 
 
 
 
 
 

2.4.3 Combination of Object Structure Analysis 
with Simulation Based Method 

As mentioned, the found paths are considered as 
minimum path set candidates. Therefore, these can-
didates are checked by simulating the system model 
accordingly, to eventually extract the minimum path 
sets from the list of candidates. 
In this method, the system model is simulated for 
each candidate, such that the components belonging 
to a candidate are switched to the intact mode one 
after another, while all other components of the sys-
tem are failed. System operation or failure is de-
tected in the simulation by evaluating the logical sig-
nal FailureTopEvent. If the system operates, then the 
causing set of intact components is stored as a mini-
mum path set. 
The number of path candidates to be checked in the 
simulation is limited, hence conducting an object 
structure analysis first and then simulation minimises 
the overall computing effort. Thus, the combination 
of both leads to a reliability analysis procedure that 
is viable even for large systems with many compo-
nents. 
After the minimum path sets of a system have been 
determined, reliability measures can be computed. 
The probability of occurrence belonging to each 
minimum path set, i.e. the system operates, MPi is 

( ) ( )∏
∈

−=
ii MPC

ii p1MPP , with the components Ci and 

the individual failure probabilities pi. 
Assuming an exponentially distributed lifetime [6] 
for the components Ci leads to failure rates λi that are 
constant over lifetime. The probability of a compo-
nent failure is 

( )
0t
0t

,
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      … 

 

Figure 6: Model Object Structure Analysis: Graphical Representation of Several Minimum Path Set Candidates 
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Since the occurrence of at least one minimum path 
set causes the system to operate, the probability of 
system operation can be calculated according to 
Poincaré’s formula [6] as 

( ) ( )

( ) ( )∑ ∑∑
−

= +==

−

+∧−=

∨∨∨=
1n

1i

n

1ij
ji

n

1j
j

n21ioperationsystem

...MPMPPMP

MP...MPMPPpP
 

( ) ( n21
1n MP...MPMPP1 ∧∧∧−+ + )  

with n being the number of minimum path sets. 
Generally, i.e. for a single component or a complex 
system, the following equation holds 

( ) ( ) 1tptp operationfailure =+  

which eventually allows to calculate the probability 
of system failure. 
Another useful reliability measure are component 
importances, which help to identify potential weak 
points or unnecessary redundancies in a system. Sev-
eral definitions of importances exist. Here, the defi-
nition of marginal importances, that indicate the 
structural and probabilistic influence of a component 
i in a system, is given by 

( ) ( )
i

ioperationsystem
argm p

pP
iI

∂

∂
= −  with ( ) 1iI0 argm ≤≤  

To summarise, Figure 7 gives an overview of the en-
tire concept of incorporating a reliability analysis 
procedure with the Modelica language. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5 Reliability Analysis Results for Modelling 
Example 

To illustrate the reliability analysis procedure, results 
are shown below for the modelling example of 2.3. 
Table 5 lists the components that appear in the sys-
tem model with the related failure rates λi. 
The exposure time is set to t = 1h for simplicity, so 
that the failure probabilities are: ( ) ii tp λ≈  

 
Table 5: Electric System Model Components List 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i Ci λi 
[1/h]

 i Ci λi 
[1/h] 

1 Engine1 10-5  14 TC21 10-6

2 Engine2 10-5  15 TRU1 2·10-4

3 IDG1 10-4  16 TRU2 2·10-4

4 IDG2 10-4  17 DCBus1 10-7

5 GC1 10-6  18 DCBus2 10-7

6 GC2 10-6  19 TRC1 10-6

7 GBus1 10-7  20 TRC2 10-6

8 GBus2 10-7  21 DCBTC 10-6

9 TBus1 10-7  22 DC_STBY_Bus 10-7

10 TBus2 10-7  23 BATT 0.001 
11 GBC1 10-6  24 BATC 10-6

12 GBC2 10-6  25 DCBC1 10-6

13 TC12 10-6     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Concept of Reliability Analysis Incorporation with Modelica 
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2.5.1 Scenario 1: DC STBY Bus Energised 
In Figure 8, the five minimum path sets determined 
for the electric system and the scenario 
“DC_STBY_Bus energised”, which is the comple-
ment of “loss of voltage on DC_STBY_Bus”, are 
graphically shown. The system operates, i.e. the 
DC_STBY_Bus is energised, if all components of ei-
ther minimum path set are operational. For the oppo-
site case, the probability of system failure is com-
puted as 

failuresystemP −  = 1.012·10-7

Figure 9 shows a plot of the component importances. 
Altogether, the analysis result can be interpreted 
such that for the given scenario, the system failure 
probability is dominated by a failure of the 
DC_STBY_Bus itself, followed by failures of the 
DCBus1 and the contactor DCBC1. The influences 
of the three redundant voltage sources IDG1, IDG2 
and BATT, that can energise this busbar are much 
smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5.2 Scenario 2: DCBus1 and DCBus2 Energised 
In a different scenario, the loss of voltage on 
DCBus1 OR DCBus2 (or both) is examined for the 
same electric system. Figure 10 shows the imple-
mentation of this scenario in the system model. In 
the complementary sense, system operation means 
that both busbars, DCBus1 and DCBus2, are ener-
gised. 
 

 

DC_STBY_Bus 

BATT FailureTopEvent 

 

Figure 10: Implementation of Scenario 2 in System Model 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

Figure 8: Graphical Representation of the five Minimum Path Sets for Scenario 1 “DC STBY Bus energised” 

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 9: Component Importances for Scenario 1 “DC STBY Bus energised” 
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In Figure 12, the eight minimum path sets are de-
picted that were identified for this scenario. The 
probability of system failure has been calculated as 

failuresystemP −  = 2.532·10-7

An interpretation of this result is that again the sys-
tem failure probability is influenced mostly by bus-
bar failures themselves, as it is indicated also by the 
importances shown in Figure 11. Other contributions 
arise from the busbar cross contactor DCBTC and 
from most of the upstream electric network compo-
nents. The DC_STBY_Bus and the BATT have no in-
fluence since DCBus1 and DCBus2 can be energised 

only by the generators IDG1 or IDG2 through the 
network. 
 
In summary, the example results demonstrate the ca-
pability of the novel reliability analysis procedure 
incorporated in Modelica to evaluate complex sys-
tem architectures. The procedure is started “at the 
push of a button” and automatically computes the 
results without any further action required from the 
user. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

   

  

 

Figure 12: Graphical Representation of 
the eight Minimum Path Sets for Scenario 
2 “DCBus1 and DCBus2 energised” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Component Importances for Scenario 2 “DCBus1 and DCBus2 energised” 
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3 Conclusions and Outlook 

A new method to enhance Modelica with the capa-
bility of conducting reliability analyses is outlined. 
The incorporation of automated reliability analysis 
methods with Modelica broadens the scope of the 
language, thus being able to support design studies 
of redundant and safety critical systems, where suffi-
cient system reliablity has to be demonstrated. 
The methods are realised initially by a new, Mode-
lica based modelling and analysis tool for aircraft on-
board electric power systems. System models can be 
built and simulated in the known fashion using com-
ponents from existing and a specific new model li-
brary. Then, a reliability analysis can be performed 
for the same system model “at the push of a button”. 
The analysis procedure automatically detects the so 
called minimum path sets of a system. Further on, 
reliability measures are computed, like system fail-
ure probability, e.g. for the partial or total loss of 
voltage, as well as component importances. These 
give insight to potential weakness or unnecessary re-
dundancy that may exist in the design of a system. 
Future work will oriented to 
• an extension of the reliability analysis procedure, 

such that it can examine models containing dif-
ferential equations. The procedure is devised ini-
tially for system architecture studies, which are 
usually carried out on models that solely consist 
of algebraic equations. 

• the creation of an automated power sizing analy-
sis: Minimum path sets represent the different 
operational scenarios of an electric system, so 
these scenarios can be evaluated in simulations 
to determine the maximum power that each 
component carries [7]. This is affecting the siz-
ing and hence the weight of components. An-
other possibility is to conduct a power availabil-
ity analysis, i.e. to compute probabilities for the 
amount of electric power available on a busbar. 

• a widening of the fault modelling, such that each 
electric component model can be simulated for 
several kinds of malfunction, e.g. open circuit, 
short circuit, short circuit to ground etc. This will 
permit to run so called minimum cut sets analy-
ses, leading to an even more comprehensive as-
sessment of system safety and reliability. 

• developing features for an improved graphical 
representation of the analysis results. 

• a transfer of the methods to other physical do-
mains, as well as non-aerospace applications. 
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Abstract 

The increasing application of network technologies 
and smart embedded devices in the field of automa-
tion and control leads to new distributed system ar-
chitectures. The analysis of the resulting distributed 
automation systems requires models that cover physi-
cal processes as well as computing and communica-
tion devices. Modelica as multi-domain modeling 
language offers the necessary support to build such 
models. While, for physical systems, there are many 
Modelica libraries, only limited support for the mod-
eling of computation and communication is currently 
available. This gap is filled by the presented network 
and controller libraries. The network library currently 
supports switched Ethernet, WLAN, and ZigBee. The 
controller library offers different types of controllers 
as well as interface devices. Implementation aspects 
of the presented libraries are discussed in some detail 
and their application is illustrated by examples. 

1 Introduction 

As automation systems are constantly increasing in 
complexity, new methods for controller design have 
to be applied. One promising approach is the concept 
of Distributed Automation Systems (DAS). Though 
distribution simplifies the design of complex control 
applications, analysis is more difficult than in tradi-
tional monolithic or strictly hierarchical systems. 
Distributed systems have a concurrent nature. Hence, 
coordination and synchronization are needed between 
the individual control devices. This is usually 
achieved by means of networks. Because of the inex-
pensiveness of components, the plug-and-play abili-
ties and the possibility for information access from 
higher level business units, standard networks like 
Ethernet currently tend to replace special purpose 
networks (ASI, ProfiBus, ...) in automation. 
To design and analyze an automation system, the 
engineer relies on tool support. Individual tools for 

algorithm analysis, network analysis and process si-
mulation are available. However, the isolated analysis 
of any of these aspects does not meet the engineer’s 
requirement of analyzing the closed-loop behavior of 
the system where the controller interacts with the 
controlled process via the network. 
A simulation environment covering all aspects of 
distributed automation systems is Matlab/Simulink 
with the TrueTime [1] toolbox. Matlab/Simulink is a 
well-known tool for controller design and process 
simulation. TrueTime adds models for network and 
controller hardware. As Matlab/Simulink is used as 
platform, the analysis benefits from its advantages 
(widely spread, many process models available) but 
also inherits its disadvantages. Here, especially the 
causal procedural modeling approach in 
Matlab/Simulink complicates the design of complex 
process models and hinders the reuse of components. 
Modelica, as a multi-domain modeling language, 
with the object oriented modeling paradigm and the 
non-signal-flow-dependant model causality, which 
increases the reusability of process models, is another 
adequate basis for overall system analysis. 
The paper presents an approach for simulation of 
networks and controller hardware in Modelica in 
combination with process models, also modeled in 
Modelica. Means to analyze both, the functional and 
the temporal behavior of the overall system in early 
development stages are provided. First analysis re-
sults have already been presented in [2]. 
This paper focuses on the description of the devel-
oped libraries, including implementation details. In 
the next chapter, the used modeling objective is pre-
sented. Chapter 3 describes a library for simulation of 
network components. Together with the controller 
library, rendered in chapter 4, it is possible to model 
distributed automation systems. Both libraries have 
been implemented and tested with Dymola 6.1. Ap-
plication examples of the presented libraries are given 
in chapter 5. Finally, conclusions are drawn and an 
outlook on future work on the libraries is given. 

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 113 Modelica 2008, March 3rd − 4th, 2008



2 Modeling Objective 

As in all simulation applications the initial step of the 
designer is to identify components and effects to be 
considered in the simulation. Based on this identifica-
tion the next step is to decide about the modeling 
approach for implementation. In the case of distri-
buted automation systems we have chosen a structure 
conserving modeling approach, mapping real world 
components to individual models. Figure 1 shows an 
archetype of a distributed automation system and the 
component models provided by the Modelica libra-
ries presented in the following chapters. 

Transceiver
(Network Card)

Controller
(Industrial PC)

Medium
(Cable)

Intermediate 
System
(Hub)

Intermediate 
System
(Switch)

Medium
(Cable)

Transceiver
(Network 
Extension)

Controller
(PLC)

Medium
(Cable)

Transceiver
(IC)

I/O‐Board
(Remote I/O)

Process

Medium
(Cable)

 
Figure 1: Archetype of systems that are to be covered 
by the presented librarys. 

Basically, the components of the archetype can be 
divided in three domains: 
The first domain (dark shading) covers the network. 
A network consists of one or more communication 
media (Medium). In the case of Ethernet this is usual-
ly a twisted pair cable. If more than one Medium is 
used, coupling devices (Intermediate System) have to 
be used. In Ethernet an Intermediate System, could be 
a hub or a switch. To access the Medium a Transceiv-
er is used. It manages all physical and protocol issues 
necessary for proper communication over the net-
work. The network card of a PC is an example of a 
Transceiver. 
The second domain (light shading) covers compo-
nents related to data handling and process interfacing. 
The components Controller and I/O-Board can be 
regarded as embedded devices. The control algo-
rithms are executed in Controllers (e.g. industrial PCs 
or PLCs). In general, a Controller has access to the 
network via a Transceiver as well as access to the 
controlled process via directly connected sensors and 
actuators. I/O-Boards are a simplified version of a 

Controller and allow remote access to sensors and 
actuators via the network. Usually, I/O-Boards have 
only limited processing abilities and are not used to 
execute control algorithms. 
Components of the third domain (no shading) are 
related to the physical process. 
There are three types of interconnections between 
components. Network connections (dashed edges) 
describe data wrapped in a protocol frame, dependant 
on the network type used. Pure data transport is indi-
cated by dotted edges. The exchange of physical val-
ues is shown as solid edges. 
Based on the domain classification of components in 
distributed automation systems, in chapter 3, a Mod-
elica library for network components is presented. 
The library described in chapter 4 covers the compo-
nents related to embedded devices for process con-
trol. 
Both libraries make intensive use of the object orien-
tation abilities of the Modelica language. Interface 
models are used to allow the exchange of components 
with similar behavior. Wherever possible and appro-
priate, components implement a predefined interface 
or are extended from other existing models. Along 
with the Modelica keyword replaceable, this allows 
e.g. a wide variety of controller models based on a 
small number of basic components. In the figures of 
component models replaceable component models 
can be identified by the gray shaded box around them 
(e.g. Figure 10 component CPU). 

3 Network Library 

3.1 Structure of the library 

The network library consists of fundamental compo-
nents which cover the important issues in the area of 
network transmission, e.g. communication media, 
intermediate systems, transceiver interfaces, etc. The 
rule of structure conserving modeling is held. I.e., the 
network is not modeled as a single class but all the 
fundamental components are explicitly modeled. The 
main advantage of this modeling approach is that the 
network topology, which can have significant influ-
ences on the network performance, is visible. 
Currently, the library (Figure 2) supports three wide-
spread transmission protocols, namely, fully switched 
Ethernet [3], WLAN [4] and ZigBee [5]. To increase 
simulation speed, the protocols are simplified to some 
extent, thus, only the chosen dominant factors related 
to the automation system are modeled. Especially 
noteworthy is the fact that in the network compo-
nents, only the physical and data link layers of the 
ISO/OSI model are considered and also here some 
abstractions have been made. Necessary interfaces for 
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the exchange of events are also included. In the Func-
tions library, external “C” functions and correspond-
ing wrap functions in Modelica can be found. Exter-
nal functions are used to simplify information ex-
change, especially for the formatted string communi-
cation. In the Examples library, application templates 
are given for each protocol, illustrating how to build a 
networked system using the models. 

 
Figure 2: Tree view of the network library. 

3.2 Application template of the network library 

Figure 3 shows a typical application example of a 
ZigBee network. The dark shading blocks on the left-
most side represent primary controller models. They 
provide the data to be sent and read the data from 
network messages regardless of the underlying 
transmission protocols. In the middle there are two 
transceiver modules connected to the controller and 
the shared medium. The transceiver module together 
with the medium defines the transmission protocol. In 
the example, controller ‘A’ sends messages to con-
troller ‘B’ via the network while ‘B’ does the same to 
‘A’. 

 
Figure 3: Application template of a ZigBee network. 

The source controller renews the data to be sent cyc-
lically and writes the message into the send queue of 
the transceiver module. Based on the network state 
and medium access algorithm, the transceiver module 
decides when to send the network message. After the 
transmission duration has expired, the network me-
dium writes the message into the receive queue of the 
destination transceiver. Then, the destination control-

ler determines when to read the data from the net-
work message stored in the receiver queue. 

3.3 Implementation of the queuing system 

As noted above, the transceiver module serves as an 
interface between the controller and the network. In 
addition to the medium access control, it has to ac-
complish the information exchange. A transceiver 
interacts with both, the controller and the medium (cf. 
Figure 4). 

 
Figure 4: Queuing mechanisms in the Transceiver. 

Thus the information flow in a transceiver is bidirec-
tional. Furthermore, the information flow in one di-
rection is split into two segments due to the unsyn-
chronized behaviors of controller, transceiver and 
network. To manage the information flow, FIFO 
queues are utilized. Each information flow segment is 
represented as a FIFO queue. The two nodes on both 
ends of the same information flow share the access to 
the same queue. The FIFO queue system is imple-
mented as external “C” functions to simplify the 
Modelica code and reduce the number of events. The 
interface functions in Modelica are given as: 

QueueID=CreateQueue(QueueSize); 
Enqueue(QueueID,MessageID); 
MessageID=Dequeue(QueueID); 
Index=ReadQueueIndex(QueueID); 

CreateQueue(QueueSize) creates a queue with given 
length and returns a unique ID. Enqueue(QueueID, 
MessageID) stores the MessageID in the first free 
place of the queue. Dequeue(QueueID) reads the first 
message from the queue and shifts the rest of the 
queue one place towards the beginning position. 
ReadQueueIndex(QueueID) returns the current posi-
tion index. The entries of a queue are message iden-
tifiers. Each message (string) is indexed with a 
unique integer ID. This utility is supported by a 
“C++” library. 
Figure 5 illustrates the information exchange in 
queues for the example from Section 3.2. New data 
(string) from the controller is represented by an iden-
tifier (ID1). This ID is enqueued in DataSendCache. 
In the next step, ID1 is dequeued and the actual con-
tent of ID1 is encapsulated to a frame with protocol 
header. Thus, a new message (string) is produced and 
a new identifier (ID2) is enqueued in FrameSend-
Cache. In the transmission, medium dequeues the 
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ID2 and makes a copy named ID3. Later after the 
transmission, ID3 is enqueued in FrameRcvCache on 
the destination side. Finally, ID3 is decapsulated and 
a message ID4 is enqueued in DataRcvCache. During 
the whole procedure, each time the Dequeue() func-
tion is called, a copy of the dequeued message is 
made and the original message is deleted. Hence, the 
message ID4 and ID1 actually have the same content. 
The information exchange is accomplished. 

... ID1 ...

DataSendCache

... ID2 ...

FrameSendCache

ID3

... ID3 ...

FrameRcvCache

... ID4 ...

DataRcvCache

Medium

ID1 “Data”

ID2 “Header”+ “Data”

ID3 “Header”+ “Data”

ID4 “Data”

... ...

String repository  
Figure 5: Queue operation in a transmission. 

3.4 Implementation of Ethernet 

The implemented Ethernet protocol is abstracted 
from a fully switched, full-duplex Ethernet. The net-
work behavior is illustrated in Figure 6.  

 
Figure 6: State diagram of Ethernet protocol. 

A twisted-pair cable is taken as the modeling pattern 
for a medium in Ethernet. Since no collisions are 
considered, the end of a cable can only be connected 
to one transceiver. In a simulation, the cable model 
receives request events from connectors on both ends 
and sends out notifications on connectors after the 
internal processing.  

3.5 Implementation of wireless communication 

In principle, the network is modeled as a discrete 
event system. It reacts on external events with deter-
ministic or non-deterministic delays. The modeling 
focuses on the standard MAC layer taking into ac-
count random access and conflict handling.  
The implementation of the protocol is divided into 
software and hardware parts. The software part cov-
ers medium access, frame format etc. It is the algo-
rithm integrated in the transceiver and intermediate 

system. The hardware part is the communication me-
dium. The communication state, the transmission 
duration and other relevant variables are decided by 
electromagnetic characteristics of the medium. From 
this point of view, there is always a clear relation 
between the network protocol and the underlying 
physical medium. In the presented approach, parts of 
the protocol codes from the transceiver model are 
moved into the medium model. In other words, the 
medium is designed with some extent of intelligence. 
In wireless communication, it is not possible to listen 
while sending because of the nature of the channel 
(frequency band). Hence, the Collision Avoidance 
(CA) method is used to improve the performance of 
Carrier Sense Multiple Access (CSMA). In principle, 
a network node always listens to the channel and 
sends only if the channel is sensed as idle. The im-
plementation of this protocol is separated into two 
parts, namely, the medium part and the transceiver 
part. The interaction between medium and transceiver 
is realized by Network_Port which can be found in 
Network.Interfaces.  
There are two main differences between the 
CSMA/CA algorithms for ZigBee and WLAN on the 
MAC layer: 
1. WLAN has an unlimited number of retries, while 

ZigBee is strictly limited on retries. 
2. ZigBee assesses the network state only at the end 

of the whole backoff time, while WLAN checks 
after each single delay unit.  

Then again, they do have some important characteris-
tics in common, e.g. listening before sending, random 
backoff waiting time before sending, incremental 
backoff time after collision.  
Therefore, the modeling attempt is to design a com-
mon model for these two algorithms. The differences 
can be represented by changing model parameters. 
The implementation is based on the unslotted 
CSMA/CA scheme, which means the network works 
without beacon synchronization and all nodes are 
working in the Ad-hoc mode. Thus the access to the 
network is random and contention prone. Details 
about the protocols can be found in [4] and [5]. 
The common wireless medium model is illustrated in 
Figure 7. The shared medium is triggered if any net-
work node sends an attempt of trying. Based on the 
sum of trying nodes, it decides to begin transmitting 
or to send a collision notification. After successful 
transmission, it waits for a certain time before reset-
ting the medium state to idle. This time is given by:  
WaitingTime = SIFS + ACK + DIFS                       (1) 
where SIFS (Short Inter Frame Space), ACK (Ac-
knowledge), DIFS (Distributed Inter Frame Space) 
are physic dependent parameters defined in the stan-
dard. 
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Transmission requests
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Assess the number of active nodes
/N=sum(active nodes)

[N>1]

Transmitting
Entry/ Assess the transmission duration
Do/ waiting
/Medium busy=true
/collision=false

Notification
/Medium busy=true,
/collision=true

[N=1]

[Finished=false][Finished=true]

Notification
Do/ Waiting for SIFS+ACK+DIFS 
Quit /Inform the receiver side
Quit /Medium busy=false
Quit /collision=false

sm Wireless Medium

 
Figure 7: State diagram of wireless medium. 

The transceiver part algorithm is mainly used to per-
form the backoff procedure. Here, the separate im-
plementation shows great advantage in the WLAN 
protocol considering the simulation performance. 
Since the conflict detection is executed by the me-
dium model, the transceiver models do not have to 
assess the medium state after each unit delay, but 
only to wait for the event trigger from medium notifi-
cation. By doing so, unnecessary events, which slow-
down the simulation dramatically, are avoided. For 
instance, 802.11 standard defines the backoff time in 
the unit of timeslots: 
Backofftime = backoff_counter × slot_time             (2) 
where the initial backoff_counter is a random number 
in the range [0, 31] and slot_time is 20 μs [6]. If no 
collision happens, it causes on an average 16 events 
with a cycle of 20μs per transmission. In the worst 
case (4 collisions happen successively), there are 
1031 events for a transmission. In the separate im-
plementation, the number of events is reduced to 1. 

Idle

New data to transmit 

Assess the medium state

Backoff
do/ waiting

Break backoff procedure

/interrupted backoff=true

sm Tranceiver

[Busy]

Init  back off procedure
/BE=BEinit
/NB=NBinit

[Idle]

Perform CCA

Calculate new back off 
parameters

/NB=NB+1
/BE=min(BE+1,BEMAX)

[802.11]

[802.15]

[NB>Nbmax
&

802.15 ]

[NB<=Nbmax
or

802.11 ]

Delay time expired

[Medium  busy]

[Medium  free]

Transmitting
Entry/ Transmitting begin
Do/ Waiting for Notification 

Transmission finished

Medium busy [802.11]

Assess delay time

Failure

[Idle and
interrupted backoff]

resume
backoff procedure

/interrupted backoff=false

 
Figure 8: State diagram of wireless transceiver. 

The designed common model is illustrated in Figure 
8. The exact model behavior is predefined by a model 
parameter given as “802.11” or “802.15”. The com-
mon model is a partial model in Modelica, thus in the 
application, it is instantiated as a replaceable model 
and can be easily parameterized for different proto-
cols. 
There are some important assumptions to be noticed:  
1. No transmission failure is taken into considera-

tion, i.e. no packet is lost in the transmission and 
no re-transmission is needed.  

2. The acknowledge message is not modeled. 
3. One shared medium model represents one avail-

able channel. All nodes connected to the medium 
hence operate in the same channel. No dynamic 
channel switching is considered. As a conse-
quence, the network capacity is restricted. 

4 Controller components library 

4.1 Overview of the library 

The controller components library contains models to 
describe the behavior of an embedded controller de-
vice. In comparison to the simulations of automation 
systems without detailed controller models, the ef-
fects of synchronization, scheduling and queuing are 
considered in retrieving system behavior which pro-
vides more realistic simulation results. 
The library is split into sub-libraries that group con-
troller components by their function (cf. Figure 9). 

 
Figure 9: Screenshot of the controller library. 
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Board 
The basic component of a controller device is a 
board. It hosts devices that are needed to run control 
algorithms, to interface plants to be controlled and to 
interchange information between controller devices. 
The library Controller.Board hosts three basic board 
models which distinct in the interfaces they provide 
(only process interface (IOBoard), only network in-
terface (NetworkBoard), combination of 
both(NetworkIOBoard)). The components of the 
NetworkIOBoard model, shown in Figure 10, will be 
detailed in the following sections. 

 
Figure 10: Component model of a board with process 
and network interfaces. 

Process Interfaces and Converters 
The process interface consists of an array of conti-
nuous input (u) and output (y) signals. As in real con-
trollers input and output signals are not directly con-
nected to the CPU. The input signals are first con-
verted by a hardware AD-Converter, and the DA-
conversion of the output signals is done by means of 
a hardware DA-Converter. The converter models can 
be found in the Controller.ProcessInterface library. 
RAM 
The results of the AD-conversions are stored in a 
random access memory (RAM) called process image 
of inputs (PIInputs), whereas the output signals to be 
DA-converted are read from the process image of 
outputs (PIOutputs) by the DA-Converter. 
The RAM model can be found in Controller.Memory. 
It provides means to exchange information between 
component models. To attach models to a memory 
component the MemoryConnector is used. 
Network Interface 
The network interface is provided by the network 
library. It is regarded as a transceiver IC which per-
forms network operations concurrently. The CPU can 
transfer messages to be sent via network to the tran-
sceiver IC whereas received network messages can be 
read by the CPU from the transceiver IC. 
CPU 
The central processing unit (CPU) executes the con-
trol algorithms. The CPU models can be found in the 
library Controller.CPU. There are two different 

CPU-models in the library, one without network 
access (CPU) and one with network access (CPU-
WithNetwork). The CPU model is instantiated as rep-
laceable in the board models and, thus can be ex-
changed to other CPU models extending CPU. The 
CPU executes the control algorithms wrapped in 
Tasks as described in the next section. Figure 11 
shows the CPUWithNetwork model. 

 
Figure 11: Model of a CPU with network access. 

Task and Scheduler 
A task (library Controller.CPU.Task) is a software 
process which runs quasi-concurrently to other tasks 
in a CPU. A scheduler (library Control-
ler.CPU.Scheduler) allocates processing time to the 
tasks according to a certain scheduling policy. The 
library provides several scheduler models (e.g. Round 
Robin, FIFO) which are all based on the Control-
ler.Interfaces.IScheduler model. 
All tasks have access to the process images (PIInputs 
and PIOutputs) and share a common memory called 
RAM. The RAM can be used to exchange informa-
tion between tasks inside a CPU. The connections to 
the different memory types are drawn in different 
colors in Figure 11 (PIInputs: orange, PIOutput: red, 
RAM: blue). The connections between the tasks and 
the scheduling model are drawn in black. The green 
horizontal bars are used as a Modelica bus to reduce 
connections to the scheduler. 
The CPUWithNetwork model can host up to four 
tasks without network access (Task) and two tasks 
with network access (NetworkTask). Task and 
NetworkTask are implemented as partial models and 
serve as generalized task models. The task models are 
instantiated as replaceable in the CPUWithNetwork 
model and can be easily changed to specialized ones. 
The models DummyTask and DummyNetworkTask 
can be used to specify that a task is not present. The 
library user can easily build his own CPU models 
with more Tasks by extending the existing ones. 
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4.2 Implementation details 

RAM 
The Controller.Memory.RAM model plays an impor-
tant role in the simulation of an embedded controller. 
It provides means to interchange information between 
controller components. On the first look, this does not 
seem to be a big issue in Modelica, as the connector 
type is especially designed for this purpose. But, in 
the domain of informational systems a connector is 
not a convenient tool to exchange information be-
tween components. Due to the fact that the amount of 
data exchanged may vary, not all cases can be cov-
ered when designing a general information exchange 
connector. Instead, it is appropriate to make use of 
the external function interface of Modelica to imple-
ment an information exchange system in a dedicated 
programming language which is then triggered by 
Modelica models. In this way the complexity of data 
handling is hidden from the Modelica models. To do 
so, a C++ library has been developed which emulates 
a collection of random access memories that can be 
accessed via a unique index. Figure 12 shows a 
coarse overview of the C++ library internals and the 
interconnection with the Modelica model. 
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Figure 12: Coarse overview of the C++ library. 

Interface functions to use the C++ memory collection 
are provided in the sub-libraries 
Controller.Memory.Functions.WrapperFunctions: 

RAMIndex:=createRAM(); 
value:=readRAM(RAMIndex,address); 
writeRAM(RAMIndex,address,value); 

The function createRAM creates a random access 
memory in the collection and returns the unique iden-
tifier of the memory (RAMIndex) as an Integer. When 
reading or writing from or to a memory, the RAMIn-
dex has to be passed to identify the memory. 
readRAM is used to read values (as String) from the 
memory RAMIndex from the given position address 
(as Integer) in the memory, whereas writeRAM is 
used to store a value in the given memory RAMIndex 
at position address. 

In the C++ library, a RAM is organized as a collec-
tion of references to strings (character arrays) stored 
in a global string repository. Library internal func-
tions provide the mechanism to read and write strings 
to the string repository, identified by the RAMIndex, 
using the given address which is a local identifier 
inside a RAM. 
A slightly varied functionality is used to implement 
the queuing mechanism in the same library. Instead 
of giving random access to values in a queue, the 
interface functions only allow reading (dequeueing) 
from the first address in the queue and writing (en-
queuing) at the end of the queue. The string manage-
ment is done in the same way as in the case of RAM, 
using the string repository. 
For maximum flexibility, the values passed to or from 
the memory are of type String. This way arbitrary 
information can be used in the simulation. When ne-
cessary, numerical information contained in the 
strings can be parsed by means of functions provided 
in the Modelica.Utilities.Strings library. In the case of 
real values, the library provides the functions 
readReal and writeReal in the sub-library 
Controller.Memory.Functions, where parsing is done 
automatically. 
The RAM model itself is just a placeholder for one of 
the memories managed in the C++ library. Its only 
dynamic behavior is a function call to create a memo-
ry in the memory collection in the initial simulation 
step. The unique index of this memory is then stored 
in the RAM model and published via the 
MemoryConnector, which only consists of the unique 
memory index. 
To improve debug capabilities, the interface functions 
provide the possibility to trace read and write ac-
cesses to the RAM model. For this purpose, each 
function call, including function parameters, of rea-
dRAM and writeRAM can be stored in a textfile or a 
database table (cf. Table 1). 
Table 1: Dump of a database trace of operations on 
RAM models. 

id operation RAMindex address value
//

28 W 1 2 "5"
29 W 2 5 "-3"
30 R 1 2 "5"
31 W 2 3 "3"
32 R 2 2 "1"
33 R 1 2 "5"

//  

Tasks 
As described above, the control algorithms are orga-
nized in tasks to allow multiple algorithms to run 
quasi-concurrently on a single CPU. Hence, if mul-
tiple tasks are active at once, they are competing for 
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processing time. The scheduling instance manages 
that the processing time is spread among all tasks. 
The task models (Controller.Task.*) can be seen as 
wrapping units that provide interfaces to access CPU-
internal (e.g. Memory, Timer) and CPU-external 
components (e.g. process images, network port). 
Therefore, all tasks extend the Control-
ler.Intefaces.ITask interface. The behavior is de-
scribed in Figure 13. 

 
Figure 13: State diagram of a task. 

A task can be in one of three states (Idle, Waiting, 
Running), and is controlled by four variables: run, 
idle, runTime and sleepTime which enforce state 
switches. Depending on the state, the timers runTimer 
and sleepTimer are active or inactive and processing 
time is requested or not (variable request). 
The external variable run is provided by the schedu-
ler and determines if the task is currently the active 
task in the CPU. The internal variable idle enforces 
the task to go to Idle state if its value is true. runTime 
determines the processing time that is needed to 
finish the current job of the task, while sleepTime is 
used to assign the period to send the task to Idle state. 
If a task has no job to do, it is in Idle state. In state 
Waiting, the task is requesting processing time, but 
currently does not get processing time by the schedu-
ler. In state Running, the task gets processing time 
and is thus running. When the runTimer value ex-
ceeds runTime the jobFinished event is raised which 
indicates that the current job of the task is completed. 
This event is used to embed the actual control algo-
rithm in the Task model, just by extending one of the 
given template tasks (Task or NetworkTask). The 
behavior is given by the extended Task model. This 
way the library user can focus on the implementation 
of the algorithms itself. 
Integration of Algorithms 
The Controller library provides basically two differ-
ent ways to define the algorithms executed in a Task 
model: 

1. algorithm definition in Modelica language 
2. algorithm definition in external libraries using the 

Modelica external function interface 
To define and implement an algorithm in Modelica, 
one of the basic Task models (Task or NetworkTask) 
must be extended. As intelligence for scheduling is 
predefined in the basic Task models, only the values 
of the task control variables idle, sleepTime and run-
Time as well as the reaction on the jobFinished event 
must be specified. 
The basic structure of tasks using Modelica algo-
rithms is defined as shown below. 
model ExampleTask 
 extends Controller.CPU.Task.Task; 
initial algorithm 
 sleepTime:=0; 
 runTime:=100/CPUFreq; 
algorithm 
 when (pre(jobFinished)) then 
  //here, the algorithm semantics are specified 
 end when; 
end ExampleTask; 
The initial algorithm section assigns start values for 
the control variables sleepTime and runTime. In the 
algorithm section, the processing of the jobFinished 
event is defined by means of a when block. The con-
dition jobFinished must be wrapped by a pre to cut 
the algorithmic loop involving the task and the sche-
duler component. 
The semantics of the algorithm is then specified in 
the body of the when block, as shown in the follow-
ing example of a single input single output P control-
ler: 
… 
import Functions=Controller.Memory.Functions; 
… 
when (pre(jobFinished)) then 
 //when a job is finished, runTimer is reset 
 reinit(runTimer,0); 
 //state==0: read input value 
 if (state==0) then 
  //read sensor value from process image 
  y:=Functions.readReal(PIInputs, 1); 
  //next state is executing control law 
  state:=1; 
  //executing control law takes 5000 cycles 
  runTime:=5000/CPUFreq; 
  //state==1: execute control law 
 elseif (state==1) then 
  //calculate control error and new set value 
  e:=w - y; 
  u:=k*e; 
  //next state is writing new set value 
  state:=2; 
  //execution for writing takes 500 cycles 
  runTime:=500/CPUFreq; 
  //state==2: set output value 
 elseif (state==2) then 
  //write output value to process image 
  Functions.writeReal(PIOutputs,1,u); 
  //next state is reading input values 
  state:=0; 
  //reading input signal takes 500 cycles 
  runTime:=500/CPUFreq; 
 end if; 
end when; 
… 
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The task is divided into three jobs which are executed 
sequentially. The job currently processed is indicated 
by the Integer variable state (0: read inputs, 1: calcu-
late output, 2: write output). The execution time can 
vary among the jobs and is expressed in terms of pro-
cessor cycles divided by the processor frequency 
(CPUFreq in Hz). When the jobFinished event arises, 
the semantics of the job is being performed and the 
settings for the next job are carried out. This means 
that the runTimer variable is reset to zero and that the 
runTime for the next job is assigned. The task should 
run without breaks and thus is never send to Idle state 
(sleepTime:=0, idle:=false). 
As described earlier, the tasks do not have direct 
access to the environment (input and output signals). 
Instead, the algorithms work on images of the input 
and output signals by reading from the process image 
of inputs (PIInputs) or writing to the process image of 
outputs (PIOutputs) using the provided interface 
functions. 
For complicated algorithms, the Modelica design 
language is not the mean of choice. For this case, the 
Controller.CPU.Tasks library provides the External-
Task and ExternalNetworkTask models, which allow 
the definition of algorithms in other programming 
languages (e.g. C or Java). Using the construct of 
replaceable function, the user of the library can easily 
access external algorithms by providing Modelica 
interface functions extending Control-
ler.CPU.Tasks.externalAlgorithm. 

5 Application of the Libraries 

Many analysis problems in DAS can be characterized 
as runtime or delay investigations. A typical real 
world problem is the determination of the response 
time distribution on events in the process to be con-
trolled (e.g. emergency stop). Results, elaborated 
with an earlier version of the presented library, have 
been published in [7]. 
Including the plant under control in the simulation, 
quality analysis can be performed. Reaction delays, 
due to the distributed nature of DASs, cause fluctua-
tions in the control quality. As shown in [2], the libra-
ries can be used to analyze the variations of process 
values based on a collection of simulation runs. 
Another application of overall system simulation is 
feasibility analysis. It can be used to perform proof-
of-concept tests in early development stages of 
DASs. The classical example for feasibility analysis 
in continuous control is the stabilization of an in-
verted pendulum in the instable (upper) rest position. 
Figure 14 shows the setup of a DAS with an inverted 
pendulum using a wireless network. The experimen-
tal setup consists of the inverted pendulum with 

0.5 kg mass for the cart as well as for the pendulum 
arm with a length of 1 m. In the initial, state pendu-
lum arm and cart are not moving, but the pendulum 
arm is rotated by ϕ = 0.25 rad. 

 
Figure 14: Inverted pendulum experiment. 

Attached to the pendulum there are four Control-
ler.Board.IOBoards (sensor1-4) providing informa-
tion about position and velocity of the cart as well as 
angle and angular velocity of the pendulum arm. The 
Controller.Board.IOBoard actuator drives the cart 
with the translation force calculated by the Control-
ler.Board.NetworkIOBoard microController. The 
Controller.Board.NetworkIOBoard SCADA (Super-
visory Control And Data Acquisition) is allotted to 
collect the overall system status periodically. 
The control algorithm on the microcontroller is split 
up into three concurrent tasks. The first task cyclical-
ly requests sensor values from the sensor boards and 
sends the calculated force value to the actuator board. 
The second task handles incoming network messages, 
and is only active when network messages are availa-
ble. The third task is the control algorithm itself 
working in three sequential steps: 

1. reading input signals from the RAM, pro-
vided by the remote sensors, 

2. calculating the force value (control law),  
3. writing the force value to the RAM. 

The control law is a state controller, with gains ac-
quired from a linear continuous time state space 
model. 
The requesting task runs 4 ms and then falls asleep 
for 20 ms. The message handling task needs 1 ms to 
process each incoming message. The control algo-
rithm task needs 1 ms to read the input signal values 
as well as 1 ms to write the force value. To execute 
the control law, 11 ms are needed. 
Processing of network messages in the sensor and 
actuator boards takes 2 ms. As there are no concur-
rent tasks in these boards execution starts as soon as a 
network message is received. 
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The example setup has been simulated with two dif-
ferent networks, ZigBee with 250 kbps transmission 
rate and WLAN with 11 Mbps transmission rate. Ad-
ditionally, the inverted pendulum has been simulated 
using the same control law emulating a continuous 
controller neglecting all delays imposed by the auto-
mation system. 
As shown in Figure 15, the pendulum angle varies a 
lot among the three simulated scenarios. As expected, 
the scenario neglecting delays shows best perfor-
mance and the WLAN scenario is superior to the 
ZigBee scenario. 
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Figure 15: Pendulum arm angle sequence plot. 

The reason for the differences among the scenarios is 
the delayed application of the actuator force caused 
by the automation system delays. It can be seen from 
Figure 16 that the first update of the actuator value 
occurs after approx. 80 ms using WLAN. In the sce-
nario with ZigBee this delay increases to 100 ms. 
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Figure 16: Zoomed applied translational force 
sequence plot. 

A 20 s lasting simulation (carried out in Dymola 6.1) 
takes 94.2 s CPU time on a PC with 2.8 GHz Pentium 
IV HT and 2 GB RAM. Best performance has been 
achieved using the Lsodar integration algorithm with 
1e-6 tolerance. 
Using the common setup for storing variables con-
sumes too much memory and disk space, even for 
short simulations (less than 10 seconds). Thus, inter-
esting simulation values have to be stored using pro-

prietary mechanism, e.g. sampled saving of data to a 
file with using Modelica.Utilities.Streams.print. 

6 Conclusions and Outlook 

Libraries for simulation of Distributed Automation 
Systems using the Modelica language have been pre-
sented. The libraries allow delay time determination, 
quality of control analysis and feasibility analysis in 
closed-loop applications. The application of the libra-
ries has been illustrated by an example using wireless 
communication. 
Future work will focus on improvement of the net-
work models regarding failure behavior (e.g. packet 
losses) and the integration of other networks especial-
ly in the field of automotive applications (CAN, 
LIN, …). 
The presented libraries can be downloaded from 
http://www.eit.uni-kl.de/frey. 
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Abstract 

Complex systems engineering requires new soft-
ware tools for virtual prototyping which have to be 
more relevant in order to meet, at the same time, 
consumer requirements, standardized rules and mar-
ket law. These have to be more flexible especially 
concerning file exchange and reusability. Recently 
the modelling language Modelica seems to fulfill 
these needs thanks to its concepts of acausality and 
multi-disciplinary description. 

In parallel, the laboratory AMPERE has developed 
a bond graph-based sizing methodology which, by 
the use of inverse models, drastically decreases the 
number of calculus iterations compared to the classi-
cal direct approach. 

The aim of this paper is to highlight the impor-
tance of acausality and structural analysis in a design 
approach and to study to what extent the proposed 
sizing methodology can be formulated in Modelica. 
Then first software implementations of the method-
ology are illustrated by examples processed by the 
tool MS1 and its Modelica code generator. 

Keywords: code generator; Modelica; MS1; bond 
graph; acausality; structural analysis; sizing meth-
odology 

1 Introduction 

Nowadays technological advances have lead to 
systems which are more and more complex and thus, 
more and more difficult to design. In the new context 
of sustainable development, systems have to match 

ever-increasing pollution standards while engineers 
have to take into account both higher consumer re-
quirements (like safety, comfort, equipment,...) and 
financial constraints. In few words, engineers have to 
conceive faster new safer and cheaper solutions. 

One way of doing that is to proceed by simulation 
which has the benefit to avoid costly manufactures of 
several impertinent prototypes and then favour gain 
of time and money. 

However virtual prototyping is really efficient only 
if the engineer is able to accurately model the sys-
tem, i.e. only if the system is sufficiently described 
for the given problem. In fact, the hardest tasks of 
such an approach are: 

- finding the good description level; 

- being able to express the different physical 
phenomena implied by this description; 

- and representing these in an unified manner 
even if they involve various physical domains. 

For all of these reasons, engineers need a modelling 
language which: 

- allows making connection between all kinds of 
physical domains. 

� The modelling language has to be multi-
domain. 

- ensures a sort of continuity at every level of 
the project cycle. So models have to be usable 
as well in oriented system softwares during a 
pre-sizing phase as in more specialized tools in 
advanced design steps. 

� The modelling language has to be recog-
nized as a standard for model exchange. 
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- reduces wasted time as much as possible. In 
fact, it is of the first importance to mutualize 
modelling efforts which, as mentioned before, 
are the hardest tasks of such an approach. One 
way of capitalizing on this is to separate the 
system description from the design context and 
thus not to depict the system with a priori ori-
ented equations. 

� The modelling language has to be object 
oriented and to enable acausal description. 

- reduces study costs by decreasing dependency 
towards exclusive software providers. 

� The modelling language has to be a free 
and non-owner language. 

This is just with this in view that the Modelica lan-
guage and the OpenModelica simulation environ-
ment [1] have been proposed. In fact this can explain 
why, today, Modelica language seems to fulfill a real 
need for engineers and industrials and seems to pre-
sent itself as the future standard for model exchange. 
As a proof of fact, numerous simulation environne-
ments and computer aided design tools like Dymola 
[2], LMS Imagine.Lab AMESim [3] or Scilab/Scicos 
[4] can now support Modelica models as well for 
import as for export. 

Starting from this statement, the aim of this paper 
is to compare some Modelica aspects to the bond 
graph-based sizing methodology [5]-[12] developed 
by the laboratory AMPERE1. In fact, by using the 
multi-domain aspect as well as the concept of 
acausality, it seems legitimate to ask oneself to what 
extent the proposed methodology can be supported 
by Modelica language. 

The paper is organized as follows. First, section 2 
will briefly describe the methodology principles and 
its benefits compared to a classical design approach. 
Importance of the acausality concept and the use of a 
structural analysis will also be highlighted. Section 3 
will present one example of the methodology soft-
ware implementation, the tool MS1 [13], and its 
newest functionality: a Modelica code generator. 
Then section 4 will conclude by summarizing the 
several tackled points and by suggesting future re-
search directions. 

                                                      
1 Since January 1, 2007, the LAI has merged with the 
CEGELY and a team of environmental microbiology to 
become the laboratory AMPERE (UMR CNRS 5005). 

2 Bond graph-based sizing method-
ology towards a Modelica-based 
sizing methodology? 

To understand how some Modelica features can be 
used or be augmented to support the proposed meth-
odology, it is worth first explaining its main princi-
ples. Then importance of an unified and acausal de-
scription will prove to be a benefit for carrying out a 
structural analysis. Finally some reflections will be 
conducted about the potential of embedding the 
methodology in Modelica. 

2.1 Methodology benefits and principles 

Up to now a classical approach adopted by the 
most of engineering departments consists of a trial 
and error procedure. For instance consider an actu-
ated load system (Fig. 1) and suppose that the design 
problem is to find an appropriate actuator so that the 
load follows a given trajectory (i.e. the hoped-for 
specification). Once the system has been modelled, 
the first step of a classical approach consists in: 

- selecting more or less arbitrarily an actuator 
(this depends on the degree of the engineer ex-
pertise); 

- presupposing the control of this actuator; 

- launching a direct calculus in simulation ac-
cording to these assumptions; 

- comparing the calculated load trajectory to the 
desired specification. 

 

Fig. 1: The classical design approach 

However this approach rarely leads to a good solu-
tion at the first attempt: it usually requires numerous 
iterations to find a suitable actuator. This is truer in a 
technological break context where, by definition, 
engineers do not have access to any expertise. More-
over this approach can come up to a greater loss of 
time since: 

- in the first case where the a priori selected ac-
tuator matches the specifications, the engineer 
has no idea on the margins he has at his dis-
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posal, and thus whether a smaller and cheaper 
actuator could be acceptable; 

- in the second case where the a priori selected 
actuator does not suit the sizing problem, the 
result of the simulation does not give any idea 
on the causes of underdimensioning. The engi-
neer in charge of the study must choose an-
other actuator admittedly more powerful but 
still more or less arbitrarily. 

Finally this iterative procedure can even reveal itself 
endless as, beforehand, no checking has been made 
to conclude whether the specifications can be really 
obtainable by the given structure or not. In that case, 
most of time, the engineer has to slightly modify the 
specifications by relaxing some design constraints if 
he wants to solve his problem. 

 

Fig. 2: The laboratory AMPERE design approach for 
choosing suitable actuators 

Faced to all of these drawbacks and strong of its 
research for 15 years, the laboratory AMPERE has 
developed an innovative methodology for sizing 
mechatronic systems ([5]-[8]). Contrary to the clas-
sical approach which uses direct model calculus, the 
key idea here is to exploit inverse models described 
by bond graph. Considering the same example as 
before, the main steps of this approach can be 
summed up into the following points (Fig. 2): 

- Step 1: Adequacy 

As explained in more details in section 2.3, 
this step consists in carrying out a structural 
analysis. This allows checking if the sizing 
problem is well-posed and concluding on the 
possible structural invertibility of the load 
model (and so on the possibility to inverse the 
model). 

- Step 2: Specification 

Assuming that the load model is structurally 
invertible, this step consists in establishing the 
inverse load model corresponding to the given 
sizing problem (this results in assigning the bi-
causality on the bond graph model) and simu-

lating it so as to determine variables required 
at the entrance of the load and that match the 
specifications2. 

- Step 3: Selection 

As the variables in input of the load are the 
same as the variables in output of the actuator, 
the engineer can thus select in a library actua-
tors that appear suitable for the output specifi-
cations (e.g. the maximum of the required ef-
fort must be inferior to the maximum effort the 
actuator can supply) (Fig. 2). 

- Step 4: Validation 

Finally since actuators have been selected ac-
cording to criteria only in terms of variables in 
output, the engineer has to check if these ac-
tuators do not overcome their limitations in in-
put (and anywhere else in the inside). This step 
consists in adding the actuator models to the 
load model, determining the variables in input 
by the use of the new corresponding inverse 
models3 and comparing the simulation results 
for these variables to the manufacturer data. 

Then these four steps of the methodology are re-
peated to size each stage of a whole actuating chain 
(power modulator, energy supplier) and, at the end, 
to determine the open loop control. 

Now that the principles of the methodology have 
been exposed, it is worth noting some remarks. 

First, the methodology does not require any supposi-
tion on the actuator control and, by this way, facili-
tates the engineer study. 

Secondly, compared to the classical approach, the 
inverse methodology drastically decreases the num-
ber of calculus iterations. In fact, at the end of the 
selection step, as the variables needed in output of 
the actuator are directly determined from the specifi-
cations, the engineer is able, after only one calculus, 
to: 

- either eliminate a whole part of the actuator li-
brary (whereas each component should have 
been tested in the direct approach in order to 
be rejected); 

                                                      
2 One can remark that in this way of calculus, the roles of 
inputs and outputs are reversed: specified outputs become 
the inputs of the calculus while the real inputs are the 
variables to determine. 
3 For the sake of conciseness and clarity, this step has 
been simplified. More rigorously, another structural 
analysis must be conducted on the new model including 
the actuator model to check, in turn, its structural inverti-
bility. 
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- or decide to manufacture a made-to-measure 
actuator if none of the off-the-shelf actuators is 
suitable; 

- or slightly modify the specifications if the fi-
nancial constraints of the project do not allow 
special manufactures. 

In the validation phase, two cases can also happen: 
either the actuator chosen in step 3 suits the inputs 
criteria and the actuator is then validated, or the vari-
ables needed in input to fulfill the specifications do 
not correspond to the actuator use restrictions and the 
engineer must go back to the selection step. As it 
will be illustrated in section 3.1, in the first case, the 
engineer can directly conclude that the actuator is 
relevant for the desired behavior (and this after only 
two inverse calculations) and can also evaluate the 
possible oversizing of the actuator. On the contrary, 
in the second case, the engineer must even choose 
another actuator but, this time, the comparison be-
tween the required variables and the component limi-
tations gives to him the origins of the undersizing 
(e.g. the actuator does not support such a high supply 
of power). Thus the engineer must go back to the 
selection step but with a significant guideline to fol-
low so as to find a suitable actuator. 

Thirdly, thanks to the structural analysis, the engi-
neer can check if his problem is well-posed and, if 
needed, he can readapt, without any numerical calcu-
lus, his specifications to be sure that they can be 
reached by the chosen model structure. Thus the en-
gineer is sure that his approach will succeed in find-
ing a solution. 

2.2 Advantage of an acausal description 

From a rigorous point of view, a bond graph model 
initially represents a system in an acausal manner: 
the equations are oriented only once causality (or 
bicausality for inverse models) is assigned. Intui-
tively, the methodology proposed by the laboratory 
AMPERE can be applied not only for sizing prob-
lems but for other engineering contexts too: one only 
needs to work on the inverse model corresponding to 
the given problem. 

Now, outside the bond graph context, a causal 
model is only a representation of a calculus sequence 
(i.e. a set of partially ordered assignments). It thus 
depends on the study objective and can only be used 
for this objective. On the contrary an acausal model 
is only the description of a system (i.e. a set of non-
ordered implicit equations), totally independent from 
what oneself wants to calculate. In this way, the re-
usability of models described in an acausal form 

seems to be infinite while the one of causal models 
reduces itself only to what they are prescribed for. 

As Fig. 3 shows, if the engineer chooses a causal 
approach, he is obliged to formulate one causal 
model for each problem. On the contrary, if he 
chooses the acausal approach, the same model can be 
used for all engineering problems as: analysis, siz-
ing, control design, parametric synthesis, steady state 
research, ... (Fig. 4). 

 

Fig. 3: System causal descriptions required for several 
engineering objectives 

 

Fig. 4: Only one system acausal description required for 
several engineering objectives 

In practice, this notion of acausality already 
showed its benefits especially in Modelica language 
and in bond graph theory. 

In the Modelica context, the concept of acausality, 
added to the concepts of encapsulation and inheri-
tance, enables modelling efforts to be mutualized and 
librairies to be obtained, librairies that are less re-
dundant (since there is no more need to model the 
same component in different contexts). 

In addition to this, some researches were carried out 
on how translating different engineering problems 
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into bond graph language. In fact one can remark 
that each of the proposed procedures starts from the 
acausal bond graph model so as to construct the di-
rect (respectively inverse) model corresponding to 
the given problem. To quote just some of them, some 
works have been done on sizing problem [7][11][12], 
steady state research [14], parametric synthesis [15], 
control design [16], characterization [17] and sensi-
bility analysis [18]. 

2.3 Advantage of a structural analysis 

As mentioned before the first step of the AM-
PERE’s methodology involves a structural analysis 
of the model which the two objectives are checking 
if the problem is well-posed and verifying the ade-
quacy between the specifications and the chosen 
model structure. 

To understand how these checks can be made, 
some definitions are introduced and the structural 
analysis is explained as well as how it can be con-
ducted. 

Concerning the concepts [9]: 

- a power line is defined as a path for energy 
transmission between two points of the system 
(this is an acausal concept); 

- a causal path is an ordered sequence of vari-
ables connected each one to another by the 
equations of the system without that a variable 
appears more than once in the sequence; 

- an input/output power line (resp. causal path) 
is a power line (resp. a causal path) between an 
input and an output of the system; 

- two power lines (resp. causal paths) are said 
disjoint only if there is no power (resp. no 
variable) in common; 

- when the causality of the whole model has 
been assigned in order to obtain the maximum 
number of energy storage phenomena in inte-
gral causality, the order of a causal path is de-
fined as the difference between the number of 
energy storage phenomena in integral causality 
and the number of those in derivative causality 
along this causal path. 

Given a sizing problem with multiple inputs to de-
termine from multiple specified outputs, checking if 
the problem is well-posed, in the sense of invertibil-
ity, thus consists in finding: 

- at least one set of input/output disjoint power 
lines; 

- and, at least one set of input/output disjoint 
causal paths. 

If the required sets exist, then it can be concluded 
that the model is structurally invertible (i.e. invert-
ible assuming that the equations of the system are 
locally mathematically invertible): the engineer can 
thus be sure that his problem is, at this stage, well-
posed. 

Now, on the contrary, if no set exists, it proves that 
the model is structurally non invertible. In that case, 
the procedure stops here until the problem is refor-
mulated. This can be particularly useful for architec-
ture synthesis. In fact if the a priori chosen structure 
does not enable the specifications to be reached, one 
can imagine another architecture that may satisfy the 
design constraints. By analyzing the input/output 
power lines, one can then determine the place an ac-
tuator must have in order to control a specified de-
gree of freedom. 

Finally once a good structure has been chosen and 
the model invertibility has been proved, the ade-
quacy, between the specifications and the structure, 
can be verified. To proceed with this, one needs to 
check if the time derivability of each specified output 
is at least equal to the order of the involved in-
put/output causal path. Not only useful for checking, 
this can then help to write specifications. 

2.4 Methodology translation into Modelica lan-
guage 

If previous articles have proved the feasibility of 
translating a bond graph model into a Modelica 
model [19]-[22], the key idea here is to study to what 
extent a bond graph-based sizing methodology can 
be adapted to Modelica language. If the translation 
of a bond graph model into a Modelica code can be 
done quasi systematically with the BondLib library 
[23], the reverse operation is not so easy. Although 
the concepts of acausality and multi-disciplinary de-
scription seem to establish a parallel between the 
bond graph and the Modelica language, the conver-
sion of a Modelica description into a bond graph 
model reveals itself like a harder or even impossible 
task. 

In fact if the bond graph is intrinsically bounded to 
the description of the system energetic structure, 
nothing imposes to the modeller to depict it into 
Modelica language. As a proof of fact, a system can 
be totally described by equations gathered together 
into the same Modelica class, without any use of 
Modelica ‘connect’. Moreover if ‘connect’ classes 
appear in the Modelica code, they do not necessarily 
represent physical energy exchanges: the Modelica 
modeller is totally free of choosing his variables for 
description. 
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For these reasons, the study of power lines proves 
to be compromised in a Modelica model and Mode-
lica language does not seem to be suitable for the 
structural analysis as we have defined it above. 
However the interesting think of this translation ten-
tative is to highlight that to manage a structural 
analysis, the engineer has to furnish a minimum set 
of information about the system and particularly 
concerning how the different physical phenomena 
are connected the ones to the others. Besides if we 
come back to the definitions relative to the structural 
analysis (section 2.3), one can remark that they can 
be formulated outside the bond graph context on 
condition that the concepts of energy stor-
age/dissipative phenomena, power and energy vari-
ables be well defined. Thus one can imagine design-
ing a sort of Modelica overlay able to depict the re-
quired information of the model. 

Actually this way of doing things reveals itself 
more relevant since the structural analysis does not 
require the system equations (and so equations de-
scribed in the Modelica code) but only its energy 
skeleton. The structural analysis pertains to a step 
upstream of the Modelica code writing and concerns 
finally directly the modelling step, where the engi-
neer sets up the system structure and formulates the 
corresponding problem and specifications. Modelica 
can then be viewed as a complementary tool to the 
methodology for model exchange and reusability but 
not as a tool made for structural analysis. 

3 MS1: an example of the methodol-
ogy software implementation 

To illustrate the several concepts previously de-
scribed and to show how the sizing methodology can 
be implemented into a program, this section presents 
the software MS1 with its functionnalities [13]. Two 
examples processed by it will be used to this objec-
tive: the first one concerns the case of a two-link 
manipulator whereas the second one involves a load 
actuated by a DC motor. 

3.1 Methodology implementation 

Structural analysis 

One of the MS1 particularities is its module of 
structural analysis. This functionnality is of course 
only reserved for the models described into bond 
graph language since the aforementioned structural 
analysis requires a minimum information on the sys-
tem structure. Once the system is modelled into a 
bond graph representation and once the in-

puts/outputs of the problem are declared, the soft-
ware MS1 is able to: 

- search all existing input/output power lines; 

- search all existing input/output causal paths; 

- search all existing sets of disjoint input/output 
causal paths; 

- determine the order of each causal paths or set 
of causal paths. 

So, instead of doing it manually, the modeller can 
automatically analyze the structural properties of his 
model. He can conclude on his problem effectiveness 
and check the adequacy between the results of the 
structural analysis and his specifications. 

 

Selection/validation step 

Another functionnality of the software MS1 is the 
automation of the selection step. In fact the modeller 
can define a place-holder for an actuator in his model 
and, then, the ‘sizing’ functionnality of MS1 enables 
a sequence of numerical resolution to be automati-
cally conducted. In fact, during this step, MS1 
searches in a component library which actuator will 
be suitable for the given specifications. At the end of 
the calculus sequence, the engineer has a summary 
indicating for each actuator: 

- its margins compared to what is required; 

- and if the component is validated or not. 

To illustrate this functionnality, consider the exam-
ple of a two-link manipulator (Fig. 5). This system 
consists of a robot made from two solid arms. The 
first arm is attached to the ground and to the second 
arm by two pivot joints which are both actuated. This 
robot is supposed to operate in a horizontal plane and 
inertias of the actuators as well as the effect of the 
gravity are neglected. 

 

Fig. 5: Two-link manipulator system 

Now consider the problem of selecting an appropri-
ate actuating system for the axis 2 so as to the end-
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effector of this robot follows a given profile in veloc-
ity4. The selection step, consisting of a research in 
the electrical drive library of the MS1 database, leads 
to the following two results: 

- a case where the selected component does not suit 
the specifications (Fig. 6); 

 

Fig. 6: Validation step: case of an undersized actuator 

- a case where the selected component limitations 
matches with the specified trajectory (Fig. 7). 

 

Fig. 7: Validation step: case of a suitable actuator 

By representing in an (effort,flow) plane the vari-
ables required for reaching the specified output and 
by superimposing this curve to the manufacturer 
drive characteristics, one obtains a very convenient 
way for selecting components and for visualizing 
causes of under/oversizing. Moreover, as the needed 
variables are calculated for every instant of the dy-
namic specification, the engineer is able to detect at 
which instant the actuator overcomes its limitation 
and for which duration. Then he can size its compo-
nent according to the dynamic criteria and, some 

                                                      
4 Even if these steps are not explicitly described here, it is 
assumed that the model is invertible and that the velocity 
profile is enough time differentiable. 

manufacturer drive characteristics can be taken into 
account such as the ones for intermittent operation. 

3.2 The Modelica code generator: illustration 
of the acausal description advantage 

One of the advantages of the software MS1 is its 
concept of multi-language platform. Actually, mod-
els can be depicted into MS1 in different ways like: 
bloc diagram, bond graph, NMF network or algo-
rithm. Moreover these models can also be numeri-
cally simulated by different solvers: for example, 
users can lead their numerical resolution by Esa-
capTM [24], Matlab® [25] or MapleTM [26]. Today 
one of the newest MS1 functionnalities is its capabil-
ity to understanding Modelica language. The soft-
ware MS1 can thus: 

- generate automatically Modelica code from 
any model described into one of the modelling 
languages previously quoted; 

- call for the OpenModelica solver in order to 
proceed to the numerical resolution. 

In fact the generated Modelica code is what is called 
‘a flat model’ in the sense that it only consists of the 
whole equations gathered into the same class object. 
Thus neither heritance nor encapsulation are used 
here. However this model can be interpreted by any 
existing Modelica compiler and respects, by this 
way, the wish of the Modelica Association to be pro-
prietary independent. 

 

Fig. 8: DC motor actuated load system 

The following example will illustrate different Mod-
elica results generated by MS1. Consider a system 
consisting of a load actuated by a DC motor (Fig. 8) 
and suppose that the rotor shaft and the load shaft are 
both infinitely stiff. 

 

Fig. 9: Acausal bond graph model of a DC motor actuated 
load system 
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The system is modelled in terms of an acausal bond 
graph as shown in Fig. 9. In more details: 

- the Se-element stands for the voltage source; 

- the three I-elements represent the three energy 
storage phenomena respectively associated to 
the magnetic energy and the kinetic energies of 
the rotor and the load respectively; 

- the three R-elements enable the dissipative 
phenomena involved respectively in the elec-
trical circuit, on the shaft and on the load vis-
cous type friction to be described; 

- the GY-element depicts the electro-mechanical 
coupling; 

- and the TF-element is associated to the power 
conserving coupling in the ideal reduction 
gear. 

 

Fig. 10: Causal bond graph model of a DC motor actuated 
load system 

Now consider a first engineering problem which 
the aim is to analyze the behavior of the load under a 
given control. Translating this problem into the bond 
graph language consists only just in starting from the 
acausal bond graph, defining the effort variable on 
the MSe-bond as the input, adding a Df-element rep-
resenting the ideal measure of the load angular ve-
locity and defining the corresponding flow variable 
as the output. This operation enables to declare 
which variables are known and which are to be cal-
culated according to the given problem. The causal-
ity assignment leads to the bond graph given in Fig. 
10 and the Modelica code corresponding to this 
problem is presented in Fig. 11. 

 
class ActuatedLoad 

parameter Real 

  L = 0.001, R = 8.0, KC = 0.031, 

  JM = 1.8E-6, N = 20.0, RC = 0.0001, 

  JC = 2.E-4; 

parameter Real 

  G1 = 0.0, G2 = 0.0; 

Real 

  EC = 0.0; 

Real 

  U, I, E4, CM, WM, E1, WC, CF, P3, 

  E2, E7, E5, E, E3, E6; 

Real 

  P1(start = G1), P2(start = G2); 

equation 

  U = 10*sin(5*time+0.0);  INPUT 

  E6 = der(P3); 

  I = P1/L; E4 = I*R; CM = I*KC; 

  WM = P2/JM; E1 = WM*1.0; 

  WC = WM*(1/N); CF = WC*RC; 

  P3 = WC*JC; E2 = EC+CF+E6; 

  E7 = E2*(1/N); E5 = CM-(E1+E7); 

  E = WM*KC; E3 = U-(E4+E); 

  der(P1) = E3; der(P2) = E5; 

end ActuatedLoad; 

Fig. 11: Modelica code associated to an analysis problem 
for the DC motor actuated load system 

 

Fig. 12: Bicausal bond graph model of a DC motor actu-
ated load system for open loop control determination 

Finally consider a sizing problem where the ques-
tion is to determine the open loop control of the volt-
age source so that the load follows a given trajectory. 
This time the bond graph model corresponding to 
this inverse problem consists in replacing the MSe-
element (resp. the Df-element) by a double detector 
element (resp. double source element) since the roles 
of inputs/outputs are here reversed. Assigning bi-
causality results in the Fig. 12 bond graph model. 
The corresponding Modelica code is shown in Fig. 
13. 

 
class ActuatedLoad 

parameter Real 

  N = 20.0, JM = 1.8E-6, KC = 0.031, 

  RC = 0.0001, JC = 2.E-4, L = 0.001, 

  R = 8.0; 

Real 

  EC = 0.0; 

Real 

  WC, WM, E1, P2, E, CF, P3, E2, E7, CM, 

  I, P1, E4, U, E5, E6, E3; 

equation 

  WC = 0.00193681*sin(5*time);  INPUT 

  WM = WC/(1/N); E1 = WM*1.0; 

  P2 = WM*JM; E = WM*KC; 

  CF = WC*RC; P3 = WC*JC; 
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  E5 = der(P2); E6 = der(P3); 

  E3 = der(P1); E2 = EC+CF+E6; 

  E7 = E2*(1/N); CM = E1+E5+E7; 

  I = CM/KC; P1 = I*L; 

  E4 = I*R; U = E3+E4+E; 

end ActuatedLoad; 

Fig. 13: Modelica code associated to a problem of an open 
loop control determination for the DC motor actuated load 

system 

One can then observe that both Modelica codes 
differ only by the equations concerning the input 
variables (respectively U for the analysis problem 
and WC for the sizing problem). When the Modelica 
‘connect’ class will be implemented in MS1, we will 
obtain a model split into four classes (respectively 
for the dc motor, the load, the input and the output) 
and only those classes relative to the input and out-
put will change between both problems. 

4 Conclusion 

Compared to the classical design approach, the siz-
ing methodology, developed by the laboratory AM-
PERE, offers numerous benefits. In fact with the use 
of inverse models and structural analysis, this meth-
odology enables the engineer to check if his problem 
is well-posed and to verify the adequacy of the speci-
fications with his model structure. Moreover this 
tremendously decreases the number of calculus itera-
tions since it gives, at the selection and validation 
steps, enough information in order to select another 
component in the case of an undersized one or to 
choose an optimal one in the case of several suitable 
actuators by comparing the margins of sizing. 

By emphasing the roles of acausality and multi-
domain description, the aim of this paper is to ask if 
the methodology, originally based on the bond graph 
tool, may be supported by another modelling lan-
guage like Modelica. After having proved the impor-
tance of acausality and structural analysis in a design 
approach, it has been concluded that finally the con-
cepts used in the methodology can be defined outside 
the bond graph context but are not well adapted to 
Modelica language. In fact the notion of structural 
analysis requires the description of the system en-
ergy structure and thus must be conducted upstream 
of the Modelica code. 

Here the tool MS1 enabled the feasibility of the 
methodology software implementation to be proved. 
Functionalities, like the one of automation of the 
structural analysis or of the component selection in 
an actuator library, are available. Besides this a 

Modelica code generator was implemented in order 
to convert automatically a bond graph model into a 
Modelica ‘flat’ model. 

In the context of the RNTL-SIMPA2 project, 
which the aim is to develop a Modelica compiler and 
integrate it into Scicos and LMS Imagine.Lab AME-
Sim softwares, some researches are currently under 
progress for designing a module of structural analy-
sis totally independent from any modelling language. 
Integrated into Scicos and more focused on the GUI, 
it will rely on the analysis of XML files describing 
the model structure. Through the GUI, the engineer 
will thus be guided to formulate his problem in a 
textual manner, describe his system in terms of en-
ergy exchanges and declare which are the known 
variables and the unknowns of the problem. The en-
gineer will then be able to conduct a structural analy-
sis (and then to apply the methodology) starting from 
this description, and this without knowing the bond 
graph theory. Results of the structural analysis will 
be appear in a textual manner too and a Modelica 
code of the problem will be eventually created. 
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Abstract 

In this paper, we combine modeling constructs 
from SysML and Modelica to improve the support 
for Model-Based Systems Engineering (MBSE).  
The Object Management Group has recently devel-
oped the Systems Modeling Language (OMG 
SysML™).  This visual modeling language provides 
a comprehensive set of diagrams and constructs for 
modeling many common aspects of systems engi-
neering problems, such as system requirements, 
structures, functions, and behaviors.  Complementing 
these SysML constructs, the Modelica language has 
emerged as a standard for modeling the continuous 
dynamics of systems in terms of hybrid discrete- 
event and differential algebraic equation systems.  In 
this paper, the synergy between SysML and Mode-
lica is explored at three different levels:  the defini-
tion of continuous dynamics models in SysML; the 
use of a triple graph grammar to maintain a bi-
directional mapping between these SysML con-
structs and the corresponding Modelica models; and 
the integration of simulation experiments with other 
SysML constructs to support MBSE.  Throughout 
the paper, an example of a car suspension is used to 
demonstrate these contributions. 

Keywords: SysML; Modelica; model-based systems 
engineering; continuous dynamics; graph transfor-
mations 

1 Introduction 

1.1 Managing System Complexity with SysML 

Contemporary systems engineering projects are 
becoming increasingly complex as they are handled 

by geographically distributed design teams, con-
strained by the objectives of multiple stakeholders, 
and inundated by large quantities of design informa-
tion.  Accordingly, problems encountered during the 
system development process generally have more to 
do with the organization and management of com-
plexity than with the direct technological concerns 
that affect individual subsystems and specific physi-
cal science areas [1].  If engineers cannot efficiently 
manage project complexity, they might overlook im-
portant design details and dependencies.  Such mis-
takes can compromise stakeholder objectives and 
lead to costly design iterations or system failures. 

According to the principles of model-based sys-
tems engineering (MBSE) [2], engineers can over-
come these problems by replacing document-centric 
design methods with model-based approaches for 
representing and investigating their knowledge dur-
ing system decomposition and definition.  Models 
can be used to represent formally all aspects of a sys-
tems engineering problem, including the structure, 
function, and behavior of a system [3].  Additionally, 
experiments can be performed on models to elimi-
nate poor design alternatives and to ensure that a pre-
ferred alternative meets the stakeholders’ objectives.  
Models also facilitate collaboration by providing a 
common, unambiguous protocol for communicating 
design information. 

To support MBSE, the Object Management 
Group has recently developed the Systems Modeling 
Language (OMG SysML™).  SysML is a general-
purpose systems modeling language that enables sys-
tems engineers to create and manage models of engi-
neered systems using well-defined, visual constructs 
[4].  Instead of developing SysML as an original de-
sign, the OMG adapted the successful Unified Mod-
eling Language (UML) to the systems engineering 
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field.  UML is most commonly used during the de-
velopment of large-scale, complex software for vari-
ous domains and implementation platforms [5].  To 
support an application base that extends beyond soft-
ware engineering, SysML reuses and extends a sub-
set of UML 2.1 constructs: 

• it extends UML classes into blocks; 
• it enables requirements modeling; 
• it supports parametric modeling; 
• it extends UML dependencies into allocations; 
• it reuses and modifies UML activities; 
• it extends UML standard ports into flow ports. 

Through these extensions, SysML is capable of rep-
resenting many common, yet essential aspects of 
both system hardware and software. 

1.2 Modeling System Behavior with SysML 

The knowledge captured in a SysML model is 
intended to support the specification, analysis, de-
sign, and verification and validation of any engi-
neered system [4].  As a result, SysML is commonly 
used to model system requirements, tests, structures, 
functions, behaviors, and their interrelationships.  
Although all of these models are important for ensur-
ing project success, behavioral models are arguably 
the most important.  If the system does not behave in 
a way that satisfies stakeholder objectives, then it is 
useless regardless of its other aspects. 

SysML currently depicts system behavior using 
the following language constructs: 

• Activity diagrams describe the inputs, outputs, 
sequences, and conditions for coordinating 
various system behaviors; 

• Sequence diagrams describe the flow of 
control between actors and a system or its 
components; 

• State machine diagrams are used for modeling 
discrete behavior through finite state transition 
systems; 

• Parametric diagrams allow users to represent 
mathematical constraints amongst system 
properties. 

The first three of these modeling constructs promote 
causal behavioral modeling in terms of discrete 
events.  The last one enables a user to model equa-
tions (called “constraints” in SysML) that establish 
mathematical relationships between system proper-
ties.  In this paper, the focus is on parametric dia-
grams and specifically on the representation of the 
continuous dynamics of engineered systems within 
parametric diagrams.  Such models are composed of 

differential algebraic equation (DAE) systems that 
represent the exchange of energy, signals, or other 
continuous interactions between system components.  
By relying on Modelica syntax and semantics, we 
demonstrate how such DAE systems can be modeled 
with only a few extensions to the basic SysML con-
structs (see Section 4).  SysML then serves as an in-
tegration framework in which detailed Modelica 
models can be related to other types of systems engi-
neering knowledge (see Section 6).  The integration 
between SysML and Modelica creates a significant 
synergy: SysML benefits from the detailed Modelica 
semantics for representing DAE systems combined 
with discrete events; Modelica benefits from the 
broader information modeling context provided in 
SysML, a context that is crucial for establishing for-
mal, unambiguous communications between systems 
engineers, disciplinary designers and systems ana-
lysts.  To maintain consistency between the Mode-
lica models and their corresponding abstractions in 
SysML, we introduce the use of triple graph gram-
mars (TGGs) [6] to specify transformations between 
the two forms of models (see Section 5). 

2 Related Work 

The need to describe system behavior in terms 
of equations or constraints has been previously rec-
ognized in the work on Constrained Objects (COB’s) 
[7, 8].  COBs provide both a graphical and lexical 
representation of algebraic relationships that can be 
used to tie design models to analysis models in a pa-
rametric fashion.  These COBs recently served as the 
basis for the development of the SysML parametric 
diagrams [4].  By establishing a mapping between 
COBs and SysML, the integration and execution of 
engineering analyses (such as structural finite ele-
ment analyses) within the context of SysML has 
been demonstrated [9]. This paper extends this past 
work on COBs by focusing on the modeling and 
simulation of the continuous dynamics of systems as 
defined in Modelica models. 

Recently, Fritzson and Pop [10] have worked on 
the integration of UML/SysML and Modelica to 
provide support for modeling and simulating con-
tinuous dynamics.  They have created a UML profile 
called ModelicaML that enables users to depict a 
Modelica simulation model graphically alongside 
UML/SysML information models.  The ModelicaML 
profile reuses several UML and SysML constructs, 
but also introduces completely new language con-
structs.  Such constructs are the Modelica class dia-
gram, the equation diagram, and the simulation dia-
gram. 
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Nytsch-Geusen [11] developed a specialized ver-
sion of UML called UMLH.  This version is used in 
the graphical description and model-based develop-
ment of hybrid systems in Modelica.  The author 
presents hybrid system models as Modelica models 
that are based on DAEs combined with discrete state 
transitions modeled with the Modelica statechart ex-
tension.  Using a UMLH editor and a Modelica tool 
that supports code generation, Modelica stubs can be 
automatically generated from UMLH diagrams so 
that the user must only insert the equation-based be-
havior of the system in question.  In this paper, the 
capabilities of ModelicaML and UMLH are further 
extended by demonstrating the integration of con-
tinuous dynamics models with other SysML con-
structs for requirements, structure, and design objec-
tives, and by demonstrating the translation between 
SysML and Modelica through the use of TGGs. 

3 An Introduction to SysML: The 
Car Suspension Model 

Before discussing the approach for modeling 
continuous dynamics and simulations in SysML, this 
section reviews some important SysML constructs 
and introduces the example problem used throughout 
this paper. 

3.1 SysML Blocks 

The primary modeling unit in SysML is the 
block.  As described in chapter 8 of the SysML 
specification [4], a block is a modular unit of a sys-
tem description.  A block can represent anything, 
whether tangible or intangible, that describes a sys-
tem.  For instance, a block could model a system, 
process, function, or context.  When combined to-
gether, blocks define a collection of features that de-
scribe a system or other object of interest.  Hence, 
blocks provide a means for an engineer to decom-
pose a system into a collection of interrelated ob-
jects. 

All block declarations occur in a Block Defini-
tion Diagram (BDD).  A BDD is used to define 
block features and the relationships between blocks 
or other SysML constructs.  Figure 1 depicts the 
definition of a car and its suspension.  A car is obvi-
ously composed of more subsystems and compo-
nents, but Figure 1 is sufficient for the sake of dem-
onstration.  SysML allows a modeler to omit ele-
ments of the underlying information model that de-
tract from the main intent of a diagram. 

3.2 SysML Properties 

A SysML property describes a part or character-
istic of a block and consists of a named value of a 
specified type.  In Figure 1, two important categories 
of properties are depicted.  The first kind of property 
is a part property.  Part properties represent a sub-
system or component of a system and must be typed 
by a block.  Part properties can be depicted in the 
parts compartment of a block or using a composition 
association.  A composition association is depicted 
using a black diamond with a tail.  The property 
name appears at the tail end of the association.  For 
example, the block Car in Figure 1 owns a part prop-
erty named suspension of type WheelSuspension. 

The second kind of property is a value property.  
A value property appears in a block’s values com-
partment and represents a quantifiable characteristic 
of a block (e.g. mass, length, velocity) and must be 
typed to a SysML value type.  A value type is a spe-
cial modeling element (similar to a block) used to 
assign the units of measure and dimension declared 
in its definition.  For example, Car in Figure 1 has a 
value property mass which is typed to the value type 
SI.Mass to supply units of kilograms. 

3.3 UML Stereotypes 

A stereotype is a UML construct used to create 
customized classifications of modeling elements.  
Stereotypes are defined by keywords that appear in-
side of guillemets.  These customization constructs 
extend the standard elements to identify more spe-
cialized cases important to specific classes of appli-

 
Figure 1.  The SysML car suspension model. 
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cations.  Most SysML constructs have been defined 
as UML stereotypes, and users are allowed to create 
additional stereotypes to capture the specialized se-
mantics of a particular application domain.  An ex-
ample of a stereotype is illustrated in Figure 1. The 
stereotype «moe» applied to the WheelSuspension’s 
value property settlingTime indicates that it is a 
measure of effectiveness.  

3.4 SysML Requirements 

A SysML requirement is used to represent a tex-
tual requirement or objective for a system, subsys-
tem, or component.  Requirements are shown with 
the «requirement» stereotype and optionally have a 
compartment for displaying text and identification 
fields.  Requirements are related to other modeling 
elements using various dependencies such as the sat-
isfy and verify dependencies. 

4 Modeling Continuous Dynamics in 
SysML 

In this section, the approach to modeling con-
tinuous dynamics in SysML is presented.  The ap-
proach builds on the initial modeling foundation out-
lined in [12].  Rather than elaborating upon every 
detail, only the most important modeling constructs 
are discussed. 

4.1 Objectives 

A model is valuable if it increases a decision 
maker’s ability to design a better system at an ac-
ceptable cost [13].  As explained later in this section, 
the continuous dynamics modeling constructs will 
provide value if they meet the following objectives: 

• Enable the integration of continuous dynamics 
models into broader SysML models; 

• Facilitate the execution (i.e., simulation) of 
these continuous dynamics models; 

• Encourage model reuse; 
• Facilitate efficient stakeholder communication. 

The intent of these objectives is to strike an appro-
priate balance between the benefits expected from 
developing a model and the costs of encoding the 
required information. 

Model integration is essential for managing sys-
tem complexity through recognition and establish-
ment of dependencies and associations between 
models of continuous dynamic system behavior and 
other models of system behavior, structure, or func-

tionality.  SysML is a language for describing sys-
tems engineering information and knowledge, but is 
by itself not executable—model execution is rele-
gated to an editing and execution tool.  To be effec-
tive, it is therefore important to establish seamless 
connections between SysML and simulation tools.  
Model reuse is another imperative for realizing sig-
nificant reductions in project resource expenditures.  
Finally, using a unified approach for representing 
continuous dynamics in SysML establishes a proto-
col for unambiguous communication of behavioral 
information between designers operating in various 
engineering disciplines. 

4.2 Modelica as a Foundation 

When creating a formal approach for represent-
ing continuous dynamics in SysML, Modelica pro-
vides a strong foundation.  Modelica has emerged as 
the language of choice for expressing continuous 
dynamic system behavior.  It is better structured and 
more expressive than most alternatives such as 
VHDL-AMS [14] or ACSL [15].  In addition, both 
SysML and Modelica are similar in that they use 
base modeling elements that adhere to the principles 
of object-oriented modeling.  Both languages also 
encourage model reuse through acausal equation-
based modeling.  Unfortunately, enough differences 
exist such that a direct one-to-one mapping is not 
possible.  Since SysML is intended to be a general 
modeling language, some of the specialized seman-
tics of Modelica do not have a direct equivalent in 
SysML.  To overcome these differences, our ap-
proach has been to find a good balance between con-
verting some implicit Modelica semantics into ex-
plicit constraints in SysML or, when that is not pos-
sible, extending the SysML constructs through 
stereotypes.  

4.3 Model Declaration 

When modeling continuous dynamic system be-
havior, a modeler must first declare the model that 
represents the system of interest.  This involves 
specifying the blocks and properties needed to de-
compose the system to an appropriate level of ab-
straction.  The level of abstraction is determined by 
the amount of detail needed to perform an acceptable 
system analysis.  This declaration approach is analo-
gous to creating Modelica classes that own compo-
nents and variables typed to other class definitions. 

To illustrate model declaration, Figure 2 displays 
the declaration of a continuous dynamics model of a 
Mass-Spring-Damper (MSD) system.  This model 
will be used in Section 6 to perform a behavioral 
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analysis on the car suspension model from Figure 1.  
The MSD system is composed of a mass, spring, 
damper, fixed position (i.e. ground fixture), and a 
detector that determines system settling time.  The 
block MSD represents the declaration of the MSD 
system while the other blocks (Mass, Spring, 
Damper, SteadyStateDetector, Fixed, and MechJunc-
tion) represent the definitions of the system compo-
nents. 

Upon declaring the necessary models, their 
properties must be identified.  Figure 2 depicts the 
declaration of both the part and value properties.  
MSD is attributed with the mass, spring, damper, 
ground, and detect part properties typed to the Mass, 
Spring, Damper, Fixed, and SteadyStateDetector 
block definitions, respectively.  While MSD has no 
value properties, most of the block definitions to 
which its part properties are typed contain value 
properties.  For example, Mass contains a value 
property m typed to the value type SI.Mass. 

4.4 Model Interface 

To interact with other models, a given model 
must have a well-defined interface.  Models used in 
the description of a system’s continuous dynamic 
behavior generally interact using exposed across and 
through variables [16].  Since across and through 
variables are the only means of interaction, they 
should be encapsulated inside of reusable blocks that 
are typed to the part properties of another block.  
These part properties are then exposed to other sys-
tem components and subsystems.  This type of inter-
face is similar to the usage of Modelica connectors.  

To illustrate the declaration of a model interface, 
Figure 2 depicts a block named MechJunction.  This 
is a reusable block that encapsulates position and 
force value properties corresponding to translational 
across and through variables.  To define the inter-
faces for each component of MSD, the appropriate 
number of part properties are declared for each com-
ponent and then typed to MechJunction.  For exam-
ple, Mass has one part property j typed to MechJunc-
tion. 

4.5 DAE-Based Internal Behavior 

To define a model’s DAE-based internal behav-
ior, Modelica relies on equations declared in the 
equation clause of a given class.  Similarly, this is 
accomplished by placing SysML constraints on a 
given block.  A constraint is simply the representa-
tion of an equation that constrains a block’s value 
properties.  Constraints appear between braces and 
are displayed in a block’s constraints compartment.  
To model initial conditions, a constraint can be as-
signed the «initial» stereotype.  This stereotype is an 
extension to SysML; it can only be assigned to con-
straints and implies that the constraint only holds 
true at the beginning of a simulation. 

Usages of constraints and the «initial» stereotype 
are shown in Figure 2.  The internal behavior of the 
block Mass is defined using four regular constraints 
and one initial constraint.  Note that the constraints 
explicitly refer to the Modelica language, but other 
syntax could be used according to the modeler’s pre-
ferred executable language. 

4.6 Energy and Signal Flow between System 
Components 

To model the flow of energy through a system 
and its components, a means of interaction must be 
provided to the interface part properties described in 
Section 4.3.  Generally, the flow of energy in a sys-
tem is described using the equivalent of Kirchhoff’s 
circuit laws: at a connection, all across variables are 
equal, while all the through variables add up to zero.  
While this is modeled implicitly in Modelica using 
connect clauses, our SysML modeling approach ex-
plicitly models the interaction with reusable con-
straint blocks.  As defined in the SysML specifica-
tion [4], a constraint block is a specialized form of 
the SysML block and is intended to package com-
monly used equations in a reusable, parameterized 
fashion.  Constraint blocks can be identified by the 
«constraint» stereotype that appears in their name-
space compartment.  To use the definition of a con-
straint block, another block or constraint block can 

 
Figure 2.  BDD of the MSD continuous dynamic system 

behavior model. 
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declare a constraint property and assign the type to a 
constraint block.  Using a SysML parametric dia-
gram, the parameters used in the definition of the 
constraint can be bound to the properties of another 
block or constraint block using binding connectors.  
A binding connector implies a pure equality con-
straint between two objects.  If the objects are part 
properties, then all of the sub-properties belonging to 
each part are equal.  It is this difference between the 
semantics of SysML binding connectors and Mode-
lica connections that necessitates the inclusion of an 
explicit node constraint block in SysML.  

Figure 2 shows the definition of a constraint 
block named MechNode.  This constraint block has 
three parameters j1, j2, and j3 of type MechJunction.  
The across and through variables of these parameters 
are subject to the three packaged constraints that de-
scribe Kirchhoff’s circuit laws for a translational 
mechanical system.  MSD owns three constraint 
properties typed to MechNode to enable the interac-
tion of its part properties.  Figure 3 displays a para-
metric diagram that depicts the part interactions as a 
result of binding usages of MechJunction. 

5 SysML and Modelica Integration 

Currently, system engineering problems are 
solved using a wide range of domain-specific model-
ing languages.  Moreover, it is unlikely that a single 
unified modeling language will be able to model in 
sufficient detail the large number of system aspects 
addressed by current domain-specific languages.  
One should not “reinvent the wheel” by creating an 
all-encompassing systems engineering language ca-
pable of modeling and simulating every aspect of a 
system.  On the other hand, managing a large num-
ber of models in different languages also poses prob-
lems, including communication ambiguity and the 
preservation of information consistency.  To allevi-
ate these problems, a model integration framework is 
needed for managing the various modeling languages 
used to solve systems engineering problems. 

SysML can provide an answer to this need for 
model integration.  Using SysML, a modeler can 
abstract a domain-specific language to a level that 
permits its interaction with other system models.  For 
example, a Modelica model is an excellent way to 
capture hybrid discrete/DAE-based system behavior, 
but is not capable of modeling system structure or 
requirements.  Using the modeling approach outlined 
in Section 4, a modeler can abstract a Modelica 

model into SysML syntax to represent dependencies 
and associations with other system models1. 

While SysML is a valuable integration tool, 
much of that value could be detracted if engineers 
must manually transform domain-specific models 
into SysML and vice-versa.  In the case of continu-
ous dynamics models, we need an approach for ac-
complishing automated, bidirectional transforma-
tions between the SysML and Modelica languages. 

Many methods exist for completing model trans-
formations between two or more modeling languages 
(metamodels).  Two common transformation tools 
are OMG’s Queries/Views/Transformations (QVT) 
[17] and TGGs [6]. 

The QVT specification provides a set of lan-
guages for querying a source model that complies 
with a source metamodel and transforming it into a 
target model that complies with a target metamodel.  
Two QVT languages, Relations and Core, are used 

                                                      
1 Dependencies and associations are UML constructs 

for expressing types of relationships between information 
objects. 

 
Figure 3.  Parametric diagram of the MSD model. 
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to declaratively model the relationships between 
source and target metamodels at different levels of 
fidelity.  The Operational Mappings language is then 
used to perform imperative transformations based on 
the relationships depicted in the Core or Relations 
languages.  Overall, QVT is a powerful and widely 
accepted model transformation tool; however, the 
imperative nature of the Operational Mappings lan-
guage hampers bidirectional transformations. 

TGGs are similar to QVT in intent but are de-
clarative by nature.  Accordingly, TGGs are particu-
larly useful for completing complex, bidirectional 
model transformations.  In a TGG, the metamodels 
for the source and target languages are defined as 
graphs.  The mapping between the two languages is 
then represented as a set of graph transformation 
rules applied to a third graph: a correspondence 
graph.  For example, a SysML block would be re-
lated to a Modelica class using a correspondence 
entity named block2class with one relation pointing 
to the block entity (in the SysML metamodel graph) 
and one to the class entity (in the Modelica 
metamodel graph).  By querying a model space con-
taining SysML or Modelica models, transformations 
are performed until the model space complies with 
the specified TGG. 

Due to the declarative, bidirectional nature of 
TGGs, one set of graph transformation rules can be 
used to transform SysML models into Modelica and 
vice-versa.  Although a TGG is used for this trans-
formation, others have shown that QVT is equally 
expressive and capable [18].  The TGG and graph 
transformation rules have been encoded in the Visual 
Automated Model Transformations (VIATRA) [19] 
framework.  VIATRA enables modelers to create 
models in a declarative fashion and use pattern rec-
ognition to complete graph transformations in a se-
quential fashion using machines.  To demonstrate 
this TGG, a Java plug-in for Eclipse has been im-
plemented to transform SysML models developed in 
the Embedded Plus (E+) modeling environment into 
Modelica models using the OpenModelica [20] com-
piler (OMC) and Modelica Development Tooling 
(MDT) plug-in for Eclipse.  The functionality of this 
plug-in is depicted in Figure 4. 

6 Modeling Simulations in SysML 

In the context of model-based systems engineer-
ing, models and simulations allow systems engineers 
to investigate and predict the behavior of system al-
ternatives without the need for physical prototyping.  
For example, a continuous dynamics model of a 

MSD can be used to simulate and predict the behav-
ior of a car suspension alternative.  This section de-
scribes how a continuous dynamics model can be 
related to other relevant design information in 
SysML: binding of model parameters in a model 
context; defining an experiment performed on a 
model in a simulation; defining a measure of effec-
tiveness as the result of a simulation; and using an 
abstracted simulation in the context of design opti-
mization. 

6.1 Defining the Model Context 

In systems engineering, a continuous dynamics 
model is always used in a particular model context.  
Within this model context the elements of the system 
structure are bound to the corresponding elements of 
the analysis model.  In current practice, engineers do 
not always distinguish between the physical structure 
or system topology and the corresponding system 
behavior.  For instance, it is common practice to use 
an electric circuit diagram as the representation for 
defining both the circuit topology as well as the be-
havior of the circuit in a SPICE simulation.  As sys-
tems become more complex there often is a need to 
represent a system by multiple simulation models, 
corresponding to different levels of abstraction or 
different disciplinary perspectives. The use of an 
explicit model context as suggested here facilitates 
the preservation of consistency amongst all the sepa-
rate models. 

To relate the structure to the behavior, a model 
context block is defined with two part properties: one 
usage of the system model and one usage of the 
analysis model.  If mathematical relationships be-

 
Figure 4.  Functionality of the SysML-to-Modelica 

transformation Eclipse plug-in. 

Integrating Models and Simualtions of Continuous Dynamics into SysML

The Modelica Association 141 Modelica 2008, March 3rd − 4th, 2008



yond simple equivalence exist between the known 
elements of the system model and the corresponding 
elements of the analysis model, additional constraint 
blocks can also be defined. Finally, a parametric dia-
gram of the model context block is created to bind 
the known system elements to the corresponding 
analysis elements. 

 In the lower portion of Figure 5, the block 
ModelContext is defined as owning usages of MSD, 
Car, and a constraint block named MassRelation.  In 
Figure 6, a corresponding parametric diagram is 
shown establishing a relationship between the MSD 
and car masses.  Inside of this parametric diagram, 
msd.mass.m is defined as one quarter of the mass of 
mcCar.mass by connecting them to the appropriate 
parameters on the constraint property massRel. 

6.2 Modeling the Simulation 

A simulation is an experiment performed on a 
computational model [21].  Before a simulation can 
be performed, the experiment needs to be completely 
defined: the initial values and boundary values, the 
outputs to be observed, and potentially the process 
steps one should go through in the experiment (e.g., 
time traces of external inputs).  From a modeling 
perspective, all of these aspects can be captured in 
the model itself or in extensions of the model defined 
using the same Modelica/SysML constructs de-
scribed in Section 4.  One can therefore assume that 
the “model” as defined in the model context is fully 
specified — all the parameters are bound to values 
and the set of system equations is non-singular.   
Under those assumptions, the only additional infor-
mation that needs to be provided is the start and end 

time of the simulation. 

To make the semantics of a simulation explicit in 
SysML, we have defined a «simulation» stereotype.   
As is illustrated in Figure 5, this stereotype requires 
the inclusion of a time property, which represents the 
simulation time; startTime and stopTime properties; 
and a simModel block. The meaning of the stereo-
type is then that all the properties in the simModel 
are evaluated as a function of time from startTime to 
stopTime.  Note that this stereotype completely de-
fines a simulation experiment in a fashion that is in-
dependent of any particular simulation solver.  In 
addition, note that Modelica semantics differ from 
SysML semantics which require the explicit defini-
tion of a local simulation time property to which all 
time-varying system properties can be bound. 

6.3 Abstracting the Simulation 

A simulation as defined in the previous section 
allows a systems engineer to define an experiment in 
which the system behavior can be observed.  How-
ever in systems engineering, simulations are often 
used to make decisions.  In that case, the same ex-
periment is often performed on multiple variations of 
the same system — the design or decision alterna-
tives.  It then becomes important to abstract this 
simulation formally by clearly defining the inputs 
(the properties that can take on different values from 
one simulation run to the next), and the outputs (the 
properties that are of interest to the design, for in-
stance, a measure of effectiveness that drives a de-
sign optimization).  The relationship between inputs 
and outputs of the simulation can then itself be con-
sidered as a model.  Unlike the model of the system, 
this input-output model is an algebraic relationship, 
albeit a very complex one that requires running the 
entire simulation to compute the outputs from the 
inputs.  When abstracting (or “wrapping”) a simula-
tion in this fashion in support of decision making, it 
is justifiable to assume that the outputs of the simula-
tion are scalar quantities (decisions can only be made 

 
Figure 5.  BDD of the SuspensionSimulation block. 

 
Figure 6.  Parametric diagram of the ModelContext. 
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based on scalars because vectors cannot be rank-
ordered [22]).  Sometimes this requires that one in-
clude additional modeling elements in the continuous 
dynamics model to define these scalar measures of 
effectiveness.  For instance, in the BDD in Figure 5 
and the corresponding parametric diagram in Figure 
7, the suspension simulation has been abstracted into 
an input-output model with inputs as the decision 
variables, dInput and kInput (bound to the damping 
and stiffness of the suspension), and an output as the 
measure of effectiveness, ssTimeOutput (the steady-
state time of the mass-spring-damper system).  The 
output has been bound to a model property through a 
sample and hold constraint property, sample&hold, 
making explicit that the output takes on the value of 
the time-varying property detect.ssTime when the 
simulation time equals stopTime.  In general, more 
complex models may be necessary to relate scalar 
outputs to time-varying simulation properties. 

6.4 Embedding a Simulation into an Analysis 

Once a simulation has been abstracted into an 
input-output model, it can be used in support of ana-
lyzing system alternatives with respect to stakeholder 
requirements and measures of effectiveness, as is 
illustrated in Figures 8 and 9.  Analyses generally 
verify that a system alternative meets a certain sys-
tem requirement, which can be modeled explicitly 
using the «verify» dependency. A parametric dia-
gram of that block can be used to connect the system 
alternative to the simulation, as is illustrated in Fig-
ure 9.  Instead of binding the simulation inputs and 
outputs directly to the corresponding value properties 
of the system alternative, one could also define an 
optimization problem in which the stiffness and 
damping are optimized with respect to one or more 

measures of effectiveness.  Whenever there is a need 
for repeated evaluation of the simulation with differ-
ent inputs, it is desirable to embed the simulation 
explicitly in an analysis context as is shown in Fig-
ure 8. 

7 Discussion and Closure 

In this paper, we have introduced an approach 
for combining SysML and Modelica in a synergistic 
fashion.  No single language or formalism can possi-
bly capture all of the knowledge and information 
needed to solve systems engineering problems.  
While Modelica is well-suited for describing the dy-
namic behavior of complex systems, it offers no 
support for relating that behavior to stakeholder re-
quirements.  Similarly, SysML allows one to define 
the high-level relationships between requirements 
and functional, physical and operational architectures 
of a system, but lacks the detailed semantics to cap-
ture for instance geometry.  It is therefore crucial that 
capabilities are developed for relating in a formal 
framework the different knowledge representations 
commonly employed in systems engineering prob-
lems. SysML provides the foundation for making a 
first step in that direction.  The general-purpose and 
adaptable nature of the language enables system en-
gineers to interrelate their preferred knowledge rep-
resentations.  In addition, formal metalevel mappings 
as described by TGGs provide a promising founda-

 

Figure 7. Parametric diagram of SuspensionSimulation. 

 
Figure 8. BDD of the SuspensionAnalysis block. 

 

 
Figure 9. Parametric diagram of SuspensionAnalysis. 
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tion for bidirectional mappings between the different 
knowledge representations. 

Using the modeling approaches described in this 
paper, engineers will be more capable of managing 
system complexity through the modeling of depend-
encies between continuous dynamic system behavior 
and other system aspects.  Additionally, the mapping 
of SysML to Modelica and the resulting transforma-
tion abilities enable engineers to describe their sys-
tems at a higher level of abstraction while still main-
taining the benefits of executable knowledge repre-
sentations. 

In this paper, the intent has been to take advan-
tage of SysML’s adaptability and to make a step to-
wards the unification of various modeling formal-
isms.  While the continuous dynamics modeling ap-
proach described in this paper builds on the Mode-
lica language, it still maintains a certain language 
independence thanks to the general, declarative na-
ture of Modelica.  TGGs could be developed to map 
SysML to the syntax of other languages, with the 
restriction that when mapping to a causal, procedural 
modeling language, a compiler must be used to as-
sign causalities and sort the equations.   

The ongoing efforts towards the unification of 
engineering knowledge representations in SysML are 
exciting steps for the systems engineering commu-
nity.  Utilizing and increasing the abilities of SysML 
promises to improve the current state of systems en-
gineering and bring to fruition the benefits of MBSE.  
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Abstract
The paper describes a Modelica library for the simulation of logic control systems written in 
the FBD (Functional Block Diagram) language as defined in the IEC61131.3 standard. The 
library contains not only strictly  logic blocks, but  also  the main  types of  industrial PID 
controllers. Models of different complexity levels are included, so that the user can specify a 
control system as a continuous­time model (for fast simulation to check whether or not a 
control strategy solves the problem at hand) or an event­based one (for precise evaluation of 
the algorithms' behaviour).

1. Introduction

In many control domains, particularly – but not 
exclusively   –   in   the   process   control   field,   a 
correct   representation   of   the   control   system 
connected  to   the  plant  being  investigated  is  of 
paramount importance [7, 1, 3, 18, 19, 8, 9, 4, 11, 
13, 17, 21, 15]. In many cases, the structuring and 
the subsequent  tuning of  that control  system is 
even the main goal of the simulation activity; and 
also if control commissioning is not the primary 
purpose of the simulation, having a correct and 
realistic   control   representation   is   always 
important   in   order   to   draw   meaningful 
conclusions.

Nowadays,  more and more  control   systems  are 
implemented adhering to the IEC61131.3 standard 
[1, 2, 6, 7, 20, 10, 11, 14, 16], that defines five 
programming languages (Ladder Diagram or LD, 

Sequential Functional Chart  or SFC, Functional 
Block Diagram or FBD, Structured Text or ST, 
Instruction List or LD) basically oriented to logic 
control,  although most   systems adhering  to   the 
standard also offer modulating control functions. 
In   the   last   years,   the   IEC61131.3   standard   has 
become   very   popular   in   the   arena   of   PLC 
programming,  therefore spreading out  in a vast 
number of contexts and applications [2, 10, 8, 16, 
15, 5]. 

As   such,   having   the   IEC61131.3   standard 
available in the Modelica environment is of great 
help, for at least two reasons. First, if an industry 
standard is  uniformly  adopted, there is (ideally) 
no  room for ambiguities  in  the communication 
between the people who own and/or run the plant, 
and  the  analysts  who  create  the   simulator   and 
realise  the necessary   studies  (some  issues may 
still  arise owing to  the fact  that virtually every 

Modelica Library for Logic Control Systems written in the FBD Language

The Modelica Association 147 Modelica 2008, March 3rd − 4th, 2008



standard   is   the   result   of   a   compromise,   and 
therefore very frequently exists also in the form 
of   so­called   “dialects”,   but   addressing   that 
problem is  apparently beyond the scope of  this 
research).   Second,   the   solutions   found   at   the 
simulation level are deployed to the target control 
architecture in a very straightforward way.

For   the   reasons   above,   a   free   (GPL)   FBD 
Modelica   library   is   being   developed   at   the 
Politecnico di Milano. The present state of that 
library is described in this paper, that is organised 
as follows. Section 2 describes the organisation of 
the library, briefly list its contents, and presents 
some selected blocks with a minimum of detail. 
Section 3 discusses two examples. The first aims 
at   showing   the   importance   of   having   the 
regulators   described   both   at   a   simplified 
(continuous­time) and at a detailed (event­based) 
level.   The   second   shows   some   library   blocks 
applied to the control of a small manufacturing 
system, to illustrate how the obtained Modelica 
schemes   are   easily   understood   by   people 
developing code for the typical industrial control 
architectures.   Finally,   section   4   reports   some 
conclusions, and the future plans of the research.

2  Library organisation

The library comes in a single Modelica package 
named  FBD,   and  organised   in   subpackages   as 
sketched below:

● the  FBD.OneBitOperation  subpackage 
implements basic logical operations,

● the  FBD.CompareOperation  subpackage 
implements comparisons (the <, >, >= ,<= 
,=   operators)   on   the   Integer   and   Real 
types,

● the  FBD.Counter   subpackage  provides 

up/down counters,

● the  FBD.MathOperation  subpackage 
implements   the   basic   mathematical 
instructions,

● the  FBD.Timer  subpackage   provides 
timers (and is similar to the Counter one),

● the  FBD.NBitOperation  subpackage 
implements logical operation on arrays of 
bits,

● the  FBD.LinearSystems  subpackage 
provides   linear,   time   invariant   dynamic 
systems   in   the   continuous   and   discrete 
time,   as   typically   specified   in   IEC­
compliant   control   code   development 
environments,

● the  FBD.IndustrialController  subpackage 
contains   several   industrial   controllers, 
including of course several types of PID,

● the  FBD.Test  subpackage   contains   test 
simulators   for   each   FBD   block, 
individually,   to   allow   for   a   precise 
comprehension of its functionalities,

● and   finally   the  FBD.Applications 
subpackage   provides   some   examples   of 
use of the FBD blocks of the library.

For obvious space reasons we do not describe the 
blocks here, referring the interested reader to the 
library documentation. A couple of remarks are 
however worth some lines.

First,   for  every  component   a   “test”   model   is 
provided,  to  allow  the user  to   fully  understand 
how   that   component   works,   and   possibly 
disambiguate   situations   where   the   available 
specifications   are   not   fully   univocal;   everyone 
wishing to extend the library (contributions are of 
course welcome  in   the  GPL  spirit)   is   strongly 

A. Leva, F. Donida, M. Bonvini, L. Ravelli

The Modelica Association 148 Modelica 2008, March 3rd − 4th, 2008



encouraged to do the same.

Second,   especially   for   regulators,   both 
continuous­time   and   event­based   models   are 
present.   The   former   type   of   model   allows   for 
faster  simulation,   and  is   the choice of  election 
when the purpose is to check the correctness of a 
control  strategy.   The   latter   is   apparently   less 
time­efficient, but allows to check the behaviour 
of   a   control  algorithms.   The   library   therefore 
allows to perform both types of simulation, and 
even to mix the two, e.g. by convenient use of 
model replaceability, and top­level variables. To 
limit   the   performance   loss,   equations   (not 
algorithms) were used in event­based models, so 
as to allow those models to be manipulated with 
the rest of the simulator. Doing so involves some 
limitations when porting a pre­existing algorithm 
into   the   library,   since   for   example   multiple 
assignments   are   not   allowed.   It   is   the   authors' 
opinion, however, that an accurate translation in 
the   form   adopted   by   the   presented   library   is 
possible  for  of   any  control   algorithm one may 
come across.

For example, the following Modelica code is the 
event­based implementation of an ISA PID with 
antiwindup,   manual   and   tracking   modes,   and 
bumpless mode switch [17, 18].

function Der "Thi sfunction represents a derivative action" 
  input Real sp;
  input Real pv;
  input Real pv_old;
  input Real Td;
  input Real Ts;
  input Real N;
  input Real d_old;
  output Real d;
algorithm 
  d := Td/(Td + N*Ts) * d_old ­ Td*N/(Td + N*Ts) * (pv ­ pv_old);
end Der;

model Proportional 
  RealInput sp "set point"; 
  RealInput pv "process variable"; 
  RealOutput p "control signal"; 
  parameter Real Ts =  0.1 "sample time [s]"; 
  parameter Real K =   5 "proportional constant"; 
  parameter Real b =   1 "set point weight"; 
protected 

  discrete Real sp_d; 
  discrete Real pv_d; 
  discrete Real p_d(start=0); 
equation 
  when sample(0,Ts) then 
    sp_d = sp; 
    pv_d = pv; 
    p_d  = p; 
    p = Pr(pre(sp),pre(pv),K,b); 
  end when; 
end Proportional; 

model Integral 
  RealInput sp "set point"; 
  RealInput pv "process variable"; 
  RealOutput i "control signal"; 
  parameter Real Ts =  0.1 "sample time [s]"; 
  parameter Real Ti =  5 "integral time"; 
protected 
  discrete Real i_d(  start=0); 
  discrete Real sp_d(  start=0); 
  discrete Real pv_d(  start=0); 
equation 
  i_d = i; 
  when sample(0,Ts) then 
    sp_d = sp; 
    pv_d = pv; 
    i_d = Int(pre(sp),pre(pv),Ti,Ts,pre(i_d)); 
  end when; 
end Integral; 

model Derivative 
  RealInput sp "set point"; 
  RealInput pv "process variable"; 
  RealOutput d "control signal"; 
  parameter Real Ts =  0.1 "sample time [s]";
  parameter Real Td =  5 "derivative time"; 
  parameter Real N =  10 "derivative filter"; 
protected 
  discrete Real d_d(  start=0); 
  discrete Real d_d2(  start=0); 
  discrete Real pv_d(  start=0); 
  discrete Real pv_d2(  start=0); 
  discrete Real sp_d(  start=0); 
equation 
  d_d  = d; 
  when sample(0,Ts) then 
    pv_d  = pv; 
    sp_d  = sp; 
    d_d2  = pre(d_d); 
    pv_d2 = pre(pv_d); 
d_d= Der(pre(sp_d),pre(pv_d),pre(pv_d2),Td,Ts,N,pre(d_d2)); 
  end when; 
end Derivative; 

model PID_parallel_AW_Tr_AutoMan 
  RealInput sp "set point"; 
  RealInput pv "process variable"; 
  RealInput tr "signal followed during the tracking mode"; 
  RealInput CSman "control signal for manual mode"; 
  BooleanInput TS "flag for the tracking mode"; 
  BooleanInput MAN "flag for the manual mode"; 
  RealOutput cs "control signal"; 
  Proportional P( Ts=Ts,K=K,b=b) "Proportional block"; 
  Derivative D(    Ts=Ts,Td=Td,N=N) "Derivative block"; 
  Integral I(     Ts=Ts,Ti=Ti) "Integral block"; 
  parameter Real Ts = 1 "sample time [s]"; 
  parameter Real Ti = 8 "integral time"; 
  parameter Real Td = 5 "derivative time"; 
  parameter Real K = 10 "proportional constant"; 
  parameter Real b = 1 "weight of the set point in the P action"; 
  parameter Real N = 10 "derivative filter"; 
  parameter Real CSmax = 1 "Max cs value"; 
  parameter Real CSmin = 0 "min Cs value"; 
protected 
  Real control; 
equation 
  P.sp = sp; 
  D.sp = sp; 
  I.sp = sp; 
  P.pv = pv; 
  D.pv = pv; 
  I.pv = pv; 
  control = if (MAN==false)
            then I.i + P.p + D.d
            else CSman; 
  cs = if (TS==true and MAN==false)
       then tr
       else max(CSmin,min(CSmax,control)); 
end PID_parallel_AW_Tr_AutoMan; 

3  Examples We now report two simulation examples. the first 
is   aimed   at   showing   the   usefulness   of   the 
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possibility   of   simulating  the   same  regulator   as 
continuous­time and as event­based model, while 
the   second   shows   a   “small   but   realistic” 
application of the presented library.

3.1 Example 1

This   example   refers   to   some   PI/PID   control 
loops,   and deals with   set  point   step   and  ramp 
responses where  the   antiwindup  mechanism  of 
the regulator comes into play. The process to be 
controlled is described by the transfer function

P s = 1
12ss2/0.016

and the PID regulator

Rs=10 1 1
30s


3s

10.3s 
is   applied  to   it,   in   the continuous­time version 
and  as   an   event­based model with   a   sampling 
time of 0.01 s.

Figure 1: results of example 1.

Figure 1  above shows  the comparison between 
the  continuous­time  (R1) and event­based  (R2) 
controller implementation in the case of a ramp 
response  (left   column  of   plots)   and   of   a   step 
response (right column): SP, PV and CS stand for 
Set   Point,   Process   (controlled)   Variable,   and 
Control   Signal,   respectively.   Apparently, 
simulating the same controller as a continuous­
time   or   an   event­based  model   (i.e.,   as   it   will 
really  be   implemented)  can give  very  different 
results,   depending   not   only   on   the   controller 
parametrisation, the sampling time and other very 
well   known  facts,   but   also  on   the   control   law 
being   incremental   or   positional,   of   the 
antiwindup type, and so on (facts that conversely 
are frequently overlooked). The example therefore 
backs up the usefulness of the presented library 
as   far   as   the   control   behaviour   evaluation   is 
concerned.

3.2 Example 2

This   example   shows   the   control   of   a   small 
manufacturing system where parts are fed to the 
working area by a conveyor, machined, and then 
taken   away   by   another   conveyor.   The   detailed 
sequence of operations is as follows:
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● lead   one   part   near   the   machining   area 
entrance with an input belt,

● push the part into the machining area with 
an input piston,

● machine   the   part   (drill   a   hole   with   a 
controlled­speed machining head)

● push the part out of the machining area 
with an output piston,

● and  finally   lead  the   part   away  with   an 
output belt.

The   considered   machine   is   synthetically 
described in figure 2

Figure 2: schematic drawing of the machine considered in 
example 2.

Figure 3 shows the Modelica scheme using some 
library blocks (mostly set point generators, PIDs, 
and logic elements), while a sample of simulated 
transients is given in figure 4.

Figure 3: the Modelica scheme using the presented FBD library used in example 2.
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Figure 4: some simulated transients referring to example 2; the upper plot shows the drilling head x position (red) and set  
point (blue), the lower plot shows the drilling depth (red) and set point (blue).

The   similarity   of   figure   3   with   the   schemes 
encountered  in many control  code development 
systems   are   apparent.   The   example   therefore 
backs up the usefulness of the presented library 
as far as the clarity of the control specification (in 
terms of a widely accepted industrial standard) is 
concerned.

4  Conclusions

A free (GPL) Modelica library for the simulation 
of   logic   control   systems   written   in   the   FBD 
(Functional   Block   Diagram)   language   was 
presented.

The library adheres to the FBD specifications as 
defined in the IEC61131.3 standard, and contains 
not only strictly logic blocks, but also the main 
types of industrial controllers, particularly of the 

PID type. The adoption of an industrial standard 
facilitates   information   sharing   and   greatly 
reduces ambiguities.
 
With   the   presented   library,   that   the   user   can 
specify a control system as a continuous­time or 
an event­based model , for maximum flexibility 
in fulfilling the simulation needs.

Some simulations were presented to illustrate the 
usefulness of the library, which will be extended 
in the future, with respect to both FBD and other 
IEC­compliant languages.
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Abstract 

The modeling of thermo-physical fluid properties is 
of great importance when modeling thermo-fluid 
systems. The Modelica Standard Library provides a 
number of medium models that can be used in com-
ponent models but are not sufficient in many applica-
tions. This paper presents a new interface library 
with a Modelica front-end that allows for an easy 
inclusion of external fluid property code in Modelica 
using the standard interfaces provided in the Mode-
lica.Media library. The new library was developed as 
an open-source project and is available for free from 
the Modelica website including an interface to the 
FluidProp software developed and maintained at TU 
Delft. The new library can easily be extended to 
other external fluid property code. 
Keywords: external fluid property code; Mode-
lica.Media; thermo-fluid systems 

1 Introduction 

Modelica is finding more and more applications in 
the field of thermo-fluid system modeling due to the 
many advantages of the object-oriented equation-
based approach. A fundamental problem in this field 
is the availability of good Modelica models for the 
computation of fluid properties. The Modelica.Media 
library was included in the Modelica Standard Li-
brary in version 2.2. It currently provides several 
ready-to-use models for ideal gases, mixtures, wa-
ter/steam, moist air, table-based incompressible flu-
ids, and generic linear fluid models which can be 
used in a wide range of applications. The library and 
some applications are described in [1] and [2]. How-
ever, there exists a large class of engineering systems 
such as refrigeration systems, heat pumps, or organic 
Rankine cycles that require accurate models of ap-
plication-specific two-phase fluids which are cur-
rently not provided in the Modelica Standard Li-
brary. 

One possibility to overcome this limitation is to write 
the required medium models in Modelica, possibly 
by conforming to the Modelica.Media interfaces for 
greater compatibility. The advantage of this ap-
proach is that self-contained Modelica models are 
obtained that can be optimized for efficiency. The 
major drawbacks are that writing such code requires 
a sizable investment in terms of time and effort, and 
that the developed code can only be re-used in a 
Modelica context. 
The other possibility is to take advantage of existing 
fluid property code developed for general-purpose 
applications and to interface that code to Modelica. 
This approach offers a couple of unique advantages 
compared to a Modelica-internal solution: 

• Many existing fluid property codes are well-
tested and used in a number of commercial 
applications and products. 

• Many existing fluid property codes provide 
fast and robust solvers for the inverse itera-
tion of fluid properties. 

• External fluid property codes can be used in 
a number of different software tools such as 
simulators, office programs, and post-
processing tools. 

Some existing publications such as [3] show that 
interfacing external fluid property code from Mode-
lica is a feasible alternative to Modelica-internal so-
lutions. This solution becomes extremely interesting 
if the effort of developing the interface for any given 
external fluid property code is kept to a minimum. 
The ExternalMedia library was developed with this 
objective in mind. The current implementation con-
siders two-phase, single-substance fluids since this 
combination already covers many interesting appli-
cations that cannot be developed using existing 
Modelica.Media models. Fluid mixtures might be 
supported in the future. 
The goals of the ExternalMedia library can be sum-
marized as follows: 
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• The new medium models shall be 100% 
compatible to the Modelica.Media interface. 

• The new interface library that handles all ex-
ternal fluid property codes should work with 
all available Modelica tools and C/C++ 
compilers. 

• The effort to interface new external fluid 
property codes should be kept as little as 
possible. 

• The new approach shall be numerically effi-
cient to be comparable with current Mode-
lica-internal solutions. 

The new library including all source code will be 
released on the Modelica website and will be made 
available under the Modelica license. 

2 Architecture of the Library 

The new fluid property library consists of three main 
parts: A Modelica front-end called ExternalMedia, 
an interface layer written in C, and an object-
oriented interface library called ExternalMediaLib 
written in C++ that handles a number of external 
fluid property codes. 
The Modelica front-end of the new library is the Ex-
ternalMedia library, whose class structure is illus-

trated in Figure 1. This Modelica library contains a 
package named ExternalTwoPhaseMedium that ex-
tends from PartialTwoPhaseMedium defined in 
Modelica.Media.Interfaces. The ExternalTwoPhase-
Medium package is generic. The actual external fluid 
property code used is specified by setting the values 
of suitable string constants in the medium package. 
The libraryName specifies the name of the external 
fluid property code to be used whereas the sub-
stanceName defines the name of the substance from 
this external fluid property code. The mediumName 
defined in the PartialMedium package in the Mode-
lica.Media library is also passed to the interface li-
brary but is not used for the specification of the fluid. 
The new external medium model can be used in any 
component model that uses a medium package ex-
tending from PartialTwoPhaseMedium. 
A set of functions in the ExternalTwoPhaseMedium 
package corresponds one-to-one to C-functions de-
fined in the C interface layer. These functions are 
called according to the external function mechanism 
as defined in the Modelica language specification. 
The interface layer functions manage a collection of 
C++ objects that define the interface to the external 
fluid property codes. A class diagram of this part of 
the new library is shown in Figure 2. 

 
Figure 1: UML class diagram of packages in Modelica.Media and ExternalMedia library. 
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Figure 2: UML class diagram of C++ objects in the ExternalMediaLib library. 

The first fundamental object is the Solver object that 
encapsulates the external fluid property code. In or-
der to manage several different solvers at the same 
time, the interface layer defines the map SolverMap 
which is a collection of Solver objects indexed by 
the strings defined in the ExternalTwoPhaseMedium 
package. Each time an external function is called, 
these strings are passed as arguments. This allows 
for an instantiation of the corresponding solver when 
the function is called the first time and for the inter-
face layer to point to the correct solver in any subse-
quent function call. 
The second fundamental object is the TwoPhaseMe-
dium object which corresponds with a point in a 
thermodynamic phase diagram such as a pressure-
enthalpy diagram or a point on the saturation curve 
for saturation properties. Each TwoPhaseMedium 
object contains a pointer to the corresponding Solver 
object and a record of type TwoPhaseMediumProp-
erties which is used as a cache record containing all 
possible thermodynamic properties including trans-
port properties. All instances of these objects are 
stored in the map MediumMap which is indexed by 
an integer called uniqueID.  
In order to understand how the library works, con-
sider the following code snippet: 
 
 
 

import SI = Modelica.SIunits; 
 
package Toluene 
  extends ExternalTwoPhaseMedium( 
    mediumName=”Toluene”, 
    libraryName=”REFPROP”, 
    substanceName=”Toluene”); 
end Toluene; 
 
model Example 
  Toluene.ThermodynamicState state; 
  SI.Density d; 
  SI.SpecificEnthalpy h; 
equation 
  state = Toluene.setState_pT(1e5,300); 
  d = Toluene.density(state); 
  h = Toluene.specificEnthalpy(state); 
end Example 
 

The setState_pT() function of the medium package 
calls the corresponding C function of the interface 
layer, passing the values of pressure and temperature 
as well as the three medium identification strings. If 
those strings are not already present in the Solver-
Map, an instance of the corresponding solver (in this 
case REFPROP [4]) is added to the SolverMap. Sub-
sequently, an instance of TwoPhaseMedium is added 
to the MediumMap and the setState_pT() function of 
the Solver is called to compute all fluid properties. 
The computed fluid properties are stored in the Two-
PhaseMediumProperties object that acts as a cache 
record. Finally, a unique identification number is 
returned to identify the TwoPhaseMedium object in 
the MediumMap. This number is stored in the Ther-
modynamicState record together with the values of 
pressure, temperature, density, specific enthalpy, and 
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specific entropy. Note, that the setState_pT() func-
tion in Modelica is an impure function since it re-
turns a different uniqueID each time it is called. 
When the density() function is called, the corre-
sponding interface layer function is called with the 
uniqueID stored in the ThermodynamicState record. 
This allows for retrieving the already computed 
value for the density from the TwoPhaseMedium 
object in the MediumMap. The same thing happens 
when the specificEnthalpy() function is. 
At the next simulation step, when the setState_pT() 
function is called again, a new TwoPhaseMedium 
object is allocated in the MediumMap and a new 
unique identification number is returned. In order to 
avoid running out of memory, the MediumMap is 
used as a circular buffer with a predefined maximum 
number of TwoPhaseMedium objects. The size of 
the buffer must be large enough to accommodate all 
setState_XX() function calls during a single simula-
tion step. 
The most straightforward implementation of the 
Solver objects computes all possible fluid properties 
at once when a setState_XX() function is called. This 
often is a reasonable option since most of the CPU 
time is often spent on the inverse iteration while the 
additional cost of computing all fluid properties is 
small. However, it is always possible to decide that 
the setState_XX() functions of the Solver only com-
pute and store some of the properties and that the 
additional computations are triggered when the func-
tions to retrieve these additional properties are 
called. This is very often a good idea for the trans-
port properties. This mechanism allows for avoiding 
unnecessarily repeated computations in a flexible 
way that is 100% compatible with the existing struc-
ture of the Modelica.Media package. 
Note, that the call of the setState_XX() functions 
will usually be performed before the other function 
calls because of the BLT partitioning of equations 
performed by the Modelica compiler. If this does not 
happen (e.g., due to the presence of implicit equa-
tions), the property functions could be called before 
the unique identification number has been set, thus 
with a default uniqueID=0. In this case it is still pos-
sible for the interface layer to select the correct 
solver by using the medium identification strings and 
to compute the required property using the values of 
pressure, temperature, etc. stored in the Thermody-
namicState record. The uniqueID argument is thus 
introduced for efficiency reasons, i.e. to avoid un-
necessarily repeated computations, but is not re-
quired for the correctness of the results. 
If the BaseProperties model defined in the Mode-
lica.Media library is used to compute the medium 

properties, the circular buffer for the MediumMap 
can be avoided. A unique identification number is 
instead stored in each instance of the BaseProperties 
model. This number is set once and for all during the 
initialization phase. The setState_XX() functions are 
then called within the BaseProperties model by ex-
plicitly supplying the uniqueID. The same Two-
PhaseMedium object in the MediumMap is thus used 
for all computations in the corresponding BaseProp-
erties object. In order for the MediumMap to distin-
guish between these static unique identification 
numbers and the transient unique identification num-
bers discussed in the previous paragraphs, the former 
are given positive values while the latter ones are 
given negative numbers. 

3 Implementing new Medium Models 

Implementing the interface to a new external fluid 
property code is a straightforward task requiring a 
limited amount of time. 
First of all a new Solver must be defined, extending 
from the BaseSolver. This new Solver has to imple-
ment all abstract setState_XX() functions defined in 
the base class. These functions will actually call the 
external fluid property code and store the retrieved 
properties in the TwoPhaseMediumProperties cache. 
Then, a few lines of code must be added to the get-
Solver() function of the SolverMap object in order to 
recognize the new identification strings of the addi-
tional external fluid property code. All remaining 
functionality is already provided by the library 
framework. 

4 Current Status and Future Devel-
opment 

The framework of the new library for the support of 
external two-phase single-substance medium models 
is complete. Two Solvers are already implemented. 
The first Solver, TestSolver, is a dummy fluid model 
roughly corresponding to cold water which can be 
used to troubleshoot the C/C++ and Modelica com-
piler setup without worrying about the actual exter-
nal code. It can also be used as a starting point for 
new user-defined fluid property codes. 
The second available Solver is an interface to the 
FluidProp software [5] developed and maintained at 
TU Delft which provides a common interface to sev-
eral external fluid property codes including StanMix, 
TPSI, and the whole REFPROP database. FluidProp 
can be downloaded for free even though the REF-

F. Casella, C. Richter

The Modelica Association 160 Modelica 2008, March 3rd − 4th, 2008



PROP module requires purchasing a license from 
NIST. Since FluidProp is based on the proprietary 
COM architecture by Microsoft, the corresponding 
solver can only be compiled under MS Windows 
using a MS Visual Studio compiler, even though an 
extension based on open-source architectures is envi-
sioned for the near future. 
The library framework is fully compliant with stan-
dard Modelica (2.2 and 3.0) and with standard ANSI 
C/C++. New Solvers can thus be implemented and 
used within any Modelica tool, using any C/C++ 
compiler. 
The library, including all source code, will be re-
leased under the Modelica License and will be made 
available on the Modelica website. The C/C++ 
source code is fully documented, using the Doxygen 
tool. Future development might include the devel-
opment of new general-purpose Solvers as well as 
the development of an external media interface for 
fluid mixtures. 
Furthermore, the object-based fluid property library 
TILFluids developed at TU Braunschweig and pre-
sented in [6] uses the code of the presented external 
fluid property library and provides a different Mode-
lica interface. TILFluids also provides interfaces to 
other software tools such as MS Excel or MAT-
LAB/Simulink that might be included in a future 
release of the ExternalMedia library. 

5 Conclusions 

This paper presents a new fluid property library for 
two-phase single-substance fluids that allows for an 
easy inclusion of external fluid property code in 
Modelica, using the standard interfaces for two-
phase media defined in the Modelica.Media library. 
Any model designed to use models derived from 
these standard interfaces can therefore be used with-
out any modification. The new library is freely avail-
able under the Modelica license, and can easily be 
extended by including other external fluid property 
codes. Further development might extend the inter-
face to single-phase pure substances and mixture 
media, as well as two-phase mixture media. Inter-
ested users are welcome to use the new library in 
their applications and are invited to contact the au-
thors for contributions to the project. 
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Abstract 

This paper describes a new library designed for 
modeling convective flows in physical systems.  The 
library is based on bond graph technology.  Thermo-
bonds are introduced as a means to capture the con-
vective flow of the internal energy of matter through 
a physical system.  ThermoBondLib is a companion 
library to the BondLib and MultiBondLib libraries 
that were released in 2005 and 2006, respectively. 

Keywords: Bond Graph, Thermo-bond Graph, 
Convective Flow 

1 Introduction  

1.1 Introduction to Thermo-bond Graphs 

Bond graphs [1] describe the flow of power through 
a physical system.  Each power flow can be written 
as the product of two variables, one extensive, the 
other intensive.  For example, electrical power can 
be written as the product of voltage and current, 
whereas mechanical translational power can be writ-
ten as the product of force and velocity. 

Since all physical systems have to comply with 
energy conservation laws, a tool that balances all 
power flows in a physical system can, in principle, 
be used to model any such system. 

A Modelica library based on bond graph tech-
nology, BondLib [2], was released in 2005 and pre-
sented at the 4th Modelica conference in Hamburg-
Harburg.  The library won the 1st price for a free 
Modelica library at that conference. 

Whereas bond graphs are capable of describing 
all types of physical systems, it may not be conven-
ient to do so.  Bond graph models are rather primi-
tive, low-level descriptions of a physical system, and 
therefore, a bond graph representing a complex 

physical system will necessarily be large and poorly 
readable. 

However, bond graphs are nevertheless very use-
ful, because they represent the lowermost graphical 
interface to a physical system model that is still fully 
object-oriented.  Thus, by wrapping other, higher-
level modeling methodologies around a bond graph 
implementation, the semantic distance between the 
lowermost graphical layer and the bottom equation 
layer can be reduced.  This makes a library that is 
based on bond graph technology easily maintainable. 

BondLib contains several wrapped sub-libraries 
for modeling particular classes of physical systems.  
For modeling electronic analog circuits, BondLib 
offers a complete implementation of Spice built on 
bond graph technology [3].  For modeling 1D me-
chanical systems, BondLib offers two sub-libraries, 
one for translational, the other for rotational motion, 
that are similar in nature to the corresponding sub-
libraries of the Modelica standard library, but are 
built upon bond graph technology.  For thermal sys-
tems, BondLib offers a heat transfer sub-library, etc. 

Since its inception, BondLib has been updated 
several times to include new wrapped sub-libraries.  
For example, the mechanical and thermal sub-
libraries became available only in 2007. 

 
However, it may still be too inconvenient to 

model a complex physical system down to the bond 
graph layer in a single step.  For example, the seman-
tic distance between a multi-body system description 
of a 3D mechanical system and a bond graph de-
scription thereof is still too large.  Another interme-
diate layer is needed to be inserted between these 
two layers. 

To this end, a second bond graph library, Multi-
BondLib [5], was released in 2006 and presented at 
the 5th Modelica conference in Vienna.  The library 
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won the 1st price for a free Modelica library at that 
conference. 

When dealing with 2D or 3D mechanical sys-
tems, the d’Alembert principle needs to be formu-
lated several times, once for each spatial direction.  
Also, the principle needs to be formulated separately 
for translational and rotational motions.  This calls 
for a vector representation of bonds, which is pre-
cisely the framework that MultiBondLib has been 
based upon. 

MultiBondLib also offers several wrapped librar-
ies for higher-level descriptions of 2D and 3D me-
chanical systems.  These higher-level descriptions 
are internally implemented as multi-bond graphs.  
The multi-bond graphs are then directly translated to 
the equation layer using the matrix/vector notation of 
Modelica.  This was simpler and more efficient than 
translating the multi-bond graphs first down to regu-
lar bond graphs in a graphical fashion. 

 
When dealing with convective flows, there is yet 

another complication to be considered [4-7].  When 
considering a mass moving macroscopically from 
one place to another, that mass carries along with it 
its internal energy of matter, U: 

 
U = T · S – p · V + g · M   (1) 
 

where T denotes temperature, S is the entropy, p 
represents pressure, V stands for the volume, g sym-
bolizes the Gibbs potential (specific enthalpy), and 
M finally captures the mass. 

The flow of internal energy, Udot = dU/dt, can 
be written as: 

 
Udot = T · Sdot – p · q + g · Mdot  (2) 

 
where q = Vdot represents the volumetric flow rate.  
Consequently, a mass flow is always accompanied 
by a heat flow and a volumetric flow. 

For this reason, mapping convective flows di-
rectly down to regular bond graphs is once again 
cumbersome.  The size of these bond graphs would 
grow too fast. 

The ThermoBondLib library presented in this 
paper provides another vector bond graph representa-
tion, whereby each thermo-bond is composed of 
three regular bonds, one representing mass flow, a 
second representing volumetric flow, and a third rep-
resenting heat flow.  A thermo-bond can be envis-

aged as a parallel connection of three regular bonds, 
as shown in Fig.1: 

 

 
Figure 1:  Representation of a thermo-bond 

 
For reasons of efficiency, the thermo-bond 

model has not been composed in ThermoBondLib in 
a graphical fashion, but rather by equations directly.  
Hence the bond graph of Fig.1 offers only a concep-
tual decomposition of a thermo-bond. 

1.2 The Thermo-bond Connectors 

The thermo-bond connectors would, in analogy to 
the regular bond connectors have to carry at least 
seven variables: the three effort variables, T, p, and 
g; the three flow variables, Sdot, q, and Mdot; and 
finally, the directional variable, d, that assumes a 
value of d = –1 at the connector at which the bond 
emanates and a value of d = +1 at the connector to 
which the bond leads. 

In reality, the thermo-bond connector is an 11-
tuple.  It also carries (for convenience) the three state 
variables, S, V, and M, and in addition a Boolean 
variable, Exist, that is set true when there is mass to 
be transported, and is set false when the mass is 
close to zero.  The Boolean variable is useful, be-
cause the models often operate on specific flows, i.e., 
flows per unit of mass, and Modelica becomes agi-
tated when we attempt to divide a flow rate by zero. 

The thermo-bond connector is depicted in Fig.2. 

 
Figure 2: Thermo-bond connector 

 
The measurement unit of entropy flow is currently 
set to ThermalConductance rather than the dimen-
sionally compatible EntropyFlowRate, because the 
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latter unit is still missing in the Modelica Standard 
Library. 

Just like in the case of the regular bond connec-
tors, the thermo-bond connectors come in three va-
rieties, one used for a-causal thermo-bonds, and the 
other two used for the two types of causal thermo-
bonds. 

1.3 Advantages of Bond Graph Modeling 

Why is it useful to represent component models of a 
Modelica library internally by means of bond 
graphs? 

To demonstrate the usefulness of this approach 
to modeling physical systems, let us consider the 
model of a heat conduction element offered as a 
component model of the heat transfer sub-library of 
the Modelica standard library.  The model is shown 
in Fig.3. 

 
Figure 3: Conduction model of Standard Library 
 

The thermal conductor is modeled in the same way 
as a regular electrical resistor.  Unfortunately, this 
model is incorrect. 

To demonstrate the problems with this model, let 
us look at the bond graph representation of a resistor, 
as shown in Fig.4. 

 
Figure 4: Bond graph representation of a resistor 

 
The electrical power leaving the positive termi-

nal equals va·i, whereas the power arriving at the 
negative terminal equals vb·i.  At the 1-junction, the 
potential drop is being calculated, and the difference 
in power, u·i, gets sent to the resistor. 

What happens to the power as it arrives at the re-
sistor?  It cannot vanish.  It gets dissipated into heat. 

In an electrical resistor model, it may make sense 
to ignore (exclude from the model) the thermal phe-
nomena.  However in a thermal resistor, this makes 
no sense whatsoever. 

Thus, the dissipated heat (generated entropy) 
needs to be routed back into the thermal network.  

Hence a correct model of the thermal conductor 
would have to look as depicted in Fig.5: 

 
Figure 5: Bond graph model of thermal conductor 

 
where the heat exchanger, HE, is internally repre-
sented as shown in Fig.6. 

 
Figure 6: Bond graph model of heat exchanger 

 
The generated heat is divided in two at the top 0-
junction, and the two halves of the generated entropy 
flows are rerouted to the nearest 0-junctions to the 
left and the right of the 1-junction. 

Using the bond graph approach, the shortcom-
ings of the model contained in the Modelica Stan-
dard Library became obvious at once. 

2 Potential Equilibration 

In convective flows, each of the three sub-flows can 
equilibrate its potential variable separately. 

When two bodies are in contact with each other, 
heat diffusion takes place between them.  Heat diffu-
sion is modeled by the thermal conductor discussed 
earlier.  However in the new model, the two connec-
tors to the left and the right are now thermo-bond 
connectors.  The enhanced heat exchanger model is 
shown in Fig.7. 

 
Figure 7: Thermo-bond graph model of heat exchanger 
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The resistive source, RS, was replaced by a con-
ductive source, GS.  The thermal conduction, λ, is 
imported as a modulating signal, rather than being 
treated as a parameter value, and finally, heat con-
duction only takes place if both neighboring sub-
stances exist. 

The red 0-junctions are special junctions that 
take the red vector bond apart and make the individ-
ual component flows available. 

 
The second type of potential equilibration is the 

volume work, represented in ThermoBondLib by the 
pressure/volume exchanger, PVE.  The pressures in 
two neighboring volumes will equilibrate, if the two 
volumes are separated by a movable membrane.  The 
corresponding model is shown in Fig.8. 

 
Figure 8: Thermo-bond graph model of volume work 

 
Volume work is a dissipative phenomenon.  In 

the process of pressure equilibration, entropy is be-
ing generated that is fed back into the thermal ports 
of the neighboring 0-junctions. 

The conductance values of the volume work 
element are negative, because a positive pressure 
difference leads to a negative volume flow: if the 
pressure on the left side is larger than that on the 
right side, the membrane is pushed to the right, 
thereby making the volume to the left larger and not 
smaller. 

The two bonds to the left and the right of the 
conductive sources are pointing in opposite direc-
tion, because a negative volume flow leads to a posi-
tive entropy flow in accordance with Eq.(2). 

 
The third type of potential equilibration is the 

mixing element, represented in ThermoBondLib by 
the mass exchanger, ME.  The Gibbs potentials in 
two neighboring volumes may equilibrate, if the two 
masses are able to mix.  The corresponding model is 
shown in Fig.9. 

 
Figure 9: Thermo-bond graph model of mixing 

Also mixing is a dissipative phenomenon.  In the 
process of mixing two fluids, mixing entropy is be-
ing generated. 

The ME model is a bit more problematic than the 
other two potential equilibration models, because 
mass cannot really flow without taking its volume 
and heat along.  The model can be used to explain 
the cause of mixing entropy, but in practice, more 
complex models will be needed in most cases to de-
scribe mixing phenomena. 

 
The three potential equilibration elements have 

in common that they don’t require state information.  
All three elements equilibrate one potential only, i.e., 
they don’t lead to associated flows of the other two 
types.  All three phenomena are dissipative in nature, 
i.e., generate entropy in the process of potential 
equilibration. 

3 The Substance Models 

Whereas the transport models, such as the potential 
equilibration models, are responsible for computing 
the flows in and out of volumes, the substance mod-
els compute the three potentials of a volume.  They 
also compute the three state variables by means of 
integrating over the difference between inflows and 
outflows.  In bond graph terminology, the substance 
models are capacitive fields, CF. 

Unfortunately, the substance models cannot be 
coded in a fully substance-independent fashion.  
Separate models need to be created for different 
types of substances.  Of course, these models have a 
lot in common with each other, and inheritance 
schemes can be set up that restrict the recoding be-
tween similar models to the bare minimum, but this 
hasn’t been accomplished yet.  At the current time, 
substance models have only been made available for 
air, water, and water vapor. 
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The air model shall serve here as an example.  It 
is depicted in Fig.10.  The model is fully coded by 
means of equations.  It computes the three potentials, 
T, p, and g, and determines the values of the three 
state variables, S, V, and M, by integrating the three 
flow variables, Sdot, q, and Mdot. 

 
Figure 10: Model of air storage 

 
Since air can be considered an ideal gas, the 

pressure may be computed from the ideal gas equa-
tion.  All fluids are subject to an equation of state, 
and that equation is being used to determine the 
pressure. 

All fluids are also subject to a caloric equation 
of state.  That equation is being used to determine 
the temperature.  Once the temperature and the spe-
cific entropy are known, the Gibbs potential can be 
determined as well. 

Additional code has been added to prevent the 
model from dividing by zero in case the volume gets 
completely emptied out. 

4 Evaporation and Condensation 

A second class of transport phenomena beside from 
potential equilibration is the phase change of a fluid.  
Water can boil off (evaporate), and it can condensate 
out, either in the bulk or on a cold surface. 

Whereas some transport phenomena are dissipa-
tive, like the potential equilibration phenomena, oth-

ers are reversible.  Evaporation and condensation are 
reversible transport phenomena.  In the process of 
evaporation, the activation energy is taken out of the 
thermal domain.  Sensible heat gets converted to la-
tent heat.  However in the reverse process of conden-
sation, the previously borrowed latent heat gets con-
verted back to sensible heat1. 

How much evaporation/condensation takes 
place, i.e., where the flow equilibriuam is between 
the liquid and the gaseous forms of a fluid, is deter-
mined by minimizing the overall energy of the sys-
tem.  However in practice, this energy minimization 
problem is hardly ever solved on-line.  The Ther-
moBondLib code, like most other such programs, 
computes the amount of evaporation/condensation 
using steam tables. 

5 The Pressure Cooker 

We are now able to code a first example using the 
ThermoBondLib library.  To this end, we shall 
model a pressure cooker. 

Inside the pressure cooker, there are three types 
of substances: water, air, and water vapor.  As the 
pressure cooker is being heated, more water boils 
off, producing additional water vapor.  The water 
vapor would like to occupy more space than the wa-
ter in its liquid form, but it cannot, because the total 
volume of the pressure cooker is fixed.  Conse-
quently, the pressure values inside the pressure 
cooker are rising.  Fig.11 depicts a preliminary 
model representing the pressure cooker. 

 
Figure 11: Basic pressure cooker model 

 
There are three different volumes containing 

three different substances.  Potential equilibration in 
the form of heat exchange and volume work is al-
                                                      
1 In the classical model, sensible heat is taken out of the 
liquid phase during evaporation, but gets added to the 
gaseous phase during condensation. 
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lowed to occur.  Furthermore, there is evaporation 
and condensation taking place between the water 
volume and the steam volume. 

An improved model takes into account that heat-
ing and cooling take place not only through the bot-
tom of the pot, but also through the metal walls, i.e., 
we need to add boundary layers representing the air 
and the steam in the vicinity of the metal walls.  The 
enhanced model is shown in Fig.12. 

 

 
Figure 12: Enhanced pressure cooker model 

Special volume work elements are used between 
the bulk and the two boundary layers.  These models 
ensure that the volume of the boundary layers 
doesn’t change. 

We are now ready to encode the model using 
ThermoBondLib, as shown in Fig.13. 

There are five separate 0-junctions representing 
the five different substances.  In some cases, individ-
ual 0-junctions had to be split into two or even three 
0-junctions to provide for a sufficiently large number 
of connectors. 

At each of these 0-junctions, a capacitive field is 
attached, modeling the properties of the five sub-
stances.  Between the 0-junctions, there are placed 
all the transport models representing the exchange of 
mass, volume, and heat between the five substances. 

Whereas this model is still fairly simple, it al-
ready occupies an entire screen.  Model wrapping 
techniques ought to be used to represent the model at 
a yet higher level, below which the thermo-bond 
graphs can be hidden. 

 

Figure 13: Coded pressure cooker model 

F. Cellier, J. Greifeneder

The Modelica Association 168 Modelica 2008, March 3rd − 4th, 2008



Such a wrapped model might represent the 
control volumes as containers, and the transport 
models between them as pipe segments.  Yet, the 
wrapping of thermo-bond graphs representing 
convective flows hasn’t been accomplished yet.  
Wrapped sub-libraries shall be added to Ther-
moBondLib at a later time. 

Some simulation results are shown in Figs.14 
and 15.  The pressure cooker is placed on a hot 
surface at time 0.  Cold water is poured over it 
after 10,000 seconds.  Whereas the five tempera-
ture values are significantly different, the pressure 
values are almost indistinguishable. 

 
Figure 14: Temperature values of pressure cooker 

 

 
Figure 15: Pressure values of pressure cooker 

 
After approximately 1300 seconds, the water 

begins to boil, which leads to a knee in the pres-
sure curves. 

6 The Air Balloon 

As a second example, we shall consider a bottle 
containing compressed air, from which an air bal-
loon is to be filled. 

Here, we are facing a new complication.  If 
we were to model the bottle containing com-
pressed air by means of the same capacitive field 
as before, the volume of the bottle would shrink 
as air is allowed to escape from it.  Hence we 
need to create a new capacitive field that models 
the storage of air under conditions of constant vol-
ume.  This model is shown in Fig.16. 

 
 

 
Figure 16: Air storage under isochoric conditions 

 
The isochoric air storage model is built hier-

archically from a regular air storage model.  The 
volumetric flow coming out of the storage is 
measured using a flow sensor, Df.  A counter-
flow of equal magnitude is generated by the 
modulated flow source, mSf.  It takes its energy 
from the thermal domain.  Hence the bottle keeps 
a constant volume.  Instead of shrinking in size, 
the bottle cools down. 

We are now ready to model the air balloon 
system.  The model is shown in Fig.17. 

 
Figure 17: Air balloon model 

 
The CF element to the left of Fig.17 repre-

sents the bottle.  It is modeled using the isochoric 
air storage element of Fig.16.  The CF element in 
the center represents the balloon.  It is modeled 
using the regular air storage element of Fig.10. 

The effort source, Se, to the right represents 
the ambient air.  Between the balloon and the am-
bient air, potential equilibration (heat exchange 
and volume work) are allowed to take place. 

The transport of a fluid across a pipe satisfies 
the wave equation.  When cutting the pipe into 
individual segments, each segment can be mod-
eled using a container, a capacitive field, repre-
senting the compressibility of the fluid, and using 
a transporter, an inductive field, representing the 
inertia of moving mass.  
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In the model of Fig.17, the volume flow ele-
ment, VF, represents the transporter.  A volume 
flow is obtained that is caused by the pressure dif-
ference between the two connectors.  The volume 
flow induces a proportional mass flow and a pro-
portional heat flow. 

The volume flow element is depicted in 
Fig.18.  The top portion of the bond graph repre-
sents the volumetric flow.  The volumetric flow is 
being computed inside the inductor, I.  A flow 
sensor, Df, measures the flow and induces propor-
tional mass and entropy flows using internal flow 
sources, mSf.  The center portion of the bond 
graph represents the entropy (heat) flow portion of 
the model, whereas the lowermost part calculates 
the mass flow. 

 
Figure 18: Inductive field representing transporter 

 
As is to be expected, the temperature, pres-

sure, and mass in the bottle decrease, whereas the 
volume remains constant.  In contrast, mass and 
volume in the balloon increase, whereas tempera-
ture and pressure remain almost constant. 

Some simulation results are shown in Figs.19-
21.  Fig.19 shows the temperature values in the 
bottle and the balloon;  Fig.20 depicts the volumes 
of the two storages; and Fig.21 presents the two 
air masses. 
 

 
Figure 19: Temperature values of bottle and balloon 

 

 
Figure 20: Volumes of bottle and balloon 

 

 
Figure 21: Air masses of bottle and balloon 

 
The temperature in the balloon changes only 

temporarily, whereas the bottle cools down sig-
nificantly.  The volume of the balloon grows, 
whereas that of the bottle remains constant.  Fi-
nally, mass is being transported from the bottle to 
the balloon.  The sum of masses in the two con-
tainers remains constant. 

7 The Water Loop 

As a third example, we shall consider a closed 
water loop.  Such water loops are found fre-
quently in heating systems.  They may represent 
either water that circulates between a water heater 
and a set of radiators; alternatively, such a loop 
may represent water (or glycol) circulating be-
tween a water heater and a set of (thermal) solar 
collectors; and finally, it may represent glycol 
circulating between a heat pump and the well of a 
geothermal system. 

The water loop is represented in the model by 
four pipe segments and four water storages.  The 
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water storages are modeled as isochoric capacitive 
fields.  Three of the four pipe segments are speci-
fied as inductive fields, whereas the fourth one 
represents the pump. 

The overall model is shown in Fig.22.  The 
pipe segment containing the pump, depicted in the 
model as a forced volume flow, FVF, is built up 
internally in essentially the same way as the free 
volume flow, VF, used to represent regular pipe 
segments.  The only difference is that the inductor 
is eliminated from the model and replaced by an 
external (regular) bond connector at which the 
mechanical pump can be connected.  The pump 
itself is represented by a small DC motor. 

 
Figure 22: Water-loop model 

 
The (black) effort source at the lower right 

corner of Fig.22 represents the armature voltage.  
The I and R elements next to it model the arma-
ture inductance and the armature resistance.  The 
GY element higher up describes the transforma-
tion of electrical to mechanical (rotational) power.  
The I and R elements yet higher up represent the 
inertia of the rotor and the friction of the me-
chanical bearings.  The TF element to their left 
transforms mechanical into hydraulic power. 

The black (right) portion of Fig.22 is a regular 
bond graph, modeled using BondLib, whereas the 
red (left) portion of Fig.22 is a thermo-bond 
graph, modeled using ThermoBondLib. 

Some simulation results are shown in Figs.23 
and 24.  Fig.23 shows the pressure values in the 
four water storages.  The pump generates a high 
pressure value at its exit that is then successively 
reduced again by the subsequent regular pipe seg-
ments.  The highest pressure is p2, the pressure of 

the capacitive field immediately above (i.e., at the 
exit of) the pump, whereas the lowest pressure is 
p1, the pressure of the capacitive field below (i.e., 
at the entrance of) the pump.  After the pump is 
turned on, the pressure values oscillate for a little 
while, before they stabilize at new values. 

 
Figure 23: Pressure values in the four water storages 

 
Fig.24 shows the mass flows in the three 

regular pipe segments.  They are virtually indis-
tinguishable one from another.  At time 1 sec, the 
pump is switched on.  It takes roughly 1 sec for 
the mass flow to fully build up. 

 
Figure 24: Mass flows in pipe segments 

 
The three examples presented in this paper are 

included in the ThermoBondLib library, a free 
Modelica library downloadable from the Modelica 
website. 

8 Conclusions 

In this paper, a new free Modelica library for 
modeling and simulating convective flows in 
physical systems has been introduced. 

ThermoBondLib has been designed as a 
graphical modeling library based on the thermo-
bond graph methodology.  Thermo-bond graphs 
were formally introduced by Greifeneder in his 
Diploma thesis [4]. 

Contrary to other types of systems, convective 
flows cannot be modeled in a completely abstract 
fashion.  Different storages (capacitive fields) will 
look slightly different one from another.  At the 
current time, storage (substance) models have 
only been made available for air, water, and water 
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vapor.  Urgently needed are storage models for 
different types of glycol as well as for different 
types of industrial oils. 

Although thermo-bond graphs are quite well 
readable, once a user has gotten familiarized with 
the methodology, bond graphs in general offer a 
fairly low-level interface to modeling.  Bond 
graphs offer the simplest (lowest-level) interface 
to modeling physical systems that is still fully ob-
ject-oriented.  Hence wrapped thermo-bond 
graphs are more suitable for the description of 
complex systems involving convective flows.  
Wrapped thermo-bond graph sub-libraries shall be 
added to ThermoBondLib in due course. 

Finally, thermo-bond graphs can also be used 
for the thermodynamic description of chemical 
reaction systems.  First thermo-bond graph mod-
els of a few chemical reaction systems (hydrogen 
bromide and ammonia synthesis) were success-
fully coded in [4].  However, these models have 
not yet been added to the officially released ver-
sion of ThermoBondLib. 

References 

[1] Cellier, F.E.: Continuous System Modeling. 
Springer-Verlag, New York, 1991 

 
[2] Cellier, F.E., Nebot, A.: The Modelica Bond 

Graph Library. In: Proceedings of the 4th In-
ternational Modelica Conference, Hamburg-
Harburg, Germany (2005) Vol. 1, 57-65 

 
[3] Cellier, F.E., Clauß, C., Urquía, A.: Electronic 

Circuit Modeling and Simulation in Modelica. 
In: Proceedings of the Sixth Eurosim Con-
gress on Modelling and Simulation, Ljubljana, 
Slovenia (2007) Vol. 2, 1-10 

 
[4] Greifeneder, J.: Modellierung thermodynami-

scher Phänomene mittels Bondgraphen. Di-
ploma Thesis, University of Stuttgart, Ger-
many, 2001 

 
[5] Greifeneder, J., Cellier, F.E.: Modeling Con-

vective Flows Using Bond Graphs.  In: Pro-
ceedings of ICBGM’01, 5th SCS Intl. Conf. on 
Bond Graph Modeling and Simulation, Phoe-
nix, Arizona (2001) 276-284 

 
[6] Greifeneder, J., Cellier, F.E.: Modeling Multi-

phase Systems Using Bond Graphs.  In: Pro-
ceedings of ICBGM’01, 5th SCS Intl. Conf. on 
Bond Graph Modeling and Simulation, Phoe-
nix, Arizona (2001) 285-291 

 

[7] Greifeneder, J., Cellier, F.E.: Modeling Multi-
element Systems Using Bond Graphs.  In: 
Proceedings of ESS’01, 13th European Simu-
lation Symposium, Marseille, France (2001) 
758-766 

 
[8] Zimmer, D., Cellier, F.E.: The Modelica 

Multi-bond Graph Library. In: Proceedings of 
the 5th International Modelica Conference, 
Vienna, Austria (2006) Vol. 2, 559-568 

 
 

François E. Cellier received his 
BS degree in electrical engineer-
ing in 1972, his MS degree in 
automatic control in 1973, and his 
PhD degree in technical sciences 
in 1979, all from the Swiss Fed-

eral Institute of Technology (ETH) Zurich. Dr. 
Cellier worked at the University of Arizona as 
professor of Electrical and Computer Engineering 
from 1984 until 2005. He recently returned to his 
home country of Switzerland. Dr. Cellier's main 
scientific interests concern modeling and simula-
tion methodologies, and the design of advanced 
software systems for simulation, computer aided 
modeling, and computer-aided design. Dr. Cellier 
has authored or co-authored more than 200 tech-
nical publications, and he has edited several 
books. He published a textbook on Continuous 
System Modeling in 1991 and a second textbook 
on Continuous System Simulation in 2006, both 
with Springer-Verlag, New York. 
 

Jürgen Greifeneder received a 
diploma degree in Engineering 
Cybernetics from the University 
Stuttgart, Germany in 2002.  Dr. 
Greifeneder then switched to the 
University of Kaiserslautern, 
where he received a Ph.D. in Elec-
trical and Computer Engineering 

in 2007 with a dissertation on the formal analysis 
of temporal behavior of Networked Automation 
Systems (NAS) by use of probabilistic model 
checking.  Scientific stays at the University of 
Arizona (USA), at the Ecole Normale Supérieure 
de Cachan (F), and at the Universidade de Brasília 
(BR) completed his education.  Dr. Greifeneder's 
primary research interests concern modeling, 
simulation, and control methodologies. 
 

 

F. Cellier, J. Greifeneder

The Modelica Association 172 Modelica 2008, March 3rd − 4th, 2008



FluidDissipation - A Centralised Library
for Modelling of Heat Transfer and Pressure Loss

Thorben Vahlenkamp Stefan Wischhusen
XRG Simulation GmbH,

Harburger Schlossstraße 6-12, 21079 Hamburg
{vahlenkamp, wischhusen}@xrg-simulation.de

Abstract

A new Modelica library centralising heat transfer and
pressure loss calculations of energy systems calledFluidDissipation will be presented. The goal of the
library is to deliver a broad range of heat transfer and
pressure loss correlations independent of the thermo-
hydraulic framework and easy to implement (func-
tional approach) for industrial use. Concept and nu-
merical challenges of the library development will be
described as well as first applications (Pipe flow; En-
vironmental control system).
The FluidDissipation library is developed within the
European research project Eurosyslib-D of ITEA2
funded by the Federal Ministry of Education and Re-
search (BMBF) for 30 month started in November
2007.
Keywords: heat transfer; pressure loss; simulation;
dissipation

1 Introduction

Energy conversion in any thermo-hydraulic process
[1] is declined due to unwanted heat transfer (as a re-
sult of temperature difference) and pressure losses (as
a result of friction) of a working fluid. Both physi-
cal phenomena increase entropy and decrease exergy
of an energy system. Therefore the amount of energy
of a working fluid to be transformed into mechanical
work is dissipated.
These fluid dissipation effects (e.g. pressure loss of
pipe network) have to be compensated by higher en-
ergy supply of other system components (e.g. deliv-
ery height of pumps). A reduction of fluid dissipation
effects is a way to optimise efficiency of a thermo-
hydraulic process with a corresponding minimisation
of operation costs. Thus modelling fluid dissipation
effects are necessary for thermo-hydraulic processes

to evaluate existing energy systems and to find out op-
timising potentials.
Therefore the target of theFluidDissipation library is
to deliver a centralised open source Modelica library
including verified and validated correlations describ-
ing heat transfer and pressure losses of fluids for en-
ergy systems. Applications of theFluidDissipation li-
brary (e.g. incompressible pipe flow; Air conditioning
heat exchanger with compressible moist air) will be
developed with the use of theModeli
a.Fluid library.

2 Library concept

The main goal ofFluidDissipation as an open source
library is to allow the usage of dissipation models in
every thermo-hydraulic framework. Also theFluid-Dissipation library can be used as a multi domain base
library to achieve a maximum of flexibility in imple-
mentation and further application to energy systems.
The way to obtain an overall use of theFluidDissipa-tion library is to build up the library according to the
following implementation methods:

• Library development with functional approach
(literally use of function calls)

• Input and output arguments of function calls de-
livered by records (like geometric parameters and
fluid properties)

• Implementation of continuous functions for effi-
cient numerical simulation

3 Numerical aspects of transient fluid
flow modelling

In literature there are a lot of heat transfer and pres-
sure loss correlations within restricted boundary con-
ditions. In order to get dissipation functions applicable
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for a broad region of fluid conditions every restricted
mathematical description has to be numerically im-
proved for efficient simulation.
Numerical improvement of dissipation functions will
be verified by the authors under the following aspects:

• Enlargement of heat transfer and pressure loss
functions with restricted boundary conditions to
a broader region via numerical interpolation with
respect to physical correctness

• Use of pressure loss functions in dependence of
functional output targets like:

Mass flow rate for compressible fluid flow or

Pressure loss for incompressible fluid flow

• Inverting of documented pressure loss functions
for compressible fluid flow according to mathe-
matical feasibility

• Linearisation of pressure loss functions for com-
pressible fluid flow at small mass flow rates and
reverse flow to avoid numerical difficulties

• Usage of inline integration [2] to improve numer-
ical behaviour (if supported by modelling soft-
ware)

4 Implementation

The concept of theFluidDissipation library allows
both the interoperability with other thermo-hydraulic
framework as well as an easy implementation in-
tended for further industrial use as a result of thefunc-
tional approach (using literally function calls with
records for input/output arguments).
The principle of the easy to use implementation for a
new base pipe model is pointed out in Figure 1 to Fig-
ure 3. In Figure 1 the structure to build a new base
pipe model is shown as example for this implementa-
tion. The new base pipe model consists of the follow-
ing components of a chosen thermo-hydraulic library
(Modeli
a.Fluid):

• Hydraulic and thermal connectors for data ex-
change

• Control volume for calculation of thermody-
namic state

• Medium model (e.g.Modeli
a.Media) for calcu-
lation of fluid properties

Figure 1: Implementation of a new base pipe model
out ofFluidDissipation functions - Structure

According to the proposed structure in Figure 1 the
user needs to concentrate only on the following steps
to implement the missing dissipation calculations suc-
cessfully. In the following the new base pipe is mod-
elled adiabatic and the further implementation is ex-
plained with respect to pressure losses.

1. Create a new model with inherited hydraulic and
thermal connectors of chosen thermo-hydraulic
library

2. Inheritance of a control volume

3. Instantiation of the medium model

4. Add corresponding records of dissipation calcu-
lation on diagramm layer of model (see Figure 2)

5. Assign record variables to input and output ar-
guments of chosen function in equation layer of
model (see Figure 3)

The diagram layer of this implementation of pressure
loss with the used records is shown in Figure 2.

Figure 2: Implementation of a new base pipe model
out ofFluidDissipation functions - Diagram layer

Finally the pressure loss variables of the records in the
diagram layer have to be assigned to the pressure loss
function in the equation layer according to Figure 3. In
this example an inline function for the mass flow rate
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is used. The advantage of an inline function is that ei-
ther the mass flow rate or the pressure loss can be cal-
culated in dependence of desired target variable in the
current model. The medium variables are calculated
for a design flow direction from the upstream control
volume. Therefore the designed flow direction has to
be ensured by the thermo-hydraulic process itself.

Figure 3: Implementation of a new base pipe model
out ofFluidDissipation functions - Equation layer

5 Example application of FluidDissi-
pation

5.1 Pressure loss in straight pipes

Straight pipes are one of the most frequently used de-
vices in the modelling of an thermo-hydraulic process.
Therefore also the development of theFluidDissipa-tion library starts with the modelling of pressure loss
in a straight pipe using the functional approach for im-
plementation. The result of the pressure loss calcula-
tion in a straight pipe in terms of the Darcy friction
factorλD is shown in Figure 4. The pressure loss cal-
culation for straight pipe flow is based on the following
basic correlations:

∆p = ζtot︸︷︷︸
Total pressure loss coefficient

·ρ ·u2

2
(1)

ζtot = ζ f ri︸︷︷︸
Frictional pressure loss

+ ζloc︸︷︷︸
Local pressure loss

(2)

ζ f ri = λD︸︷︷︸
Darcy friction factor

· L
dh

(3)

The typical behaviour of the Darcy friction factorλD

in a straight pipe can be divided into three flow regimes

in dependence of the Reynolds number Re and relative
roughnessk with the following behaviour:

• Laminar regime (I) at small Reynolds number
(Hagen-Poisseuille equation):

λD independent ofk

Decrease ofλD with increasing Re

• Transition regime (II) for Reynolds number in be-
tween 2300 to 4000 (Smoothing function):

λD slightly dependent ofk

Increase / decrease ofλD with increasing Re

• Turbulent regime (III) at high Reynolds number
(Numerical Colebrok-White equation):

IncreasingλD with increasingk

λD independent of Re

For very high absolute roughnesses (average height
of asperities inside pipe) an additional numerical im-
provement has to be done for the calculation of the
pressure loss. In Figure 4 the laminar regime (I) is cal-
culated independent of the roughness. Nevertheless a
numerical abortion of the solver occurs if the absolute
roughness of a straigth pipe is very large. In this case
the difference from the end of the laminar regime to
the start of the turbulent regime is not stable even if
a smoothing function is used. A numerical improve-
ment of this problem is found in [3] with the mod-
elling of λD from the Hagen-Poiseuilles calculated in
dependence of the relative roughnessk according to
Samoilenko with an variable end of the laminar regime
and corresponding Reynolds number Reend

laminar:

Reend
laminar = 754·exp

(
0.0065

k

)
(4)

The end of Hagen-Poisseuilles law in dependence of
relative roughness leads to an variable upper boundary
for laminar fluid flow and a better numerical stability.
This numerical improvement is based on the physical
behaviour shown in corresponding measurements ac-
cording to [3] for commercial tubes and it is now im-
plemented in theFluidDissipation library (e.g. bends).

5.2 Simple environmental control system

The second example demonstrates the feasibility of us-
ing heat transfer and pressure loss functions from theFluidDissipation library for system simulation. In Fig-
ure 5 a simple environmental control system of an air-
craft is modelled.

FluidDissipation - A Centralised Library for Modelling of Heat Transfer and Pressure Loss

The Modelica Association 175 Modelica 2008, March 3rd − 4th, 2008



Figure 5: Model of a simple environmental control system for aircrafts

Figure 4: Darcy friction factorλD in dependence of
Reynolds number Re with relativ roughnessk as pa-
rameter

The simple example of an environmental control sys-
tem for an aircraft consists of the follwing features:

• Varying ambient conditions according to flight or
ground case of aircraft

• Moist air of Modelica.Media library used as
medium

• Compressed fresh air (bleed air) is precooled by
ambient air (ram air)

• 50% of hot cabin air is recirculated and mixed
with precooled a fresh air

• Air chiller required for temperature control of in-
let air for cabin

• Flow control valve for pressure control of inlet air
for cabin

• All models applyFluidDissipation heat transfer
and pressure loss functions

The boundary conditions for a flight test with the sim-
ple environmental control system (ECS) in Figure 5
are listed in Table 1. A flow diagram for the main part
of the ECS-model is shown in Figure 6. The aim of
the shown ECS is to deliver 2 kg/s of moist air with an
inlet temperature of 12◦C and an ambient pressure of 1
bar with the temperature and pressure control through
chiller and control valves.
The most important results of a flight test under the
boundary conditions listed in Table 1 are commented
in the following. According to the high pressure of 2
bar of the bleed air out of a turbine from an aircraft
the flow control valve has to adjust the pressure loss to
achieve the desired inlet pressure of 1 bar to the cabin
in the ground case. The pressure loss function inside
the flow control valve adjusts the needed pressure loss
via opening. In Figure 7 the transient pressure of com-
pressed bleed air is shown from the inlet and achieves
ambient condition after the chiller.
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Figure 6: Example air conditioning system layout
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Figure 7: Transient pressures of compressed air from
inlet to mixer

The pressure control for the cabin is realised due to
the relative opening of the flow control valve and cor-
responding pressure loss according to Figure 8. The
total pressure loss coefficientζtot is increasing as re-
sult of a decreasing opening of the flow control valve
(higher local pressure lossesζloc).
Also the effect of heat transfer losses to the environ-
ment have been considered in a straight pipe in be-
tween the mixer and chiller unit with a konstant heat
transfer coefficient. Finally in Figure 5.3 the inlet tem-
perature of moist air to the cabin as main task of the
environmental control system is simulated. It is shown
that the existing environmental control system of the
aircraft under ground conditions is not able to fulfill
the default inlet temperature of 12◦C to the cabin. To
reach the set temperature for the ground case the cool-
ing capacity of the chiller has to be raised. However
during the flight case the ram air reaches the set value
of 12◦C for inlet temperature due to the decreasing
ambient pressure and temperature leading to higher
precooling. Therefore all models applying pressure
loss calculation (e.g. Flow control valve, precooler

Table 1: Boundary conditions for simulation
Compressed air inlet
p bar 2.0
ϑ ◦C 140
Xi kg/kg 0.012. . . 0.001

Cool air inlet
p bar 1.5. . . 1.2
ϑ ◦C 30. . . -10
Xi kg/kg 0.012. . . 0.001

Cool air outlet
p bar 1.0. . . 0.5

Return air inlet
ṁ kg/s 1.0
ϑ ◦C 24
Xi kg/kg 0.008

Chilled air outlet
ṁ kg/s 2.0
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Figure 8: Friction factors of valves due to decrease of
relative opening

,straight pipe, etc.) fulfill the requirements of being
used in large thermo-hydraulic systems like environ-
mental control system.

5.3 Summary

The concept of the a new Modelica library calledFluidDissipation has been presented.FluidDissipa-tion is developed in the European research project
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Figure 9: Transient temperatures of compressed air
from HX outlet to chiller outlet

Eurosyslib-D and will be a free library for calculation
of heat transfer and pressure losses of energy systems.
First examples like fluid flow in straight pipes and a
simple environmental control system have shown pos-
sible applications for energy systems. Further tasks
are the enhancement of more heat transfer and pres-
sure loss calculations of energy devices. For the veri-
fication and validation measurement results have to be
supplied.
The project underlying this report is funded by the
German Federal Ministry of Education and Research
under the grant no.[IS07003C]. The authors bear the
sole responsibility for the content of this publication.
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Abstract

This paper describes one of the first uses of Modelica,
with Dymola, for modelling and simulation activities
of landing gears in Airbus. The application of Dymola
was for the development of a model of the whole Air-
craft and the auxiliary and main landing gears, includ-
ing tires, wheels, oleo-pneumatic shock absorbers, air-
frame, etc.
The suitability of Modelica for describing model at
system level has been exploited. In this case, it has
provided steering functions for the whole Aircraft,
with the development of the Nose and Body Wheel
Hydraulics Steering System connected to the mechan-
ical domain. Furthermore, most of the electrical com-
ponents, part of the Control and Monitoring System of
the Aircraft, have been taking into account, so that the
interaction between the electrical, hydraulics and me-
chanical domains forms a close link using one mod-
elling language. The model has been developed using
mainly the free library Mechanics and the commercial
library HyLib.
Keywords: aircraft; landing gear; steering system;
simulation; modelling.

1 Introduction

Over the last three decades, civil aircraft systems have
become progressively more integrated, encompassing
several different domains: structure, power, control
and software. In a such tightly coupled environment
the use of one modeling and simulation language like
Modelica, can provide tangible advantages for the en-
gineers. In particular, it can decrease the lead-time to
develop several ready-to-use architectures of the Air-
craft model, with different levels of detail, so that the
engineers can investigate many more what-if strate-
gies with high level of accuracy of the analysis, thus
minimizing the risks of the design-build-test-fix cycle,

which is an expensive, uncompetitive, unpredictable –
and ultimately prone to failures, paradigm of product
development.

2 Aircraft Library

The following sections highlight the main features
of the sub-models developed for the Aircraft Library.
Any of them can be placed in a super-model to create
a detailed architecture of a desired aircraft which then
can be tested under the foreseen simulated operative
conditions, see Figure 1.

Figure 1: Snapshot of the full model in Dymola

2.1 Airframe Model

The Airframe Model contains the mass, inertia ten-
sor and the main geometrical characteristics of the
Aircraft (A/C) like wheelbase, track, etc. The mass is
lumped and concentrated at the Centre of Gravity (CG)
location and the inertia tensor is calculated with re-
spect to the CG. The user can define the position of
the CG (yellow sphere) with respect to the Mean Aero-
dynamic Chord (MAC) of the A/C (purple segment),
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typically between 35% and 42% of the MAC, see Fig-
ure 2.

Figure 2: Airframe Model in Dymola with parameter-
ized attachment points

In addition the user can define the attachment points of
the Nose, Wing, Body Landing Gears, the Engines and
the Vertical Tail Plane Pressure Centre with respect to
the Aircraft Datum, see Figure 3.

Figure 3: GUI for definition of the Airframe Model
main parameters

The approach to lump the whole mass and inertia ten-
sor of the A/C at the CG location is quite common and
straightforward, it is also typical of the models built
with a top-down approach. This method implies an
extensive use of the FixedTranslation Block, with no
mass and inertia: the only mass and inertia are in the
Airframe Model. Though this is theoretically correct,
Modelica could experience problems solving the equa-
tion of motions in all the cases where there is a local
translation or rotation of two parts: for instance, the
rotation of the steerable aft axle of the Body Landing
Gear with respect to the Bogie. This method is also un-
advisable in all those cases when the models are built
with a bottom-up approach (many sub-models which
will be used to develop a top level model): in these
cases, each part of the sub-models should have its own
correct, or at least realistic, mass and inertia, so that

the sub-model can be verified and validated in isola-
tion.

2.2 Shock Absorber Model

The Shock Absorber is represented by means of an
oleo-pneumatic suspension model. Its characteristics
vary with relative displacement, velocity and direc-
tion of travel of the sliding cylinder with respect to the
outer cylinder. The model contains characteristics for
stiffness and damping for each of the landing gears as
supplied by the vendors (polytropic dynamic curves).
Stiffness force is calculated as a function of oleo ex-
tension displacement via evaluation of spring stiffness
curves, see Figure 4.
Damping force is calculated as a function of oleo ex-
tension displacement, the rate of change of oleo ex-
tension displacement and oleo extension displacement
direction. To achieve this, two damping coefficient
curves are used, one defining the compression stroke
coefficient against oleo extension displacement and
one defining rebound stroke, see Figure 5 and Figure 6.
Oleo damping force is then calculated by multiplying
this coefficient by velocity squared.
At the top-level, the user can define the rake angle of
the shock absorber and other key characteristics (max-
imum stroke, sliding cylinder length, etc.).

Figure 4: Stiffness force vs. shock absorber closure at
20◦ Celsius (Normalized)

2.3 Bogie Model

The main functionality of the Bogie model is to pro-
vide attachment points for the wheels and the bottom
of the shock absorber so to create a correct load path
distribution of the weight of the A/C on the ground.
The user can choose between a Dual, a Dual Tandem
a Tri-Twin Tandem Bogie. Obviously other types of
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Figure 5: Compression damping force vs. shock ab-
sorber closure at 20◦ Celsius (Normalized)

Figure 6: Rebound damping force vs. shock absorber
closure at 20◦ Celsius (Normalized)

Landing Gears Wheel Layouts model can be easily de-
veloped: Dual Twin, Dual Twin Tandem, etc. In the
case of the Body Wheel Steering (BWS), the aft axle
is steerable, see Figure 7, so the model provides extra
functionalities: these are explained in § 2.3.1.
The user can define the main geometrical characteris-
tics like track and wheelbase and whether consider it
as massless and with zero inertia or not.

2.3.1 Body Landing Gear Model

The Body Landing Gear (BLG) Model has extra func-
tionality because of its characteristic of having the aft
axle steerable. It includes the LineForceWithTwoM-
asses Block for the inclusion of the steering actuator
and lock actuator characteristics (lumped masses of
cylinder and piston) and connection to the hydraulics
actuator of the Steering System Model, as well as Re-
turn springs. In addition, a brake Block has been used
to simulate the status of locked condition of the aft
axle. When the Avionic System commands to lock the
aft axle, supposed to be initially unlocked, a command

Figure 7: Tri-Twin Tandem Bogie Model with steer-
able aft axle and lock system

to retract the lock actuator is sent.
The Lock system uses a wedge beam that pivots a one
end attached to the bogie whilst the other end is at-
tached to the locking actuator, see Figures 7 and 8.

Figure 8: Lock System

As the lock beam is drawn towards the aft axle via
the Return springs (retraction of the lock actuator) it
engages its wedge into a V-shape aperture in the axle
causing it to be locked. As the lock beam is deployed
away from the aft axle (extension of the lock actuator)
the wedge becomes free from the aperture in the axle
allowing the axle to rotate freely. The return springs
not only reduce the closing force needed to lock the
locking wedge but also maintain the locking wedge in
its closed position.
At the moment, given a certain part, Modelica does not
recognize the surface of it but only frame a and frame
b, together with the position of the CG with respect to
frame a, the mass and inertia tensor of the part. So the
simulation of surfaces contact/collision is not possible
unless the point, or points, of contact/collision remain
known during the whole simulation.

2.4 Tyre Model

The modelling and simulation activity of a tyre, and
in particular of an aircraft tyre – subject to higher slip
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angles with respect to automotive tyres – represents a
difficult task. Many different tyre models have been
developed in Modelica: Magic Formula model, Rill
Model, Brush Model, see [1], with different level of
accuracy and computational effort. The model devel-
oped for the Aircraft Library represents a good com-
promise between accuracy and simulation time and
it seems to be suitable for on ground manoeuvrabil-
ity studies. Obviously, thanks to the modularity de-
velopment feature of the Modelica language, when a
more detailed model of the tyre will be developed, this
can be easily and quickly implemented in the full A/C
model.
The model developed makes use mainly of look up ta-
bles with empirical data extracted from tyre suppliers
manufacturers. The model calculates Lateral Slip An-
gle, Side and Drag Forces, Vertical Reaction and Self
Aligning Torque. The point of application of the Side,
Drag Forces and Self Aligning Torque is fixed and it is
coincident with the vertical projection of the axle hub
at a vertical distance equal to deformed radius of the
tyre. The runway and taxiway are assumed to be flat
and the camber angle is neglected. The model allows
the user to chose the value of the coefficient of rolling
resistance, the tyre deformed radius, the inflation pres-
sure, the tyre damping coefficient, the mass and inertia
of the tyre.

2.4.1 Lateral Slip Angle Computation

The Lateral Slip Angle is the angle formed by the
plane of rotation of the wheel and the tangent to the
wheel’s path, see Figure 9. Mathematically can be ex-
pressed as:

αy = arctan(Vy/Vx) (1)

where Vy and Vx are the velocities of the footprint of the
resultant of the pressure distribution forces between
tyre and ground. The model uses the simplified as-
sumption explained in § 2.4, so it assumes that there is
no elastic deformation of the tyre belt for the compu-
tation of the lateral slip angle.
The value of (1), computed by the model, is differ-
ent from zero only when there is contact between tyre
and ground and the lateral and longitudinal velocities
of the tyre footprint are above a certain threshold. In
addition, the model assumes an instantaneous develop-
ment of steady state reaction forces and momentum.

Figure 9: Tyre axis system as defined by the SAE

2.4.2 Vertical Reaction Computation

The Vertical Reaction is calculated by means of a non-
linear spring behavior using the following equation:

Max(0, k · (q−q0)e − c · q̇) (2)

where k is the stiffness coefficient, c is the damping
coefficient, e is a coefficient depending on the type of
material, q is the actual displacement variable, q0 is the
tyre deformed radius, q̇ is the actual velocity variable.
Another model computes the dynamic Vertical Reac-
tion of the tyre using (2) but substituting the stiffness
behavior k · (q− q0)e, with the look-up table of Fig-
ure 10, which takes into account the inflation pressure
and the actual deflection of the tyre.

Figure 10: Dynamic Vertical Load vs. Vertical Deflec-
tion for different Inflation Pressures (Normalized)

The user can choose between the two different meth-
ods of computation because the model has been made
replaceable.
The Vertical Reaction sustained by each tyre and the
lateral slip angle are used to calculate the tyre forces
and torques as explained in § 2.4.3.
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2.4.3 Side, Drag Forces and Self Aligning Torque
Computation

The equations which compute the drag and side forces
are as follow:

D = µR ·Fz +D′cos(αy)−S′sin(αy) (3)

S = S′cos(αy)+D′sin(αy) (4)

where µR is the rolling friction coefficient, Fz is the
Vertical Load, D′ and S′ are the drag and side forces
resolved in the wheel plane reference system and αy is
the slip angle. Notably, there is no need to manipulate
them if αy changes sign, because of the trigonomet-
ric functions sin and cos and the shape of the curves
of Figures 11 and 12. Differently, if the A/C changes
the direction of motion, i.e. instead of moving for-
ward, moves backward, during push-back manoeuvres
for instance, there is the need to change the sign of the
previous equations. For this reason, the RHS of (3)
and (4) is multiplied by (− tanh(τ ·Vx)), where τ is a
time constant chosen by the user and the tanh is used to
assure a smooth transition around zero (the A/C is as-
sumed to move forward when Vx < 0). The final equa-
tions are:

D = [µ ·Fz +D′cos(αy)−S′sin(αy)] · [− tanh(τ ·Vx)]

S = [S′cos(αy)+D′sin(αy)] · [− tanh(τ ·Vx)]

The torque developed by the Self Aligning Torque can
be simply computed using the look-up table of Fig-
ure 13. A snapshot of the tyre model in Dymola is
given in Figure 14.

Figure 11: Drag Force vs. Slip Angle for different
Vertical Load (Normalized)

Figure 12: Side Force vs. Slip Angle for different Ver-
tical Load (Normalized)

Figure 13: Self Aligning Torque vs. Slip Angle for
different Vertical Load (Normalized)

2.5 Engine Model

The Engine Model is simply represented by a PID
Controller. The user can define the desired steady state
velocity and the spool time: the engine forces change
accordingly to maintain the value of the demanded ve-
locity. In fact during a turn, the A/C speed tends to de-
cay because of the development of the centripetal force
at the tyre contact footprint which counterbalances the
centrifugal force. The user can also decide when to
switch the engine on (T hrust 6= 0) or off (T hrust = 0)
due to conditions linked either to time-based events or
boolean-based events. Furthermore, in order to simu-
late an instantaneous loss of thrust, due for instance to
an engine failure for the simulation of a rejected take-
off case, the TriggeredMax block is used. It samples
the continuous input signal whenever the trigger input
signal is rising (i.e., trigger changes from false to true).
The maximum, absolute value of the input signal (En-
gine Thrust) at the sampling point is provided as out-
put signal. So the Thrust on the remaining functioning
engines is assumed to be constant and its value equal
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Figure 14: Tyre Model in Dymola

to the one at the instant when the failure occurred.

2.6 Aerodynamic Model

The Aerodynamic forces and momenta are lumped at
the CG location. The equations used are as follows:

FxA =
1
2

ρV 2
CGS Cx

FyA =
1
2

ρV 2
CGS Cy

FzA =
1
2

ρV 2
CGS Cz (5)

MxA =
1
2

ρV 2
CGS b Cl

MyA =
1
2

ρV 2
CGS c̄ Cm

MzA =
1
2

ρV 2
CGS b Cn

where S is the wing wet area, b the wing span, and c̄ the
mean aerodynamic chord. These equations are multi-
plied with a positive or negative sign to account for
the axes reference system. The computation of some
of the angles necessary for the evaluation of the coef-
ficients of (5) is as follow:

α = arctan
( u

w

)
β = arcsin

(
v

|VCG|

)

Other angles and their rate of change are computed us-
ing a similar approach.
The rotation of the Rudder is taken into account sep-
arately using the look-up table of Figure 15. It is as-
sumed that the rudder has full authority when its ro-
tation reaches 30◦, and it increases linearly from zero
to 30◦. The rotation of the rudder implies also a rota-
tion of the nose wheel, this has been implemented in
the Steering Laws in the Monitoring and Commanding
Model.

Figure 15: Rudder Force at 30◦ Rotation vs. A/C
Speed (Normalized)

2.7 Hydraulics Steering System Model

The Hydraulics Steering System Model consists of a
Nose Wheel Steering (NWS) and a BWS system. For
the first one the kinematics of the actuation consists of
a push-pull actuator arrangement which is capable to
steer the A/C from a straight ahead position (θNWS =
0 deg) to a full powered steering rotation of the Nose
Wheel (θNWS = ±θNWSmax). For the second one, the
kinematics consist of a single linear actuator, which
steers the BWS accordingly to the actual position of
the NWS angle and ground speed of the A/C (θBWS =
f (θNWS, GSA/C)). An overview of the NWS and BWS
Steering System models is given hereafter.

2.7.1 NWS Hydraulics Steering System Model

At the top-level, the system briefly consists of a Nor-
mal Selector Valve Manifold (NSELVM), an Alternate
Selector Valve Manifold (ASELVM), a Local Electro-
hydraulic Generation System (LHEGS), Nose Land-
ing Gear (NLG) Shutoff-Swivel Valve, an Hydraulic
Control Block (HCB), a servo-valve electro-hydraulic
NWS, two Change Over Valves and two steering actu-
ators. In addition, the system is connected to the hy-
draulic power distribution system via the High Pres-
sure (≈ 350 bar) and Low Pressure Manifolds (≈
5 bar). All the electrical signals necessary to ener-
gize and de-energize the various selector valves and
command the servo-valve are sent by/to COM/MON
to the Hydraulics System. In turn, the latter trans-
mits all the signal necessary to monitor the system
to COM/MON, for instance the value of the pressure
downstream NSELVM, via Pressure Transducer (PT)
PT4.
In the model, all the previous elements have been mod-
eled, except the ASELVM and the LHEGS, which are
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mainly necessary only if particular faults in the system
occur (Reversion from Normal to Alternate Mode) and
they will be modeled in the future, see Figure 16.

Figure 16: NWS Hydraulics Steering System Model
in Dymola

The model of COM/MON does not pretend to be ex-
haustive nor representative of the whole COM/MON
system, its principal task is to support the functioning
of the Hydraulics System Model. The Model has been
built keeping a net interface between the hydraulic do-
main, the mechanical domain and the avionic domain:
the green flanges represent the interface with the at-
tachment points of the mechanical steering actuators
and the blue and purple signals the interface with the
avionic domain, see Figure 16.

The position of the spool of the servo-valve is con-
trolled by a PI controller which modulates the cur-
rent in order to minimize the error between NWS
commanded angle (θNWScom) and actual NWS angle
(θNWS). The position of the servo-valve spool allows
the hydraulic flow to differentially pressurize the four
chambers (Left and Right, Annulus and Full Bore) of
the steering actuators, so to create push or pull forces
on the pistons ends.
The attachment points of the actuators are fixed: to
the stationary flange for the cylinders and to the rotat-
ing sleeve for the pistons, respectively. This, and their
position with respect to the upper strut of the shock
absorber, are such to create a steering torque, which is
transmitted, via the torque links, to the bottom of the
shock absorber strut (piston fork) allowing the A/C to
steer, see Figures 17, 18 and 19.
Of particular interest is the situation when one of the
two actuators stalls: the line of action of the hydraulic
force intersects the axle of rotation of the strut, creat-
ing no moment arm. The angle at which this happens
is called Change Over Angle (θCOV ), and it is equal to:

θCOV = θ0 − arctan(Fry/Frx)

with θ0 being the angle between the x axis of the nose
landing gear reference frame and the vector SrON, Frx

and Fry equal to the x and y coordinates of Fr. These
coordinates given in a reference system with the x− y
plane orthogonal to the strut axle (if the rake angle is
different from zero).

Figure 17: Actuators-rotary sleeve assembly

When θNWS = ±θCOV , one of the two Change Over
Valve receives the command to change its position, see
Figure 16, either the left or the right one depending
if the A/C is performing a clockwise turn or counter-
clockwise turn, so that the corresponding actuator be-
gins to push or pull and viceversa.

2.7.2 BWS Hydraulics Steering System Model

At the top-level, the system briefly consists of a Steer-
ing Selector Valve Manifold (SSELVM), a left and
right BWS Hydraulic Control Block including Selec-
tor Valves and Steering Actuator, a left and right lock
actuator, a left and right BWS electro-hydraulic servo-
vale, an High Pressure supply line (HP) and Low Pres-
sure supply line (LP) Manifolds and ATA 29 Electro-
Motor Pump (EMP), see Figure 20.
Whilst the steering functions of the BWS is similar to
the NWS, except the fact that there is one linear steer-
ing actuator per side, the additional challenge has been
in modelling the lock/un-lock mechanism and un-lock
actuator, as already explained in § 2.3.1, see Figure 8.

2.8 Monitoring and Commanding Model

The Monitoring and Commanding Model developed at
this stage has the main purpose of allowing the correct
functioning of the hydraulic and mechanical Model.
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Figure 18: NLG Model with Actuators-rotary sleeve
assembly in Dymola

The signals to energize or de-energize the several se-
lector valves are sent accordingly to the actual condi-
tions of the A/C, so to create a closed loop between the
main three domains. The implementation of the Steer-
ing Laws has been also developed in this model, see
for instance the command of the BWS angle in accor-
dance with the actual NWS angle, Figure 21.
A more comprehensive model will be developed in a
second stage: in doing that, an extensive use of the
StaeGraph Library will be pursued.

3 Simulation Results

The following sections highlight the Dymola set up
used to run simulations and the results obtained from
a simulation of a Rejected Take Off (RTO) scenario.

3.1 Simulation Settings

The type of integration algorithm used depended upon
the model that was tested. In the case of pure mechan-
ical model, the Dassl or the Lsodar algorithms per-
formed in an excellent manner. When it came to sim-
ulate the full model, combining avionic, hydraulic and
mechanical domains, the best performance has been
achieved using the Sdirk34hw method. Notably, the
increase of tolerance of the integrator did not improve

Figure 19: NLG driven by hydraulics actuators at 70◦

with side, drag and vertical forces (blue) and self-
aligning torque (green) in Dymola

Figure 20: BWS Hydraulics Steering System Model
in Dymola

the simulation time: as explained in [2], a condition of
optimum should exists, in the case of the full model
a tolerance of 10−5 was used. Quite challenging has
been the identification of the right initial conditions:
Dymola by default, assigns arbitrary values for the ini-
tial conditions of certain variables. The assumption
made by the software should always be validated by
the user. In the case of the full A/C model, at the begin-
ning of the simulation, there are many events that oc-
cur: the A/C is settling down on the soil (impact force
different from zero and the shock absorber starts to be
compressed), the A/C speed begins to reach the steady
state value, and especially, the hydraulic circuit tends
to find the steady state condition. All this could be
quite time consuming from a simulation point of view.
Ideally the user should try to find the value of the vari-
ables in the steady state condition which would like
to use as starting point of his/her investigation, record
those values, and use them as initial conditions for all
the following simulations. When this is done, he/she
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Figure 21: BWS Steering Laws

could simulate the model up to the steady state con-
dition and then used this final condition, as a starting
point for a new simulation. This method can be used
only if the model has reached an high level of maturity
and many changes are no longer necessary.

3.2 RTO simulation test

The test has been carried out with the following pre-
conditions and assumptions: A/C speed at the instant
of the left outer engine failure equal to 130 kt, mass
equal to 560 t, CG position equal to 37.5 %, rolling
friction coefficient µR, equal to 6 e−3, all the steering
controllers active, (θNWScom = 0) with no pilots correc-
tion after engine failure, no aerodynamic forces and
rudder force.
The main outputs of interest are the trajectory of the
nose and CG, Figures 23 and 24, A/C heading ψ , Fig-
ure 27; A/C CG lateral linear and angular accelera-
tions, ayCG and ω̇zCG respectively, Figures 25 and 26.
Notably, It takes 1.25 s before the CG linear acceler-
ation along y direction starts to become negative, see
Figure 25, in fact the CG first moves towards the pos-
itive x− z half plane and then after a while, it starts to
move towards the negative x− z half plane, following
the nose. After three seconds from the instant of the
simulated engine failure, the nose has moved of circa
37.22 cm towards the left.

4 Future Work

The future work will be mainly based on the enhance-
ment of the Aircraft Library with the development of
more comprehensive models and new models as well;
on the investigation of Modelica capability to produce
code to run models in a Real Time environment for
hybrid simulations on the landing gear test rig and, fi-
nally, on the validation of the models with Flight Test

Figure 22: Snapshot of the A/C, five seconds after a
left outer engine failure with highlighted CG trajectory
(in blue)

Figure 23: CG and Nose trajectory (engine failure at
x = −382.47 m. A/C moves forward when x < 0)

and Test Rig Data.

5 Conclusions

Though the work presented in this paper is one of the
first large-scale application of Modelica for the simu-
lation of landing gears and aircrafts, its findings made
clear the power and potentiality of the language to
model and simulate so tightly coupled systems such
the ones which equip new modern airplanes.
The fact that the source code is completely open to the
user implies a huge potentiality to increase the level of
accuracy of every model component/assembly/system.
The acasuality feature of the language implies a real
opportunity to develop a re-usable library of models
which is not truly possible with models built with a ca-
sual language. Furthermore, the system modeled with
Modelica provides a unique feature which is the ca-
pability of the model to look like the real system un-
dergoing the design process: in a large enterprise this
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Figure 24: CG and Nose trajectory (engine failure at
x = −382.47 m. A/C moves forward when x < 0)
(Magnified)

Figure 25: A/C linear acceleration along y at CG loca-
tion (Magnified)

represents a point of convergence between designers
and modelers. No particular skills are necessary to be
able to read the model which faithfully should repre-
sent the system, so that feedbacks, critics, enhance-
ments, approvals can be easily agreed between several
actors not necessarily experts of modelling and simu-
lations techniques, even before any type of simulation
is performed.

If Modelica is used in a large industrial environment
some enhancements are advisable, though these issues
may not be necessarily attributable to Modelica itself:
the capability of creating geometry (with mass, iner-
tia, CG location and surface shape information) di-
rectly from a Computer-Aided Drawing (CAD) soft-
ware in an automated manner; a flexible body sim-
ulation capability, including contacts and conditional
connection/dis-connection of bodies/joints during the
same simulation.

Figure 26: A/C angular acceleration along z at CG lo-
cation

Figure 27: A/C heading angle ψ
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Acronyms

A/C Aircraft

ASELVM Alternate Selector Valve Manifold

BLG Body Landing Gear

BWS Body Wheel Steering

CAD Computer-Aided Drawing
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Figure 28: A/C demanded and actual speed [m/s]

Figure 29: A/C demanded and actual speed [m/s]
(Magnified)

CG Centre of Gravity

EMP ATA 29 Electro-Motor Pump

GUI Graphical User Interface

HCB Hydraulic Control Block

HP High Pressure supply line

LHEGS Local Electro-hydraulic Generation System

LP Low Pressure supply line

MAC Mean Aerodynamic Chord

NLG Nose Landing Gear

NSELVM Normal Selector Valve Manifold

NWS Nose Wheel Steering

PT Pressure Transducer

RTO Rejected Take Off
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Abstract

An overview of the new Modelica Flight Dynam-
ics Library of the German Aerospace Center DLR is
given. This library is intended for construction of
multi-disciplinary flight dynamics models of rigid and
flexible flight vehicles. The environment models pro-
vide the functionality to cover on-ground operations
up to flight at high speeds and high altitudes. The re-
sulting models may be used in various fields and stages
of the aircraft development process, like flight control
law design, as well as for real-time flight simulation.

Keywords: flight dynamics; flight control; simulation;
aeroelasticity

1 Introduction

Dynamic simulation plays an important role in the
aircraft design and certification process. Typical ex-
amples are development of flight control laws, flight
loads analysis, specification and testing of on-board
systems, aircraft handling qualities and system assess-
ment in real-time manned flight simulators. DLR has
developed an extensive Modelica library that allows
for construction of suitable aircraft flight dynamics
models for the various stages and applications in the
aircraft development process. The following strengths
of Modelica have hereby been exploited particularly:

• Multi-disciplinary modelling: multi-disciplinary
interactions play an important role in flight dy-
namics. Especially when flight control laws are
involved, aspects like flight mechanics, structural
dynamics, and systems may show considerable
dynamic interactions that must be appropriately
addressed in the model used for design analy-
ses. Modelica provides an ideal basis to develop
such models, since a large amount of discipline-
specific libraries is available that may be used to
construct components of the integrated model;

• Single source modelling:Especially in flight con-
trols various types of analysis methods are used
that require aircraft models to be available in var-
ious forms. Examples are nonlinear models for
simulation, (symbolic) linear models for stability
and robustness analysis, inverse models for con-
trol law synthesis, etc. Various forms of mod-
els often involve independent implementations of
the same model data. Modelica allows for the
construction of a single model from which appro-
priate analysis models may be generated with the
help of a model translator.

Back in 1995 the DLR institute of Robotics and
Mechatronics developed a first library (at the time,
based on the Dymola language) for modelling of air-
craft flight dynamics [26]. Objective was to build a
solid basis for constructing integrated dynamic aircraft
models, including flight dynamics, detailed on board
system dynamics, structural dynamics, etc. First appli-
cations were a generic transport and a fighter aircraft
[20] and a first flexible aircraft shortly thereafter [15].
Since then, the library has been expanded and applied
to complex aircraft models that include e.g. system
hydraulics and electronics [25, 27, 24]. In the frame
of the international projects REAL (Robust and Ef-
ficient Autopilot control Laws design, funded by the
EU in the fifth frame work programme [31]) and the
GARTEUR action group AG-11 on clearance of flight
control laws [11], the automatic generation of inverse
models for fast trim computation and nonlinear control
laws was applied for the first time. Recent application
examples are the thrust-vectored X-31A high-angle of
attack experimental aircraft and a real-time capable in-
tegrated flight dynamics and aeroelastic transport air-
craft model, including unsteady aerodynamics, struc-
tural dynamics, control system, etc.
The latest version of the Flight Dynamics Library in-
cludes various major enhancements as compared with
previous versions. Firstly, it exploits more recent
Modelica features, like the bus concept and the ma-
tured inner-outer concept. Secondly, the library is
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now compatible with the Multibody Library (part of
the Modelica standard library), allowing for easy con-
struction of airframes. Thirdly, itsworld model has
been enhanced to comply with inertial standards like
WGS84 [4] for position reference.
This paper discusses these latest developments, new
features, and example applications of the Flight Dy-
namics Library. In the following section the selection
of a generic aircraft model structure is discussed (Sec-
tion 2), based on which the Flight Dynamics Library
has been organised (Section 3). In Section 4 the auto-
matic generation of model code for model simulation
and analysis is discussed, followed by some example
applications. Finally, a summary is given in Section 6.

2 The aircraft model structure

Figure 1: Top-level of model: aircraft and environment

The objective of this section is to introduce and moti-
vate the basic structure of an aircraft model as it may
be composed from the Flight Dynamics Library. The
structure of this library will be discussed thereafter.
In constructing complex models the choice of hierar-
chy is crucial, since this largely determines how model
components interact. For the Flight Dynamics Library
a top-level model structure as shown in Figure 1 has
been adopted. It consist of one or more aircraft, and
environment objects (Theavionicscomponent and in-
put and triangular-shaped output connectors will be
discussed in Section 4). The environment objects in-
clude aworld, atmosphere, terrain, andairport model.
Note that the (in this case, single) aircraft model has no
direct link with the environment models, which phys-

ically makes sense. Using the so-called inner-outer
feature of the Modelica language, these models pro-
vide field functions. For example, the aircraft may re-
quest its surrounding atmospheric conditions from the
atmosphere model by sending its local inertial posi-
tion. Any other aircraft (or e.g. sensor) object in the
model may do this as well. This is an advantage as
compared with most block-oriented libraries, where an
atmospheric model is directly linked to, and thus occu-
pied by, the one aircraft. The ability to easily include
multiple air vehicles is useful for applications involv-
ing mutual interactions, like towed gliders, wake vor-
texes, air-to-air refuelling, release of missiles, etc.

2.1 The world model

In the following subsections the environment models
in Figure 1 (world, atmosphere, terrain, airport) will
be discussed. These components determine validity
of the over-all model to a large extent. Most impor-
tant is theworld model (in this case the Earth, but the
underlying base class may be extended to implement
models of other planets), since it provides the inertial
reference in the form of the so-called Earth-Centred
Inertial (ECI) reference frame. Its origin is attached
to the Earth’s centre of mass, its orientation is fixed
with respect to reference stars. In addition, the model
component has the following functions:

• Provide the geodetic reference. As indicated in
Figure 1, to this end the World Geodetic System
1984 [4] (WGS84) is used. The object imple-
ments an Earth-Centred Earth-Fixed (ECEF) ref-
erence frame, which has the same origin as the
ECI, but rotates with the Earth. The attitude of
the ECEF (w.r.t. ECI) is available in a connector.
A set of functions transform ECI and ECEF ref-
erenced position vectors into geodetic longitude,
latitude, and height co-ordinates (w.r.t. WGS84
ellipsoid) and vice versa. For a given longitude
and latitude, another function provides the local
undulation of the so-called EGM96 (Earth Grav-
itational Model 1996) geoid with respect to the
WGS84 ellipsoid, providing the Mean Sea Level
(MSL) reference [14].

• Implement a model of the Earth’s gravitation.
The gravitational model to be used with WGS84
is the Earth Gravitational Model 1996 (EGM96),
provided in the form of tables describing equi-
potential surfaces a function of longitude and
latitude. Currently, a more simplified height
and geocentric latitude-dependent (Ref. [33] -
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Eqn.(1.4-16)) and a constant gravity model are
available.

• Implement a model of the Earth’s magnetic field.
This field is required to compute indications of
compass models. The model is based on the US
National Geo-spatial-Intelligence Agency (NGA)
World Magnetic Model (WMM), which is pub-
lished every five years and predicts the time-
varying intensity and direction of the magnetic
field as a function of WGS84 longitude, latitude
and height. The current model covers 2005 till
2010 [23].

Double-clicking on theworld object in Figure 1 al-
lows a number of parameters to be set, like whether the
Earth is rotating or in rest, initial day time, and the type
of gravity model (approximate EGM96, height inde-
pendent, or constant). The features of the object may
be overkill for many applications, but provide suffi-
cient generality for use with for example high speed
and high altitude flight vehicles. Furthermore, the
applied WGS84 ensures compatibility with standard
GPS equipment, with most flight simulator vision sys-
tems, navigation system models, etc. Obviously, any
parameter set in theworld and other environment mod-
els applies to all components in the aircraft model.

2.2 The atmosphere model

The second environmental object in Figure 1 is the at-
mosphere. Normally, the International Standard At-
mosphere (ISA) as a function of the height above MSL
is used. Alternatively, parameters for constant atmo-
spheric conditions may be entered. The air mass is
nominally assumed to be in rest with respect to the
ECEF, explaining why a connection with theworld
ECEF-connector exists. However, the component also
foresees implementation of wind fields. Currently,
wind components in northern and eastern directions
may be entered at a reference altitude of 100 ft above
the Earth surface. A simple Earth boundary layer
model logarithmically reduces the wind velocity to
zero on the ground.

2.3 The terrain model

To the right in Figure 1 a terrain model has been added.
A component containing highly detailed, or simple
parametrised models of the Earth’s surface may be se-
lected from the library. Depicted in Figure 1 is a terrain
model as used for automatic landing control law de-
sign and certification, based on EASA CS-AWO spec-

ifications [10]. The location, elevation, direction, and
slope of a runway may be specified, as well as slopes
and steps in the terrain below the approach path. A
simple function call from e.g. an aircraft sensor then
returns the corresponding local terrain elevation above
MSL or the WGS84 ellipsoid, allowing for computa-
tion of for example the reading of the radio altitude
sensor.

2.4 The airport infrastructure model

The airport object implements earth-fixed navigational
equipment (e.g. VOR, DME, ILS systems at specified
locations). In the figure the ILS equipment of the one
runway as positioned in the EASA CS-AWO terrain
model is included. Specific characteristics like glide
slope angle and antenna transmitter positions may be
specified via parameters. Any other model object may
obtain its local glide slope and localiser deviation via
a simple function call.

2.5 Rigid and flexible aircraft models

The core of the model structure is of course the compo-
nent that represents the actual aircraft. The Flight Dy-
namics Library foresees the implementation of rigid
just as well as flexible ones. A typical model structure
for a flexible transport aircraft is shown in Figure 2.
The components resemble physical parts an aircraft
consists of (airframe, engines, actuators, sensors), and
phenomena it is influenced or driven by (kinematics,
aerodynamics, wind).

Component interconnections
For mechanical interconnections the connectors from
the Multibody standard library [28] are used. For use
with flexible airframes an extended version has been
implemented that includes generalised co-ordinates
and forces. For the engines and sensors the connec-
tor represents the point at which the device is attached
to the airframe. Aerodynamic forces actually act all
over the airframe. However, in flight mechanics usu-
ally only the summed effect with respect to some ref-
erence point, like the Aerodynamic Centre (AC), is of
interest. Also for the aerodynamic forces in the aeroe-
lastic aerodynamic model (to be discussed shortly) in
fact only their summed effect is considered due to so-
called left-generalisation with rigid and flexible eigen-
modes, see Ref. [19]. Therefore, the aerodynamic
models need a single connector only.

Kinematics
The backbone of the model depicted in Figure 2 are the

The New DLR Flight Dynamics Library

The Modelica Association 195 Modelica 2008, March 3rd − 4th, 2008



Figure 2: Structure of theFlexible Aircraftmodel in Figure 1

kinematicsandairframecomponents. The first defines
a “North-East-Down” (NED) local vertical frame with
its origin moving with a fixed position in the aircraft,
preferably the centre of gravity. The object also de-
fines a right-handed body-fixed reference frame with
its origin at the same location, but with a fixed atti-
tude w.r.t. the airframe (x-axis towards the nose, z-
axis down). The attitudes and inertial positions of both
reference systems are available in the two connectors.
The one on top represents the aircraft body reference
system, the one belows represents the vehicle-carried
NED reference frame.

Airframe
The difference between a rigid and a flexible aircraft
is, in fact, only in theairframe object. In case of a
rigid airframe, it contains the standard Newton-Euler
force and moment equations with respect to a body ref-
erence system [7] (attitude and position in lower con-
nector). Although the origin of this reference system is
preferably the centre of gravity (for compatibility with
standard flight dynamics models), a fixed point w.r.t.
the undeformed airframe shape may be more useful
for referencing reasons. The local gravity acceleration
is obtained by a call to theworld object (Figure 1).
Note that the computation of gravity depends on the
method that is selected in theworld object. In case of
a flexible airframe, linear elastic equations of motion

in modal form augment the Newton-Euler equations
[34, 30]. The body axes system is hereby considered as
a so-called mean axis system. The momentary shape
of the airframe is characterised by states in the form of
generalised co-ordinates (also called mode shape mul-
tipliers). The underlying data (modal mass, damping,
stiffness, and mode shape matrices) are automatically
read from a specified file prior to simulation. More de-
tails on nonlinear equations of motion of flexible air-
craft can be found in Refs. [19, 30].

Connection of theairframe object to thekinematics
object (see Figure 2) makes that the reference systems
in both connectors merge, i.e. from then on the air-
frame is moving freely with respect to the inertial ref-
erence, according to kinematic equations described in
thekinematicsobject.

Theairframeobject has a second connector on top (see
Figure 2). This connector may contain a different ref-
erence frame with a constant offset, or may simply be
identical to the body frame (to be specified via an off-
set parameter). It is intended for interconnection of
for example external force model components, sensor
models, etc. As mentioned before, in case of a flexible
airframe also generalised co-ordinates and generalised
forces are included in the connector definition.

External forces and moments
The airframe equations of motion are primarily driven
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by aerodynamic and propulsion forces and moments.
These are computed in corresponding model compo-
nents in Figure 2. These components often need to be
prepared for each aircraft type individually, since ap-
plication rules and data (sources) behind aerodynam-
ics and propulsion models may strongly differ. For this
reason, a base class is available that already defines
interfaces and the connector, as well as equations for
computation of key variables like the angle of attack,
side slip, and true airspeed. Local wind velocities are
hereby requested from theatmospheremodel in Fig-
ure 1. The user may develop own model components,
inheriting this base class.

Besides the airframe, each component may be devel-
oped around its own local reference frame. In case of
aerodynamics, these may for example be the stability
or wind axes. Interconnection with the airframe fol-
lows via a transformation object (e.g.AeroRefin Fig-
ure 2). This object has two connectors representing
two reference systems. The offset (position, orienta-
tion) in between may be specified via parameters that
become visible and can be edited by double-clicking
on the object. The object also relates the forces and
moments that act along the connector reference sys-
tems. When connecting a model with theairframe
object, the transformation object makes sure that the
kinematics between the local component and the air-
frame reference systems are correctly related, as well
as forces and moments are applied correctly.

The aircraft model in Figure 2 has two aerodynamics
models (right hand side). The upper one (Aero) con-
tains forces and moments as induced by the over-all
motion of the aircraft (“rigid aerodynamics”), usually
also corrected for quasi-steady deformation of the air-
frame. The underlying model may be based on com-
plex application rules, table look-ups, etc. In case a
data set is not available or incomplete, computational
tools as described in [13] are used. The lower aerody-
namics component (aerodynamicsFlex) computes un-
steady (generalised) forces and moments as induced
by flexible deformation of the airframe. For this com-
ponent extensive pre-processing tools have been de-
veloped, involving application of the Doublet-Lattice
Method, axis transformations, Rational Function Ap-
proximation and removal of quasi-steady effects (al-
ready accounted for in the rigid aerodynamics model),
see Refs. [19, 13] for more details. The unsteady aero-
dynamic data are read from a user-specified data file at
simulation start.

Note that theAero component is connected to the
lower airframe connector via theAeroRef object,

whereby the latter describes the offset between the air-
frame body axes and the aerodynamic reference sys-
tem. The upper aerodynamics component is directly
connected with the upperairframeconnector, making
use of generalised co-ordinates declared therein. In
case kinematics and the balance between aerodynamic
and actuation forces are relevant, a direct interconnec-
tion between theactuatorsand aerodynamics models
may be added.
The engine models (top left) are connected to the air-
frame via a slightly different type of transformation.
Instead of an offset, the number of a structural grid
point, where the object is to be attached, may be spec-
ified. At simulation start the transformation object
requests the rows of the modal matrix that apply to
the grid point from theairframeobject, allowing it to
continuously compute the kinematic relation and force
balance between its connectors as a function of the off-
set from the airframe reference and the local deforma-
tion [19, 30]. This for example implies that directional
thrust variations due to local deformation at the engine
attachment point are automatically taken into account.

Sensor models
The very same principle as used for interconnecting
engine models with the airframe structure also applies
to the sensor models, located in the top-right corner of
Figure 2. A set of sensor types is available in the li-
brary. For example, accelerometers compute local ac-
celerations at their point of attachment (specified via
grid point number, or offset) as a function of the iner-
tial motion of the airframe, its position in the airframe
reference, as well as the local airframe deformation.
The ILS, GPS, and radio altimeter sensors obtain
their values by making a function call to theairport,
world, and terrain environment models respectively
(Figure 1), passing on their momentary inertial posi-
tion as an argument. In this way, for example multiple
GPS sensor objects may be included at various loca-
tions on the airframe. Each object can request its very
local co-ordinates from theworld object.

Local wind effects
As already discussed in Section 2.2, mean winds are
computed in the atmosphere block at the top level of
the model in Figure 1. However, turbulence models
are usually described in aircraft body axes, whereby
delays as gusts travel along the airframe, are taken
into account. This is described in thelocalWindob-
ject (lower left, in this case based on EASA CS-AWO
specifications for autoland assessment). Random tur-
bulence velocities are obtained from dedicated filters
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(Dryden, Karman) that use white noise signals as in-
puts. This noise is provided via an external connector.

Systems
On-board systems are included in theactuatorscom-
ponent. This component may describe actuators and
hydraulic / electric systems using simple transfer func-
tions, as well as highly detailed physical models, con-
structed from hydraulics and electronics libraries. The
library currently only provides the first variant, since
detailed on-board system models are unique for each
type or family of aircraft and are usually provided by
systems specialists. A recent example of on-board
system model implementation using Modelica can be
found in [5].

Avionics bus
Finally, the thin bar at the top of Figure 2 represents

a so-calleddata bus, implemented using Modelica’s
expandable connector concept. The data bus includes
signals that one would typically find on avionics buses
in the aircraft, like the readings of all sensors, com-
mand signals to engine and control surface actuators,
gear status, etc. For this reason, the sensor, actuator,
and engine models have been attached to the bus ob-
ject. The bus is also accessible from outside and al-
lows direct connection to elements from the Modelica
block diagram library. This enables a control system
composed using this library to directly communicate
with the aircraft data bus.

3 The Flight Dynamics Library

The top-level structure of the DLR Flight Dynamics
Library is depicted in Figure 3. TheModelicabranch
in the depicted tree (top) contains the principal stan-
dard libraries delivered with Modelica. The branches
of the Flight Dynamics Library will be briefly de-
scribed below:

• ProjectTemplate contains a basic library struc-
ture for an aircraft. Each aircraft type has its own
models for aerodynamics, propulsion, systems,
landing gears, etc. These models are built on
base classes that already compute all basic vari-
ables (e.g. for aerodynamics, angle of attack, cal-
ibrated airspeed, etc.) and are stored in this struc-
ture. The project template contains a very sim-
ple, but readily working aircraft model. The user
may copy this template into an own project and
start implementing aircraft-specific components,

or add components from the Flight Dynamics or
any other Modelica library.

• Aerodynamics contains example aerodynamic
models for use in rigid and flexible aircraft mod-
els, as well as base classes that the user may ex-
tend (inherit) to develop his own aircraft-specific
model components. Each aircraft type or family
namely tends to use unique application rules. For
this reason, newly implemented aerodynamics
components are stored within the aircraft project
(see ProjectTemplate).

• Airframes contains rigid and flexible airframe
model objects. The rigid ones may have constant
mass and inertia tensor (entered via parameters),
or these may change at a given rate (e.g. as a
function of fuel consumption). The flexible air-
frame component loads its mass, and modal data
from an external file (e.g. a Matlab mat-file [21]).

• Environment contains all environment-related
models as described at the beginning of Section 2.

• Examplescontains example implementations of
various (basic) aircraft models.

• Gear currently contains a simplified landing gear
model for which basic properties may be set and
which may be attached to theairframe object in
Figure 2. A base class containing a standard inter-
face for interconnection with theairframe is pro-
vided for implementation of detailed landing gear
models, e.g. composed with help of the multi-
body library by specialists in the field.

• Interfaces contains all library-specific connector
types, as well as the data bus that was discussed
Section 2.5.

• Kinematics contains theKinematicsobject as de-
scribed in the previous section.

• Propulsion contains, as for the aerodynamics,
example engine model implementations, as well
as base classes that allow the user to implement
his own propulsion models.

• Systems mainly contains sensor models (ac-
celerometers, ILS, GPS, etc.) with time constants
and noise if desired, and simple transfer function-
based actuator models.

• Transformations contains standard transforma-
tions between reference systems.
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Figure 3: Top-level structure of the Flight Dynamics Library

• Typescontains type definitions for internal vari-
ables, to which the user may add his own.

• Utilities contains miscellaneous functions e.g.
for reading external data files.

Within a dedicated Modelica modelling and simula-
tion environment, like Dymola (Dynamic Modelling
Library [3]) aircraft models may be composed from
the library using drag and drop.

4 Automatic code generation

After model composition has been finished, a model
translator sorts and solves all model equations ac-
cording to specified inputs and outputs into Ordinary
Differential Equations (ODE’s) or Differential Alge-
braic Equations (DAE’s), suitable for use in simula-
tion. A modelling tool that is well capable of doing
this is Dymola [3]. Besides a graphical modelling
environment and advanced symbolic algorithms, the
tool offers extensive simulation and data analysis ca-
pabilities. However, the model code may be used in
other engineering environments and simulation tools
as well, like for example Matlab/Simulink [22]. For
this environment an additional tool set has been devel-
oped that automatically generates trimming and lin-
earisation scripts, allowing the user to easily specify
and accurately compute initial conditions prior to sim-
ulation [15].

4.1 Specification of inputs and outputs

A simple way of specifying model inputs and outputs
is shown at the top of Figure 1. Here a so-called Avion-
ics block has been connected to the bus connector of
the aircraft. At this main model level, also input and
output connectors have been defined. The Avionics
block injects pilot throttle and control surface input
commands (from Throttle, Controls connectors) into
the data bus. Output variables of interest, in this case
navigation and air data, are read from the bus and
passed on to output connectors (NavOut, Airdata).

Figure 4: Reversal of inputs and outputs for NDI con-
trol law generation
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4.2 Inverse model generation

Probably one of the most attractive features of Mod-
elica, in combination with a model compiler like Dy-
mola, is the possibility to generate inverse models just
as easily as normal simulation models. Inverse models
are extremely useful for fast and accurate trim com-
putation, systems and control surface sizing, as well
as for automatic generation of control laws that are
based on inverse model equations, like Nonlinear Dy-
namic Inversion (NDI [9]). Ref. [18] describes various
types of inverse model-based control laws and their au-
tomatic generation from Modelica models. Figure 4
shows the addition of an FCS block, which contains
the basic structure for an NDI controller, see Figure 5.
Like theAvionicsblock, the FCS communicates with
the aircraft model via the expandable bus. Compared
with Figure 1, theControls input has become an out-
put, and command variablespqbC(roll rate pb, pitch
rateqb, side slip angleβ ) have been added as inputs in-
stead. This is basically all that is needed to generate an
inverse model. For practical reasons, additional mod-
ifications have been made, like the removal of most
environment models: variables like radio altitude and
ambient pressure can be directly obtained from mea-
surement instead.

Figure 5: NDI control law with command variables for
manual aircraft control

4.3 Desktop visualisation

Easy access to high-quality desktop visualisation tools
becomes more and more important in the flight control
law design process. This helps the engineer to better
understand the (closed-loop) dynamics of the aircraft,
and allows her or him to interactively "fly" the air-
craft to qualitatively assess control law performance
and to find weaknesses before implementation in the
full flight simulator. One of the first commercial en-
vironments offering this visualisation capability is the

Aviator Visual Design Simulator (AVDS), described in
Ref. [29]. An interface with the Flight Dynamics Li-
brary has been described in [24]. Interfaces with pub-
lic domain simulator programs like FlightGear [2] are
to be developed, whereby the internal flight dynam-
ics model in this program is overwritten by the model
constructed from the Flight Dynamics Library.

5 Application examples

Since its first version in 1995, the Flight Dynamics Li-
brary has been applied in several projects at DLR, es-
pecially involving model development for design and
evaluation of flight control laws. A number of these
applications will be briefly discussed in this section.

REAL – Automatic Landing
In the frame of the EU-project REAL (Robust and Effi-
cient Auto pilot control Laws design [31]) for the first
time inverse model equations for a transport aircraft
were automatically generated from the model imple-
mentation in Modelica. These inverse equations were
used as the core of an automatic landing system that
was developed in the frame of this project [16]. The
control laws were successfully flight tested on DLR’s
test bed ATTAS (Advanced Technologies Testing Air-
craft System [6]) during six automatic landings.

X-31A with reduced vertical tail
The same procedure for automatic generation of Non-
linear Dynamic Inversion control laws was applied
to the thrust-vectored experimental fighter aircraft X-
31A in the frame of the project VECTOR (Vectoring,
Extremely short take-off and landing, Control, Tail-
less Operations Research [12]), in order to investi-
gate reduced vertical tail configurations of this aircraft
[32]. The control laws were exported from Dymola
and implemented in the ground-based flight simulator
in Patuxent River, MD, USA, and successfully evalu-
ated by five test pilots and one fleet pilot.

3D-Flexible aircraft flight simulator
From the example flexible aircraft model as presented
in Section 2 simulation code was generated for use
in interactive real-time simulation. The model was
augmented with automatically generated Dynamic
Inversion-based control laws, the automatic landing
system as developed in the project REAL, as well as
load alleviation control laws. An engineering visu-
alisation environment calledVisEngine, developed by
AeroLabs AG [1], simultaneously visualises aircraft
flight dynamics and structural dynamics in real-time
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in very high quality, see Figure 6. As exclusive fea-
tures for DLR, VisEngine was extended with on-line
visualisation of airframe deformation, as well as the
capability of visualising the aircraft and its environ-
ment using 3-D stereo projection. The visualisation of
structural deformation greatly helped to qualitatively
assess performance of structural control laws.

GARTEUR FM(AG17) Control law design for air-
craft on ground
In the future, transport aircraft may be equipped with
drive-by-wire control laws to reduce pilot workload
during landing roll-out, taxiing, and take-off. In ad-
dition, this technology will provide the basis for de-
velopment of functions for automatic ground manoeu-
vring [8]. In the frame of this GARTEUR project a
complex aircraft model, including landing gears, was
implemented using the Flight Dynamics Library. In
order to study various possible command variables for
the pilot, automatic model inversion was used to de-
velop control laws based on nonlinear dynamic inver-
sion. More details can be found in Refs. [19, 17].

Figure 6: 3D-stereo visualisation of aircraft flight and
structural dynamics, and aerodynamic loads

6 Conclusions

In this paper an overview of the Modelica-based Flight
Dynamics Library has been given. This library allows
for intuitive construction of multi-disciplinary models
for use in the aircraft and flight control laws design
process. To this end, the library offers the following
unique features:

• full compatibility with other libraries based on
the Modelica language, allowing for development
of truly multi-disciplinary aircraft models on a
common modelling platform;

• intuitively structured models due to a physics-
oriented break-down into model components and

interactions;

• construction of rigid just as well as fully flexible
aircraft models, including unsteady aerodynamic
effects;

• easy implementation of multiple aircraft models
using the same set of environment models (earth,
atmosphere, etc.);

• automatic generation of efficient simulation code
for various engineering environments (using a
Modelica tool like Dymola);

• automatic generation of inverse model code, e.g.
for use in nonlinear control laws;

• automatic generation of trimming and lineari-
sation scripts for use with the model in Mat-
lab/Simulink;

• easy integration with desktop visualisation.
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Abstract

The Hertz model of an elastic bodies contact and its
volumetric modification are analyzed for the proper
implementation on Modelica. Computational algo-
rithms applied aim to accelerate the simulation process
and make it more reliable.
The algorithm tracking the surfaces of the bodies
which are able to contact was improved using its dif-
ferential version and showed an accuracy high enough.
Simulation of the Hertz model was accelerated due to
use of the differential technique to compute the com-
plete elliptic integrals and due to the replacement of
the implicit transcendental equation by the differential
one.
To have a reliable model for the simulation of the con-
tact especially in case of the contact spot ellipses of
an eccentricity high enough the volumetric modifica-
tion of Hertz model is introduced. The model showed
a reliable behavior and an acceptable accuracy.
Finally an implementation of the ball bearing model as
an example of the contact models application is under
consideration. The particular bearings being analyzed
can have different number of balls and different types
of raceways. The bearing models created using the
library of classes developed earlier and have an outside
look exactly like a mechanical constraints and behave
in some degree similar to the revolute joints.
Keywords: Hertz contact model, volumetric approach,
ball bearing model

1 Introduction

It is known [1] to compute a force of the elastic bod-
ies interaction at a contact several different approaches
are applied: (a) the classical Hertz model [2], (b) the
model based on the polygonal approximation of the
contacting surfaces [3] applied to cases of the surfaces
of a complex shape and implemented on Modelica [4],
(c) the volumetric model [1, 5]. In our model we fol-

low the classical Hertz approach, and the normal force
computation method is a main topic of our analysis.
To handle with the surfaces at the contact we apply
an approach mentioned in [4] as variant 2: algebraic
constraint surfaces, which we frequently use in our
models. For definiteness and simplicity to simulate the
tangent contact force one uses a regularized model of
the Coulomb friction [6]. This is sufficient enough to
simulate the dynamics over time of the machine under
simulation lifecycle. May be some additional compli-
cations for the friction model, e. g. an account of the
lubrication of any type, will be needed.

2 Reduction in Vicinity of Contact

Keeping a frame of the formalism applied previously
to simulate a unilateral constraint [6] consider its par-
ticular case corresponding to mechanics of contact in-
teraction for two elastic bodies, identified hereafter as
A andB. Their outer surfaces, see Figure 1, being at
contact supposed sufficiently regular.

Figure 1: Vicinity of the Contact Area

Applying the same notations as ones used in [6] we
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start here by reproducing the system of eight scalar
algebraic equations

gradgA(rPA) = λ ·gradgB(rPB) ,
rPA− rPB = µ·gradgB(rPB) ,
gA(rPA) = 0,
gB(rPB) = 0.

(1)

defining the coordinatesxPA, yPA, zPA, xPB, yPB,
zPB of the outer surfaces opposing pointsPA, PB,
see Figure 1. Here the coordinate vectorsrPA =
(xPA,yPA,zPA)

T , rPB = (xPB,yPB,zPB)
T are defined with

respect to (w. r. t.) the absolute coordinate frame
O0x0y0z0 of reference (AF) usually connected to the
multibody system base bodyB0. Note the functions
gA(r0) = gA(r0, t), gB(r0) = gB(r0, t) are really a time
dependent ones, and define the outer surfaces current
spatial position of the bodies at a contact w. r. t.AF.
The valuesλ, µ are an auxiliary variables.
It turned out by the computational practice with Dy-
mola the most suitable approach to implement a sys-
tem of algebraic equations like (1) is to replace it by
the system of DAEs properly derived from (1). It can
be done by introducing an additional variables which
the time derivatives and thus compose the differential
subsystem

ṙPA = uPA, ṙPB = uPB, λ̇ = ξ, µ̇= η, (2)

completed by the algebraic one

[ωωωA,gradgA]+TAHessfATT
A (uPA−vPA)−

ξgradgB−
λ([ωωωB,gradgB]+TBHessfBT∗B (uPB−vPB)) = 0,

uPA−uPB−ηgradgB−
µ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
(gradgA,uPA)−

(
gradfA,TT

A vPA

)
= 0,

(gradgB,uPB)−
(
gradfB,TT

B vPB

)
= 0.

(3)
where the vectorsvPA, vPB are a velocities of the bod-
ies physical points currently located at the geometric
pointsPA, PA and are to be calculated according to the
Euler formula

vPα = vOα +[ωωωα, rPα − rOα ] (α = A,B),

whereOA, OB are the bodies masscenters,ωωωA, ωωωB are
the angular velocities of the bodies. MatricesHessfA,
HessfB are the Hesse ones of the functionsfA, fB
defining the bodies outer surfaces w. r. t. the bodies
central principal coordinate systems. The the func-
tions fA, fB relate to the onesgA, gB according to the
equations

gα (r0) = fα
[
TT

α (r0− rOα)
]

(α = A,B),

and their gradients connected by

gradgα (rPα) = Tα gradfα
[
TT

α (rPα − rOα)
]
,

whereTA, TB are the orthogonal matrices defining cur-
rent orientation of the bodies.
Surely, in case of the DAEs use one has to provide a
consistent initial values for all the additional state vari-
ables introduced here for each object of the compliant
contact being under construction in the sequel.
Unlike our previous approach [6] now we suppose the
bodiesA andB don’t create any obstacles for their rel-
ative motion. If 3D-regions bounded by the bodies
outer surfaces don’t intersect then the object of a con-
straint, rather of a contact, generates a zero wrench in
the direction of each body. Simultaneously this object
has to generate the radius vectorsrPA, rPB of opposing
with each other pointsPA, PB.
Based on (1) note the variableµ indicates the contact
of the bodiesA andB. Indeed, for definiteness suppose
the outer surfaces in vicinities of the pointsPA, PB are
such that vectors of gradientsgradgA(r), gradgB(r)
are directed outside the each body. Then we have the
following cases at hand: (a)µ > 0 means the contact
absent; (b)µ≤ 0: the contact takes place. Ifµ< 0 then
the bodies supposed to penetrate each other, though re-
ally begin to deform in a region of the contact. In the
sequel we follow the simplest elastic contact model
originating from Hertz [2]. Computational analysis
will be performed for the case of contacting only, see
Figure 2. For simplicity and definiteness the surfaces
are showed convex in Figure 2 though it is not neces-
sary at all in general for our implementation.

Figure 2: Local Coordinate System

To represent the Hertz contact model in its classical
form first of all we have to construct an auxiliary base
in vicinity of the contact. First base is composed by
three unit vectorsααα, βββ, γγγ such thatγγγ = nA, wherenA is
the unit vector along the gradientgradgA(r) collinear
to thez-axis in Figure 2. As it was for the derivation of
the opposing points the most appropriate move to com-
pute the proper base{ααα,βββ,γγγ} is to construct a relevant
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subsystem of DAEs. First of all start with differential
equation forγγγ. It has the form

γ̇γγ = |gradgA|−1 [(gradgA)˙− (nA,(gradgA) )̇nA] ,

where the time derivative of the gradient reads

(gradgA)˙= [ωωωA,gradgA]+TAHessfATT
A (uPA−vPA) .

Now we can right down the chain of equations

ΩΩΩ = [γγγ, γ̇γγ] , α̇αα = [ΩΩΩ,ααα] , βββ = [γγγ,ααα] ,

defining successively the angular velocityΩΩΩ of the unit
vector γγγ(t) rotation, the differential equation for the
unit vectorααα, and the unit vectorβββ completing the lo-
cal base under construction. Actually the vectorΩΩΩ is
an angular velocity of the base triple{ααα,βββ,γγγ} w. r. t.
AF.
Note once more we have to provide the consistent ini-
tial data for the vectorsααα, γγγ which became now a vec-
tor valued state variables. And of course browsing the
equations represented above it is transparent enough
which Modelica code stands behind the algorithm out-
lined here.
Using the base{ααα,βββ,γγγ} built up above it is easy
enough to compose the matrixT = [ααα,βββ,γγγ] consist-
ing of the columns composed themselves by the co-
ordinates of the unit vectors. ActuallyT is the trans-
fer matrix between coordinates ofAF and the current
local base{ααα,βββ,γγγ}. Let us first express the outer sur-
faces equations in coordinates of the local system (LF)
having an origin at the pointPA, see Figure 2.
Because the matrixT is orthogonal its inverse is de-
rived by the transposition ofT. Then to compute the
matrix of coordinate transformation from theLF to
one of the bodies’ we can represent it as follows

Rα = TTTα (α = A,B).

Introducing new temporary notationr = (x,y,z)T for
the coordinate vector of the current geometric point
w. r. t. local systemPAxyzone can easily deduce the
dependence

r = ρρρOα
+Rαrα (α = A,B),

whereρρρOα
= (ξOα ,ηOα ,ζOα)

T is the coordinate vector
of the bodyα mass center w. r. t.LF .
Let the bodyα outer surface is defined by the equation

hα(r) = 0 (α = A,B), (4)

w. r. t. current position ofLF . Then it is easy to see
the functionhα can be computed by the formula

hα(r) = fα
(
RT

α
(
r −ρρρOα

))
(α = A,B).

Further bring the equations (4) to the form suitable to
analyse the contact problem in vicinity of the corre-
sponding points

ρρρPα
= ρρρOα

+Rαρρρα (α = A,B),

on the surface of the bodyα. Here the vectorρρρα de-
fines the position of the pointPA w. r. t. the bodyα
own coordinate system. Supposing the surfaces regu-
lar enough we have the expansions

fα(rα) = fα (ρρρα)+(gradfα (ρρρα) ,∆rα)+
1
2

(Hessfα (ρρρα)∆rα,∆rα)+O
(
|∆rα|3

)
,

hα(r) = hα
(
ρρρPα

)
+

(
gradhα

(
ρρρPα

)
,∆r

)
+

1
2

(
Hesshα

(
ρρρPα

)
∆r ,∆r

)
+O

(
|∆r |3

)
,

where∆r = r−ρρρPα
, ∆rα = rα−ρρρα. Since∆r = Rα∆rα

then it is easy to verify that

gradhα
(
ρρρPα

)
= Rαgradfα (ρρρα)

Hesshα
(
ρρρPα

)
= RαHessfα (ρρρα)RT

α .
(5)

Because at the bodyα outer surface pointρρρPα
the func-

tion hα is zero-valued then up to the terms of the third
order in the coordinate systemPαxyzthe equation (4)
can be represented as follows

∂hα

∂z
z+

(
x y

)(
aα cα
cα bα

)(
x
y

)
= 0, (6)

where the Hesse matrix elements are to be expressed
by the formulae

aα =
1
2

∂2hα

∂x2 , bα =
1
2

∂2hα

∂y2 , cα =
1
2

∂2hα

∂x∂y
,

where in turn one should use the results of (5). Note
the equation (6) has such a simple representation be-
cause at the pointρρρPα

the choice of the base causes the
conditions

∂hα

∂x

(
ρρρPα

)
= 0,

∂hα

∂y

(
ρρρPα

)
= 0. (7)

Supposing the surfaces are nondegenerate at the points
Pα we have the condition

|gradhα (rα)|> 0,

and because of (7) it causes the condition

∂hα

∂z
(rα) 6= 0.

Therefore, the equation (6) can be resolved w. r. t. the
variablez in explicit form as

z= a′αx2 +2c′αxy+b′αy2, (8)
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where the new coefficients of the second order terms
are computed in the form

a′α =− aα
∂hα

∂z

, b′α =− bα
∂hα

∂z

, c′α =− cα
∂hα

∂z

.

The further reduction comes to a transformation to
canonical view of the quadratic form

q(x,y) = ax2 +2cxy+by2, (9)

derived as a difference between the forms (8) such that

a = a′B−a′A, b = b′B−b′A, c = c′B−c′A.

The transformation is implemented simply as a rota-
tion about thez-axis of the systemPAxy to achieve
the coefficientc vanishes. Finally the function (9) be-
comes having the form

q(x,y) = Px2 +Qy2 (10)

with the additional condition0 < P≤Q.

3 The Hertz Model

According to the known technique [7] to compute the
total normal force at the contact we have to solve the
system

FD
π

∞∫

0

dξ√
(α+ξ)(β+ξ)ξ

= h,

FD
π

∞∫

0

dξ
(α+ξ)

√
(α+ξ)(β+ξ)ξ

= P, (11)

FD
π

∞∫

0

dξ
(β+ξ)

√
(α+ξ)(β+ξ)ξ

= Q,

of three transcendental equations provided the coef-
ficients P, Q from the representation (10) and depth
of mutual penetration, so-called mutual approach,h =
|rPB− rPA| are already have been computed. The sys-
tem (11) has three unknown variables:α, β, F , where
the valuesα, β are the semi-major axes squared of the
contact spot ellipse, andF is the total normal elastic
force really distributed over the contact area. The pa-
rameter

D =
3
4

(
1−ν2

A

EA
+

1−ν2
B

EB

)

summarizes elastic properties of the contacting bod-
ies: νA, νB being Poisson’s ratios, andEA, EB being
corresponding Young’s moduli.

Using the substitutionξ 7→ η (ξ = λη) in elliptic in-
tegrals of (11) we can separate the last two equations
of (11). Indeed, introducing new scaled unknown vari-
ablesα′, β′ according to formulaeα′ = α/λ, β′ = β/λ
we can deduce the two mentioned equations to the
closed system

I1(α′,β′) = P, I1(β′,α′) = Q, (12)

if the scaling factorλ satisfies the norming condition

FD
π
· 1

λ3/2
= 1. (13)

Here the elliptic integralI1(α,β) is defined by

I1(α,β) =
∞∫

0

dξ
(α+ξ)

√
(α+ξ)(β+ξ)ξ

causing clearly verified equations

I1(α′,β′) =−2
∂I(α′,β′)

∂α′
, I1(β′,α′) =−2

∂I(α′,β′)
∂β′

,

(14)
where taking into account thatα′ ≥ β′, which is equiv-
alent to the conditionP≤ Q satisfied above, we may
have the relations

I(α′,β′) =
∞∫

0

dξ√
(α′+ξ)(β′+ξ)ξ

=
2√
α′

K(k),

where in turnK(k) is the complete elliptic integral of
the first kind with the modulus defined by the formula

k =

√
α′−β′

α′
.

Here one can see the valuek actually has a geometric
sense exactly of the contact spot ellipse eccentricity.
Using the work [8] as a pattern we introduce the value
c = k2 of the elliptic integral modulus square. Taking
into account that elliptic integrals are regular functions
of c = 1−β′/α′ we obtain using the rule of the com-
pound function differentiation

I1(α′,β′) =
2

α′3/2

(
K(c)−2(1−c)

dK(c)
dc

)
,

I1(β′,α′) =
4

α′3/2

dK(c)
dc

.

Dividing then the first equation of (12) by the second
one and using the last derived expressions we reduce
finally the whole problem to the one-dimensional tran-
scendental equation

1
2
K(c)

(
dK(c)

dc

)−1

− (1−c) =
P
Q

(15)
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w. r. t. the unknown valuec.
Once the solution of the equation (15) had been found
we can obtain immediately the values

α′ =
(

4
Q

dK(c)
dc

)2/3

β′ = α′(1−c).

Using the first equation of (11) and normalizing de-
pendence (13) we then find the value of the scaling
factor

λ =
h

I(α′,β′)
(16)

thus arriving to the Hertz problem solution: the normal
force and the contact ellipse semi-major axes values

F =
π
D

λ
√

λ, a =
√

λα′, b =
√

λβ′.

Nevertheless an implementation on Dymola requires a
further reduction of the model in a manner we already
mentioned above twice: use preferably the differential
equations (probably to overcome the potential prob-
lems for the analytical processor when differentiating
the transcendental expressions on the DAE system in-
dex reduction stage when compiling and indirectly and
more rarely when running the model). To this end we
have to remind the known ODEs connecting the com-
plete elliptic integrals of the firstK(c) and the second
E(c) kind between one another [8]

dK

dc
=

E− (1−c)K
2c(1−c)

,
dE

dc
=

E−K

2c
.

Furthermore instead of (15) then we should use its dif-
ferential version

[
3

(
dK

dc

)2

−K
d2K

dc2

]
ċ = 2

(
dK

dc

)2

Ċ,

whereC = P/Q, and

d2K

dc2 =
(1−c)(2−3c)K− (2−4c)E

4c2(1−c)2 .

In this way the complete integrals become an addi-
tional state variables such that

K̇ =
dK

dc
ċ, Ė =

dE

dc
ċ,

and simultaneously we have yet another way to com-
pute elliptic integrals in dynamics, note: exclusively
fast and sufficiently accurate way.
Staying in frame of the traditional Hertz model and
taking into account that the expression for the normal
force has the form

Felast=−e(P,Q)h3/2,

where while changing the valueh the valuesP, Q don’t
change, we conclude the potential energy of elastic de-
formations is represented by the expression

Uelast=
2
5

e(P,Q)h5/2.

On the other hand using the volumetric approach [5]
one can try to represent the same potential energy as
follows

Uelast= f

(
b
a

)
VνSσ pδ,

whereV is the volume of the bodies undeformed ma-
terial intersected,S is the area of the intersection pro-
jection onto thexy-plane of theLF , p is the perimeter
of that projection. It turned out ifν = 2, σ = −7/4,
δ = 1/2 then the function

Velast= 0.357469
8

15π1/4(θA +θB)
V2p1/2

S7/4
,

differs fromUelast by 0.5% of its value in wide range
of the contact ellipse shapes: surely forb/a∈ [0.1,1].
Here

θα =
1−ν2

α
πEα

, (α = A,B).

Since in the case of the Hertz model the contact spot is
the ellipse then the valuesV, S, p are to be computed
by the expressions

V =
πh2

2
√

PQ
, S=

πh

2
√

PQ
, p =

4
√

h(Q/P)1/4E(c1)
(PQ)1/4

,

where the elliptic integral modulus squared this time
has the expressionc1 = 1−P/Q. Then taking into
account that

Felast=−∂Uelast

∂h
,

we get the Vilke formula for the approximate value of
the normal force at the contact

Felast=−0.357469
2

3(θA +θB)

√
E(c1)

P3/8Q3/8
h3/2.

Numeric experimental verification showed an appli-
cation of the above expression for the normal force
indeed causes the relative error near the value0.5%
for the contacting bodies configuration coordinates in
compare with “exact” Hertz model over long time of
simulation. Anyway to estimate with the proper qual-
ity the fatigue processes in machines while the lifecy-
cle simulation it is sufficient enough to have an accept-
able approximation for the contact forces.
The Vilke formula is essentially simpler than compu-
tations in the Hertz model requiring the solution of the
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transcendental equation. Volumetric derived algorithm
is more reliable than the Hertz one though sometimes
due to the differential techniques arranged for the el-
liptic integrals the Hertz algorithm works even faster
than one of Vilke.

4 Implementation

The procedures described above to compute the nor-
mal force of an elastic interaction were implemented
on Modelica in frame of general approach to con-
struct the objects of mechanical constraint [9]. Strictly
speaking in case of the compliant connection the con-
straint itself is absent. Instead we have an elastic
compliance implementing the Hertz contact model.
Though the general architecture of the objects inter-
action conserves completely. Thus for future purpose
retain the term “constraint”.
When implementing a class of the compliant interac-
tion it turned out to be useful to split its base classes
in two different lines of inheritance: (a) the first one
contains mainly the geometric properties, (b) the sec-
ond line is responsible for the normal force calcula-
tion. Thus in the last derived class we use the multiple
inheritance allowed in Modelica. An example of the
classes hierarchy in the case under consideration see
in Figure 3.
The example is one of the simplest ones to test an im-
plementation of the Hertz model: the contact of the
ellipsoid and the plane. The left line of inheritance,
see Figure 3, concerning mainly with the contact geo-
metric properties

Constraint
↓

CompliantConstraint
↓

CompliantConstraintAddOn
↓

SurfacesOfConstraintDifferential

has a common use and doesn’t depend on the type of
the contacting surfaces. The variables which do de-
pend on such that gradients and the Hesse matrices are
evaluated in the class

EllipsoidAndHorizontalPlaneDifferential .

The classSurfacesOfConstraintDifferential
is here the most essential derived one. It is responsible
for the pointsPA and PB permanent tracking, imple-
ments the DAE system (2), (3), and has the following
Modelica code

partial model
SurfacesOfConstraintDifferential

extends CompliantConstraintAddOn;
SI.Velocity[3] drA;
SI.Velocity[3] drB;
ConstraintDetectorRate dmu;
Real lambda;
LambdaRate dlambda;
GradientRate[3] dgradgA;
GradientRate[3] dgradgB;
Real Active(start = 1);
Hessian[3, 3] HessgA;
Hessian[3, 3] HessgB;

equation
der (Active) = 0;
der (rA) = Active*drA;
der (rB) = Active*drB;
der (lambda) = Active*dlambda;
der (mu) = Active*dmu;
dgradgA = cross (InPortA.omega, gradgA)

+ HessgA*(drA - vrA);
dgradgB = cross (InPortB.omega, gradgB)

+ HessgB*(drB - vrB);
dgradgA = lambda*dgradgB +

dlambda*gradgB;
drA - drB = mu*dgradgB + dmu*gradgB;
0 = gradgA*(drA - vrA);
0 = gradgB*(drB - vrB);
HessgA = InPortA.T*HessfA*

transpose (InPortA.T);
HessgB = InPortB.T*HessfB*

transpose (InPortB.T);
end SurfacesOfConstraintDifferential;

where the variables correspond to ones in (2), (3) in an
evident way by use of their names.
In the line of the force properties inheritance

NormalForce
↓

NormalForceHertzDiff

the classNormalForce plays a role of the base class
for any implementation of the normal force. In the
classNormalForceHertzDiff the normal force be-
sides the elastic Hertzian term has the term of viscosity
of the form

Fvisc =−d(h)ḣ,

whereh is the mutual approach. This latter term sup-
posed to arise due to the plasticity properties of the
material the bodies made of. It is fair natural to con-
sider the coefficient aṫh to depend uponh [10] since
as the mutual approach increases from zero then the
contact spot area also increases from zero. Therefore
it is quite natural for the plastic resistance to increase
continuously from zero.
The classNormalForceHertzDiff Modelica code
is long enough thus let us highlight some of its main
features, namely the implementation of the auxiliary
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Figure 3: Example of Compliant Constraint Classes Hierarchy

local base{ααα,βββ,γγγ} tracking and equations to compute
the solution of the system of the transcendental equa-
tions

model NormalForceHertzDiff
· · ·

initial equation
K = CompleteEllOfFirstKind(k2);
E = CompleteEllOfSecondKind(k2);
0.5*CompleteEllOfFirstKind(k2)/

dKdk2(k2) - (1 - k2) = C;
equation

dgamma = (dgradgA1 -
normA1*(normA1*dgradgA1))
/ sqrt (gradgA1*gradgA1);

der (gamma) = dgamma;
OmegaA = cross (gamma, dgamma);
der (alpha) = cross (OmegaA, alpha);
beta = cross (gamma, alpha);
· · ·
der (k2) = dk2;
dK = if k2 < Accuracy then dKdk2(k2)

else 0.5*(E - (1 - k2)*K)/k2
/(1 - k2);

dE = if k2 < Accuracy then dEdk2(k2)
else 0.5*(E - K)/k2;

der (K) = dK*dk2;
der (E) = dE*dk2;
C = A1/B1;
dC = der (C);
ddK = if k2 < Accuracy then

d2Kdk22(k2) else 0.25*((1 - k2)*
(2 - 3*k2)*K - (2 - 4*k2)*E)/k2^2

/(1 - k2)^2;
(3*dK^2 - K*ddK)*dk2 = 2*dK^2*dC;
· · ·

end NormalForceHertzDiff;

where the variablesK, E, k2, dK, dE, ddK, A1, B1,
C stand correspondingly for the valuesK(c), E(c),
c, dK/dc, dE/dc, d2K/dc2, P, Q, C from previ-
ous section. The functionsdKdk2(k2), dEdk2(k2),
d2Kdk22(k2) are used if the modulus is small enough,
i. e. regular expressions become inoperative. These
functions are computed via expansions of series with
the fast convergence for the small modulus. Section of
initial equations is needed to initialize a state variables
being computed using known expansions for the com-
plete elliptic integrals. These expansions work only
once when starting the simulation.
A tangent force at the contact in our case is computed
in the classCompliantConstraintAddOn and for
the simplicity is implemented as a regularized model
of the Coulomb friction [6]. Obviously, one can create
here even far more complicated models for the tangent
force at the contact.

5 Example of the Ball Bearing

The ball bearing model is built up using the architec-
tural principle mentioned above. On the Icon-level
of its representation it looks exactly like the model
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Figure 4: Visual Model of the Ball Bearing
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of any constraint: it has two ports of the connector
typeKinematicPort to import the twists of the rigid
bodies connected by the bearing, and two ports of the
WrenchPort type to export the wrenches in directions
of the bodies mentioned. Visual model of the ball bear-
ing see in Figure 4
For definiteness the bearing was equipped by eight
balls. Each ball has two elastic contacts: one with
the inner ring, and one with the outer one. In both
cases when contacting the ball simultaneously rolls
over the surfaces of the toroidal tubes corresponding
to the raceways of the inner and outer rings.
Describe in brief the specifications of the contact be-
tween the ball and one of the toroidal raceways. The
ring always supposed to be denoted as a bodyA in the
contact object of the ball bearing model, while the ball
always denoted asB. All we need to complete the con-
straint specifications is to define the functionsfA, fB.
In our case we have

fA(x,y,z) = 4R2
A

(
x2 +y2

)
−(

x2 +y2 +z2 +R2
A− r2

A

)2
,

fB(x,y,z) = x2 +y2 +z2−R2
B,

whererA is the toroidal pipe radius,RA is the radius of
the circle being an axis of that toroidal pipe,RB is the
ball radius.
Paying an attention to the ball bearing visual model,
Figure 4, note the central column represents eight ob-
jects B1, B2, . . . , B8 of elastic balls. Left and right
columns of objects composed by the contact objects
between the balls and the outer ring (left column) and
inner ring (right column), all implemented using the
Hertz model described above. The objects represent-
ing in the model the inner and outer rings have the
namesIR andORcorrespondingly. At left and right ex-
treme sides of the class the objects of rigid constraints
are located. These constraints connect the outer and
the inner rings objects with the objects of the bodies,
outer and inner shafts in our case, attached one with
another by the bearing. In the example under consid-
eration the body connected with the outer ring rests
w. r. t. AF while the body connected to the inner ring
rotates uniformly aboutz-axis of AF both thus per-
forming the prescribed motion, see the animation im-
age in Figure 5.
The visual model of the example testbench see in Fig-
ure 6. To verify the quality of the Hertz model imple-
mentation we compared the vectorsγγγ andnA as func-
tions of time. The computational experiments showed
that their coordinates coincide with a very high accu-
racy. At last yet another remark: to make the simula-
tion even more faster, at least twice, one can apply the

Figure 5: Animation of the Model

simplified expression of the form

Felast=−eh3/2,

with the constant coefficiente for the normal elastic
force at the contact [11]. But it is possible only if the
geometric properties (curvatures etc.) don’t change
while simulating the model. Moreover, for different
cases of contacting the coefficientewould have differ-
ent values. Then its value can be computed using the
numerical experiment, or even better using the natural
physical experiment. If the motion under simulation is
perturbed from its pure case with the constante then
immediately its value begins change in time.

Figure 6: Visual Model of the Testbench

6 Conclusions

Summarizing the results presented above we can split
them to the several main remarks influencing the po-
tential directions of future work:
(1) According to an experience accumulated while de-
veloping the models simulating the multibody dynam-
ics one can resume the usefulness of the approach
when the differential formulations proper applied are
preferable in several aspects. It is a real way to han-
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dle the transcendental equations in frame of dynami-
cal problems using the ODEs derived from the tran-
scendental ones in combination with the linear solver
w. r. t. derivatives of the new state variables.
(2) In particular it turned out an introduction of the
component of the ODEs system for the elastic bodies
outer surfaces tracking for the contact problem con-
serves an accuracy and simultaneously improves the
reliability of the models. To implement the tracking
in case of the complex shape surfaces we have to rear-
range only one derived class at the end of the inheri-
tance chain to define an equations for the gradients and
Hessians of the surfacesAandBw. r. t. LFs of the bod-
ies. The surfaces supposed smooth enough and with-
out sharp edges but can be described byif -constructs
properly arranged.
(3) Implementation of the complete elliptic integrals
using ODEs subsystem also was useful: the models
became more reliable and faster. For instance, the
Hertz algorithm improved as described above turned
out to be even faster than the V. G. Vilke one in case
of the almost circular contact area.
(4) The algorithm of V. G. Vilke is more reliable and
suitable for wide range of the contact area eccentric-
ities simultaneously providing an accuracy of0.5%
with respect to the Hertz-point algorithm.
Regarding the directions of the future work it is evi-
dent enough an interest to apply the developed mod-
els to different types of appliances with the rotary mo-
tions, or to the problems essentially including the ef-
fects of friction when contacting.
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Abstract

The freeFOClib (short for “free Field-Oriented Con-
trol library”) provides a framework for simulations of
electric drives with different application purposes. The
library can be used to simply build a field-oriented
control system for existing machine models from the
Modelica Standard Library, investigate the impact of
electric faults (battery faults, inverter faults, machine
faults) on a electric drive system, and run simulations
to estimate the fuel consumption of hybrid electric ve-
hicles. The library structure and some of its main com-
ponents are presented. Simulation results of an elec-
tric fault are given as an application example of this
library. The freeFOClib will be publicly available in
Spring 2008.

Keywords: Modelica, free library, electric machines,
field-oriented control, fault simulation, hybrid electric
vehicle

1 Introduction

In automotive applications the number of electric mo-
tors used is increasing rapidly. Most of them are doing
their work without us – the car owners/users – actively
noticing it. When a power window is still a quite ob-
vious application for an electric motor, the active con-
trolled throttle valve might not be. And with more and
more tasks going to be performed by-wire (e.g., brak-
ing, steering) the number of electric motors used is due
to increase even more. But not only small electric mo-
tors are present. With the electric motor being used
for active propulsion in hybrid electric vehicles (HEV)
also the power rating of motors used grows bigger.
But how do all these little and large motors work to-
gether? How should the manufacturer develop the con-
troller? What happens if there is a fault in the system?

Will the faults cause serious damage or just minor in-
conveniences?
All these question could be answered by using simu-
lations to investigate the normal and faulty behaviour.
For the creation of such simulation models we need
both, appropriate machine models and the suitable ma-
chine controllers. The overall simulation model will
contain signals from different physical domains (i.e.,
electrical and mechanical).
The modelling language Modelica1 was especially de-
veloped to simplify the simulation in different physical
domains in one simulation model. The multi-domain
capability allows us to build simulation models of hy-
brid electric vehicles easier than than with other simu-
lation tools.
So far our Chair of Electronic Measurement and Diag-
nostic Technology has investigated different aspects of
Modelica with real-time applications and hybrid elec-
tric vehicles ([1, 2]).

2 Purpose of the library

The Modelica language is specified in the so called
Modelica Specifications [3] and comes with the free
Modelica Standard Library (MSL) [4] which contains
a huge collection of models for different physical do-
mains (e.g., electrical, mechanical, thermodynamical).
For the simulation of machines the Modelica
Standard Library contains a sub-library called
Modelica.Electrical.Machines [5]. This library
contains basic three-phase models of asynchronous
and synchronous machines as well as DC machine
models. To control these machines the modeller still
has to provide his own controllers since currently there
is no free Modelica library available to provide com-
plete electric drive models.

1Modelica R© is a free modelling language developed by the
Modelica Association→ www.modelica.org
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So in order to simulate more complex electric drive ap-
plications a new “free Field-Oriented Control Library”
(freeFOClib[6]) is being developed.

3 Library structure

The freeFOClib should allow the user to model and
simulate all aspects of the an electric drive. A stan-
dard electric drive normally consist of components like
power sources, power electronics, controllers, electric
machines, and interfaces. The communication of the
blocks can be done either via the classic approach by
use of input and output connectors or by the use of bus
signals. The bus structure orients itself on the new bus
structure of the Vehicle Interfaces Library [7]. This
should allow easier simulation of power-train simula-
tions of hybrid electric vehicles, for example.

Figure 1: Top-level packages of the freeFOClib

Figure 1 shows a graphical representation of the up-
permost hierarchy level of the library.
The library consists of:

UsersGuide Every Modelica library should contain
this. It gives the user information on how to use
the library as well as some information about the
release history and participating developers.

Examples To get the user going some example sim-
ulation models are included. There are sub-
packages of examples for the different parts (e.g.,
complete drive systems, batteries, inverters, ma-
chines)

Batteries This is a sub-package that contains differ-
ent battery models.

Components Models which are library-wide used and
therefore do not fit exclusively into any of the
other sub-packages are placed here.

Controllers In here controllers for the control of
electric drives together with the necessary flux
models are placed.

Functions Custom functions which are used by the
freeFOClib.

Icons Special icons for the models.

Interfaces The Interfaces sub-package includes
different interface models. Mostly they are made
of a partial type so that one can simply extend
from the interface model which fits the applica-
tion most.

Inverters These models are used to transform the
control signals into electrical signals which can
then be applied to the machine models.

Machines This library contains models of syn-
chronous and asynchronous machines of different
types.

In addition to the different controller types for the
field-oriented control as well as the battery models
(important for automotive applications) also new ma-
chine models for fault-simulations have been devel-
oped. These are using the m-phase presentation where
the faults can be introduced directly into the compo-
nents without the need of a d− q− 0-transformation
(see also [8]).

4 Library contents

After a first quick overview of the library we like to
explain some the library’s content in more detail.

4.1 Batteries

In the current version of the freeFOClib there are two
different types of batteries present. One very simple
model consisting of an internal resistor and a con-
trolled signal voltage only. As this is normally not
sufficient for more advanced simulations (e.g., simu-
lations of driving cycles of hybrid electric vehicles)
an advanced battery model was added. This model
is based on models from the Advisor 2002 Simulink R©

model. It contains three main sub models: SOC,
VocRint, and BatteryECU (see Figure 2).
The advanced battery model includes an active energy
management. The state of charge is calculated by SOC.
The simple internal resistor of the ideal resistor is re-
placed by a variable resistor. The value of resistance is
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Figure 2: Advanced battery model

controlled by look-up tables and depends on the charg-
ing/discharging current, the state of charge, and the
temperature. Currently the characteristic behaviour of
a Nickel-Metal-Hydrid battery type is implemented.
Also included is a switch which acts as a battery pro-
tection system and is controlled by the BatteryECU

and the SOC models.

4.2 Controllers

This package provides models for the regulation of
the control variables flux, speed, torque, and current.
There is a series of different control strategies. Which
of these strategies is the best applicable depends on
the application. In field-oriented control the used flux-
model represents a crucial part of the controller. De-
pending on the machine and the operational range of
speed the correct flux model has to be chosen.
The freeFOClib offers a small variety of flux-models
(see, for example, [9, 10] for more information on con-
trol of electric drives):

• Current models (I−ϑ , I−ω)

• Current-voltage models (UI, UI−ω)

• Voltage models

4.3 Inverters

This sub-package contains different inverter models.
For a start there is an IdealInverter which can be
used if effects of the power electronic circuitry are not

of interest. This gives the ideal voltage and current
signals and does not need much computing power.
When effects of the power electronic are of interest
than there are two different types of voltage controlled
inverters available:

Space Phasor modulation Depending on the control
signal an appropriate voltage space phasor is cal-
culated. The position of the space phasor can then
be transformed into firing signals for an m-phase
inverter bridge (where m could be any number of
phases ≥ 3).

Sinus-Delta modulation Here a sin-wave signal is
compared with a high-frequency triangular wave.
A logic circuitry then generates the firing signals
for the m-phase inverter bridge.

Both non-ideal inverter types have the drawback that
they need a lot of computational power. This has
caused by the need to restart the numerical solver
whenever an event (e.g., switch from one inverter leg
to the other) is triggered.

4.4 Machines

Fortunately, if a modeller tries to build a
standard electric drive with standard 3-phase
machines he can just pick them out of the
Modelica.Electrical.Machines library. These
standard machines can be used in combination with
our controllers and inverters.
Unfortunately, there is a restriction on the number of
phases (i.e. m = 3). The freeFOClib provides asyn-
chronous and synchronous induction machine mod-
els for m-phases and different architectures. The sub-
package for synchronous machines contains m-phase
models with electrical excited and permanent magnet
rotors. The sub-package for asynchronous machines
contains m-phase models with squirrel-cage and slip-
ring rotor. In each of the models the stator inductance
can be changed during simulation time to investigate
fault impacts.
In contrast to the machine models from the Mod-
elica Standard Library the m-phase models of the
freeFOClib are not modelled in the so called d−q−
0-frame but in the m-phase system. This might seem
odd since the d−q−0-frame was actually introduced
to reduce the computational demand of machine simu-
lations. However when developing the freeFOClib

one of the requirements was to be able to simulate
faults and therefore unsymmetrical systems. As soon
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as an electrical m-phase system becomes unsymmetri-
cal all the computational benefit of the d−q−0 trans-
formation is lost. More about the underlying theory of
the machine models can be found here [8].

5 Library applications

The development of the freeFOClib was started with
specific purposes in mind:

• field-oriented control of induction machines

• fault-simulations to investigate electrical and me-
chanical impacts of machine faults

• state of charge estimations for batteries in HEV
applications

• investigate adaptive controller algorithms for
electric machines

In automotive applications, for example, often the
term drivability of a car is used. With drivability the
car manufacturers often relate to the overall operating
qualities of the power train. This could include things
like idle mode characteristics, throttle response, and
acceleration capability. In a hybrid electrical vehicle
for example we got an electric motor acting directly or
indirectly on the drive train.
The freeFOClib contains an example model which
allows for simulation of three different types of faults,
i.e., faults of the battery, faults in the inverter, and
faults in the machine (see Figure 4).

5.1 Inverter and battery faults

To simulate faults in the battery and/or in the inverter,
the example model in Figure 4 contains a fuse compo-
nent fuse_DC. This model disconnects the DC current
when a surge current is detected that violates the max-
imum rating of the battery. The surge-proof fuse is not
triggered right away but after a first order delay time
which can be parametrised. Whenever the fuse is trig-
gered the inverter gets a signal which will switch of
the firing signals for the inverter bridge in turn.
Another kind of battery fault would be a short circuit
of the supply side of the inverter. This is accomplished
by a simple switch that is triggered by a boolean signal
and which connects both support voltage connectors of
the inverter.
And at last a fault of firing signals can be applied di-
rectly via a signal inverter_fault. The combina-
tion of the different switches gives the abbility to build
even more fault scenarios.

5.2 Machine faults

In the electric machine models of our library the fol-
lowing fault scenarios can be simulated:

• open-circuit of a stator phase (e.g., a connecting
cable is broken)

• short-circuit phase to ground (e.g., insulation fail-
ure because of mechanical damage)

• short-circuit of one or more phase windings (e.g.,
insulation failure because of thermal stress within
the stator or rotor)

Each of these faults will have some influence of the
torque produced by the electric drive.

5.2.1 Short-circuit phase to ground

In Figure 3 you can see the simulation results of a syn-
chronous machine with an electric excited rotor. At
the time of T = 2sec one stator phase is connected to
ground. The figure shows all three phase currents and
the mechanical torque over time.
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Figure 3: Fault scenario: short-circuit of one stator
phase to ground

At the beginning the electric machine runs at a con-
stant speed and with a constant load torque applied
to the shaft end. When the short-circuit occurs the
controller tries to keep the torque at a constant level
but can only do so for a certain amount of time until
the fuse finally gets triggered because of over-current.
With such kind of simulation model one could for
example try to find the optimum kind of fuse which
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Figure 4: Example model of an electric drive system.

is sluggish enough to withstand short power surges
whilst still protecting the drive’s power electronic.

5.2.2 Short-circuit within a phase winding

In Figure 5 a fault of the insulation between the phase
windings of a stator coil is modelled. Such a fault can
be caused by, for example, over-temperature or over-
load which in turn leads to an overheated stator wind-
ing. This behaviour is modelled by reducing the induc-
tance value abruptly by 20 percent. In Figure 5 you can
see the three phase currents and the mechanical torque
over time just before and after the connection of one
phase was opened at the time of T = 2sec.
At first sight the electrical impact seems not to be very
drastic. However since the field-oriented control now
calculates the wrong control values the torque starts
to oscillate quite considerable. If this electric drive is
applied in a hybrid electric vehicle, for example, this
could lead to reduction of drive comfort. But not only
this, depending on the mechanical system such oscilla-
tion could become unstable and cause major damage.

5.3 Field-oriented control loop

Having a variety of different flux-models available al-
lows the modeller to investigate different kind of con-
trol strategies for electric drives. So for example by
varying some of the controllers parameters (e.g., the
machine rotor resistance) one can test how robust the
drive control behaves at a certain rotor speed when us-
ing different flux-models for the estimation of the flux
position.
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Figure 5: Fault scenario: short-circuit of phase wind-
ings

6 Future work

The main task for the future is the extension of the
freeFOClib. Here is a short collection of ideas we
are currently having:

• further clean up of the structure so that the usage
is more intuitive

• add more controller types which allow also the
investigation of different control architecture not
just pure parameter variations

• enhance battery models with temperature models
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(at the moment only look-up tables are used to
calculate the resistance)

• verification of machine models

• investigate simplifications to make the machine
and inverter models real-time capable

A pure estimate of the simulated values might give
some clues on the general behaviour during faults.
However to actually use the simulation to gain use-
ful information (e.g., for programming a controller for
the power electronics) we need more than just esti-
mates. So the simulation model has to be verified by
doing real measurements using a real electric motor.
It is planned to set up test-bench system consisting of
a asynchronous induction machine of from currently
available hybrid electric vehicle and an electric load
machine.
The first public official (pre)release is due in spring of
2008. There will be a public development repository
available. For any news on the freeFOClib see www.

freefoclib.org. On that site a mailing-list is also
available to keep you up to date automatically.
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Abstract 

Recently, an improved and extended version of a 
Modelica library for lumped network modelling of 
electromagnetic devices has been released [1]. This 
library is intended for both rough design of the mag-
netic circuit of those devices as well as for their sys-
tem simulation. Improvements compared to a first 
realisation of this library [2] will be discussed and 
utilization of the extended library for modelling of 
electromagnetic actuators will be illustrated. To sup-
port the work with this library, focus will be on 
newly-implemented features and on peculiarities of 
lumped network modelling of electromagnetic actua-
tors rather than on an introductory explanation of the 
underlying concept of magnetic flux tubes.  
Keywords: lumped magnetic network; electromag-
netic/electrodynamic actuator; system design 

1 Introduction 

The well-established concept of magnetic flux tubes 
enables the modelling of magnetic fields with 
lumped networks. In the decades prior to the broad 
availability of software packages based on finite 
element techniques, this was the only efficient means 
for model-based design of the magnetic circuit of 
electromagnetic devices such as transformers, motors 
and electromagnetic or electrodynamic actuators. 
The method of magnetic flux tubes, its utilization for 
the design of electromagnetic devices as well as 
derivation of the permeance of many flux tube 
shapes are explained in-depth for example in [3], [4] 
and [5] and in condensed form in the documentation 
of [1].  
Even though finite element techniques allow for 
more accurate calculation of magnetic fields, lumped 
magnetic network models are still an efficient means 
for initial rough design of electromagnetic devices 
and for simulation of their dynamic behaviour during 
system design. This is due to the relatively little ef-

fort needed for creation of rough magnetic network 
models and to the low computational effort for dy-
namic simulation compared to finite element tech-
niques.  
A first realisation of a Modelica library for lumped 
network modelling of electromagnetic devices was 
presented in [2]. This library was improved and ex-
tended and is now available [1]. Some of the impor-
tant improvements of the extended library compared 
to the prior version are: 
• a more general approach for calculation of mag-

netic reluctance forces (section 2), 
• redesigned and extended components for represen-

tation of typical flux tube shapes (section 2), 
• additional soft magnetic and permanent magnetic 

materials (section 3),  
• more accurate modelling of magnetic leakage 

fields for dynamic simulation by splitting of the 
magnetomotive force imposed by a coil into sepa-
rate sources (section 4) and 

• additional examples of different modelling depths. 

2 Reluctance Force Calculation 

Generally, the thrust F developed by a translatory 
electro-magneto-mechanical actuator (similar for the 
rotational case with torque and angular position) is 
equal to the change of magnetic co-energy Wm

* with 
armature position x according to 
 *

)(
m

i

W
x

diΨ
x

F
∂
∂

=
∂
∂

= ∫  (1)

(Ψ flux linkage, i actuator current) [4]. In lumped 
magnetic network models, the above equation sim-
plifies to 
 

∑
=

=
linearn

i

im
imag dx
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2

2
1  (2)

where nlinear is the number of flux tube elements with 
constant relative permeability that change their per-
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meance Gm i with armature position (index i), Vmag i 
the magnetic voltage across each respective flux tube 
and dGm i/dx the derivative of the respective per-
meances with respect to armature position. Transi-
tion from the general formula based on magnetic 
co-energy (Eq. (1)) to Eq. (2) is outlined in [4] for 
the reciprocal of the permeance, i.e. for the magnetic 
reluctance. Compared to the reluctance force calcula-
tion with Maxwell’s formula used in [2], the 
newly-implemented approach according to Eq. (2) 
simplifies force calculation for air gaps different 
from a simple cylindrical or prismatic shape with 
axial magnetic flux (see below).  
The usability of Eq. (2) is not restricted solely to net-
work models with constant relative permeabilities µr 
of the flux tubes. However, it is required that flux 
tubes with a dependency of the permeability on the 
flux density B such as ferromagnetic components 
with non-linear characteristics µr(B) do not change 
their shape with armature motion (e.g. portion of a 
solenoid plunger where the magnetic flux passes 
through in axial direction). This limitation is not a 
strong one, since the permeance of non-linear, high 
permeable ferromagnetic flux tube elements and its 
change with armature position compared to that of 
air gap flux tubes can be neglected in most cases. 
Because of this constraint, the dimensions of possi-
bly non-linear flux tube elements in sub-package 
FluxTube.FixedShape are fixed, whereas the 
dimension l in direction of motion of the linear flux 
tube elements in sub-package FluxTube.Force 
can vary during simulation. Elements with fixed 
shape are intended e.g. for modeling of transformer 
cores or ferromagnetic sections of actuators. Force 
elements are to be used for modelling of working air 
gaps or for moving permanent magnets of actuators.  
In order to fulfill Eq. (2) in a magnetic network 
model of a translatory actuator, the reluctance force 
Fm of each flux tube with force generation is calcu-
lated in the respective element accordingly: 
 

dx
dG

VF m
magm

2

2
1

= . (3)

Vmag denotes the magnetic voltage across the flux 
tube and dGm /dx is the derivative of flux tubes per-
meance Gm with respect to armature position x. 
Summation of all particular reluctance forces to the 
actuators net force F according to Eq. (2) is induced 
by connecting the translatory flange connectors of all 
flux tube elements with force generation in an actua-
tor model (see example in Figure 4b).  
In a particular actuator model, the derivative dGm /dx 
of the models flux tubes with force generation and 
hence the sign of the generated reluctance force de-

pends on the design of the actuators magnetic circuit 
and on the definition of the armature coordinate x. 
To cover all possible conditions in a uniform way, 
the above derivative is calculated as follows for all 
flux tubes with force generation of sub-package 
FluxTube.Force:  
 

dx
dl

dl
dG

dx
dG mm = . (4)

For the flux tubes defined in this package with their 
rather simple shapes, the derivative dGm /dl is given 
analytically (Table 1). l is the flux tube dimension 
that changes with armature motion. dl /dx is an inte-
ger parameter that must be set to +1 or -1 according 
to the magnetic circuit and the definition of the ar-
mature coordinate x of an actuator. For more com-
plex shapes and variations of dimensions with arma-
ture motion, the derivative dGm /dl must be provided 
analytically during model development, prefer- 
ably by extending the partial model Flux-
Tube.Force.PartialForce.  

Table 1:  Selected flux tube elements with reluctance 
force generation (subset of FluxTube.Force), 
permeance Gm and analytic derivative dGm /dl 
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The leakage flux tube shown in Table 1 provides a 
simple but efficient means to account for leakage 
around prismatic or cylindrical poles. In the latter 
case, depth t is equal to the circumference of a circle 
given by the average radius of the flux tube. Due to 
the constant radius rleak of the leakage field, the 
model is rather simple. In reality, rleak is approxi-
mately constant for air gap lengths l greater than this 
radius, but decreases with air gap lengths less than 
rleak. This decrease for small air gaps is neglected in 
the model since the influence of the leakage flux 
tube compared to that of the enclosed main air gap 
(connected in parallel, see example in Figure 4b) 
decreases for decreasing air gap length l. 
The sub-package FluxTube.Leakage contains 
flux tube shapes typical for leakage flux around 
prismatic or cylindrical poles that do not change their 
shape with armature motion. Hence, the permeance 
of these flux tubes does not depend on armature po-
sition and these elements do not contribute to the 
thrust of a reluctance actuator. 

3 Modelling of Magnetic Materials 

3.1 Soft Magnetic Materials 

The characteristics of the relative magnetic perme-
ability versus flux density µr(B) of various steels, 
electric sheets (Figure 1) and high permeable materi-
als are included in Material.SoftMagnetic. 
These characteristics are uniformly approximated 
with a function adapted from [6]: 
 

n
NNb

Nai
r BBc

Bc
++

+−
+=

1
11 µµ   with  

maxµµ =

=
r

B
BBN

. (5)

This approach assures proper behaviour throughout 
the complete range of flux density. Overshoot and 
extrapolation errors especially at high flux densities 
as possible with spline interpolation or with the 
Modelica Standard Library’s table interpolation with 
continuous derivative can not occur with properly 
chosen parameters. Two of the five parameters of 
Eq. (5) have a physical meaning, namely the initial 
relative permeability µi at B = 0 and the magnetic 
flux density at maximum permeability 

maxµµ =r
B . Ad-

dition of new soft magnetic materials requires de-
termination of the function parameters with a non-
linear curve fit outside of the library. For the in-
cluded materials, attention was paid to accurate fits 
of µr for data points at high flux densities 
(B > 0.8 T). This is because of the large influence of 
saturated ferromagnetic materials on the behaviour 

of a device. It must be noted that a measured charac-
teristics µr(B) strongly depends on the shape, ma-
chining state and heat treatment of a sample, and on 
the measurement conditions. Hence, different char-
acteristics are possible for similar materials as Figure 
1 indicates.  
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Figure 1:  Approximated magnetization characteris-
tics (solid lines) and original data points of included 
electric sheet materials (all valid for 50 Hz) 
 
Magnetization characteristics that are simulated with 
Eq. (5) are shown for an electric sheet as an example 
in the familiar form of flux density vs. field strength 
B(H) in Figure 2. 

Figure 2:  Simulated magnetic flux density vs. mag-
netic field strength B(H) of electric sheet M350-50A 
 

3.2 Hard Magnetic Materials 

For common permanent magnetic materials, typical 
values for remanence Br ref and coercivity HcB ref at a 
reference temperature Tref and the temperature coef-
ficient αBr of remanence are provided in sub-package 
Material.HardMagnetic (Figure 3). Records 
for additional materials can be defined as needed.  
Linear demagnetization curves are modelled. The 
characteristic, temperature-dependent "knee" of 
many permanent magnetic materials is not consid-
ered, since proper design of permanent magnetic cir-
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cuits should avoid operation of permanent magnets 
"below" that point due to partial demagnetization. As 
a result, the temperature coefficient of coercivity is 
not considered. Only the temperature coefficient of 
remanence αBr is accounted for, since this describes 
the dependency of the demagnetization curve on the 
temperature sufficiently for the region "above the 
knee-point". Remanence Br and coercivity HcB that 
are effective at a given operating temperature T are 
calculated according to  
 ))(1( refBrrefrr TTBB −+= α , (6a)

 ))(1( refBrrefcBcB TTHH −+= α  (6b)

in the model Material.HardMagnetic.Per-
manentMagnetBehaviour. Thus, the demag-
netization curves shown in Figure 3 are shifted de-
pending on the operating temperature T and the tem-
perature coefficient of remanence αBr. Usage of the 
above-mentioned component and modelling of a per-
manent magnet are demonstrated in the library in  
Examples.ElectrodynamicActutor.Mag-
neticCircuitModel (Figure 9).  
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Figure 3:  Modelled demagnetization characteristics 
of included common permanent magnetic materials 

4 Modelling of Electromagnetic  
Actuators 

As an example of a reluctance actuator, a simple axi-
symmetric lifting magnet with planar end planes of 
armature and pole is modelled in sub-package Ex-
amples.ElectromagneticActuator of the 
library. Two lumped magnetic network models of 
different modelling depth are included. In a Sim-
pleSolenoidModel, radial leakage that is typical 
for tubular reluctance actuators is neglected. Higher 

accuracy can be gained from an AdvancedSole-
noidModel in which the coil-imposed magnetomo-
tive force (mmf) is split into two separate mmf 
sources and the radial leakage flux between armature 
and yoke is accounted for with leakage permeance 
GmLeakRad (Figure 4). This leakage affects the static 
force-stroke characteristic and the inductance of an 
actuator and hence its dynamic behaviour especially 
at large air gaps, as discussed below.  

b) 

Figure 4:  Magnetic network model of an exemplary 
solenoid actuator: a) Permeances superimposed on 
FEA field plot (half-section) for illustration; b) Com-
plete actuator model including electrical subsystem 

a)

 
Simulation of lumped magnetic network models with 
multiple mmf sources is easily possible for the sta-
tionary case where the coupling between the electri-
cal and the magnetic domain according to Faraday’s 
law 
 

dt
dΦwu −=  (7)

(u voltage induced in a coil at change of magnetic 
flux dΦ/dt, w number of turns) needs not to be con-
sidered. For dynamic simulation, however, split mmf 
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sources are challenging due to the strong interactions 
between the electrical and magnetic domain given by 
Faraday’s law (Eq. (7)) and Ampere’s law 
 wiVmag =  (8)

(Vmag magnetic voltage across mmf source, i current).  
Eq. (7) and Eq. (8) are implemented in the electro-
magnetic converters coil1 and coil2 of Figure 4b. 
The parasitic capacitances cpar1 and cpar2 are required 
to ensure definite voltages across both halves of the 
coil. The values of the auxiliary resistors Rpar1 and 
Rpar2 have been chosen so that simulation is numeri-
cally stable and fast.  
In order to evaluate the accuracy in static and dy-
namic behaviour to be achieved with the above-men-
tioned lumped network models, a dynamic model of 
the example actuator based on more accurate finite 
element analysis (FEA) has been created as a refer-
ence (Figure 5). In this model, one of several possi-
bilities to describe an electromagnetic actuator’s dy-
namic behaviour with look-up tables obtained from 
stationary FEA is implemented. Here, the actuator 
force F(x, I) and the flux linkage ψ(x, I) were calcu-
lated for different fixed armature positions x and sta-
tionary currents I with FEA. The derived tabular 
function ψ(x, I) was inverted to I(x, ψ) as required in 
the model. The voltage across the current source 
iCoil is according to Kirchhoff’s voltage law for the 
actuator’s electrical subsystem, which is given by 
 

dt
ixdΨiRu coil
),(

+=   (9)

(u voltage across coil terminals p and n, i current, 
Rcoil coil resistance).  

Figure 5:  Dynamic model of sample actuator based 
on look-up tables obtained from stationary FEA 
 
In Figure 6, the accuracy in stationary behaviour to 
be achieved between the network model of Figure 4, 
the above-mentioned simple network model without 

radial leakage between armature and yoke and the 
more accurate FEA-based model of Figure 5 is com-
pared. All curves were derived from a quasi-static 
forced movement of the models armature at a given, 
constant voltage. The negative sign of the actuator 
force is due to the definition of the armature coordi-
nate x which is equal to the length of the working air 
gap.  
The static force-stroke characteristics F(x)|i = const of 
all three models are similar. However, differences 
between both network models can be observed for 
the magnetic flux through the armature and for the 
static inductance Lstat = ψ / I, especially at large air 
gaps where the leakage permeance GmLeakRad is large 
compared to the net permeance GmAirWork + GmLeakWork 
of the air gap region. The differences in static induc-
tance between both network models will result in 
different dynamic behaviour of both models, as 
Figure 7 indicates.  
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Figure 6:  Comparison of stationary behaviour of a 
simple lumped magnetic network model without ra-
dial leakage, the network model of Figure 4b with 
radial leakage and the FEA-based model of Figure 5 
 
Differences in model behaviour during a simulated 
pull-in stroke of the armature are shown in Figure 7. 
At time t = 0, a voltage step is applied to both lumped 
network models and to the FEA-based model of the 
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actuator. The characteristic current drop during 
pull-in is due to the motion-induced emf and to the 
increase of the inductance with decreasing air gap. 
One can see that the simulated current rise of the 
network model with radial leakage is closer to that of 
the FEA-based reference model than the current rise 
of the simple network model without radial leakage. 
As a result, the magnetic force of latter model shows 
the fastest rise and simulated armature motion is 
faster than that of the FEA-based model.  
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Figure 7:  Comparison of the models dynamic behav-
iour with a simulated pull-in stroke (voltage step ap-
plied at time t = 0)  

5 Modelling of Electrodynamic  
Actuators 

Similar to the well-known behavioural model of a 
rotational DC-Machine, the electro-mechanical con-
version process of translatory electrodynamic actua-
tors (either moving coil or moving magnet type) can 
be described with a motor constant cm:  
 icF mL = , (10a)
 vcu mi = . (10b)
FL denotes the electrodynamic or Lorentz force, i the 
current, ui the induced back-emf and v the velocity of 
the armature. During design of such actuators, the 
motor constant as well as the motor inductance can 
be determined by means of a lumped magnetic net-
work model of an actuator’s magnetic circuit.  
As an example, Figure 8a shows the principal struc-
ture of an axisymmetric translatory electrodynamic 
actuator with moving coil. The flux lines and the flux 

density of the permanent magnetic field were calcu-
lated with FEA as a reference (Figure 8b, half-sect-
ion). Figure 9 shows a Modelica model of that actua-
tor intended for dimensioning of the actuator’s mag-
netic circuit and winding and for subsequent dy-
namic simulation at the system level. This example 
is included as MagneticCircuitModel in pack-
age Examples.ElectrodynamicActuator of 
the library.  

x  min

concentric coil
= armature

permanent
magnet ring 

S 

N 

x  max x 
ferromagnetic
stator 

RmFeOut leakageRmFeBot

RmFeCore RmAir

RmPM

a) b) 

Figure 8:  Translatory electrodynamic actuator:  
a) Structure; b) FEA field plot of permanent mag-
netic field and partitioning into flux tubes  

 

Figure 9:  Dynamic model of the electrodynamic 
actuator of Figure 8 with lumped magnetic network 
for determination of motor constant and inductance 
 
Although the formula for estimation of the total 
magnetic reluctance Rm tot perceived by the coil is 
rather simple in this model, comparison with FEA 
showed that it is well-suited for initial rough design 
and system simulation of the actuator. The relative 
difference of the inductance  
 

totmcoil RwL 2=  (11)
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(w number of turns) compared to more accurate FEA 
is -12% for the armature in mid-position. For useful 
operating currents, the relative differences of the air 
gap flux density and the resulting Lorentz force to 
the values obtained with FEA are within -5% to -8%. 
This accuracy is sufficient for both initial actuator 
design and system simulation. 

6 Summary and Outlook 

New features and improvements of a Modelica li-
brary for lumped network modelling of electromag-
netic devices [1] were presented. Two examples, an 
electromagnetic and an electrodynamic translatory 
actuator showed that magnetic network models can 
be used efficiently for the rough design of such de-
vices. These examples are included in the respective 
sub-packages of the library and can thus be exam-
ined in depth.  
Despite the simplicity of the presented models, their 
accuracy is sufficient for preliminary design, as com-
parisons with more accurate FEA revealed. The di-
mensions, cross-sections and winding parameters 
found with magnetic network models can be input 
data to a subsequent detailed design with FEA or 
similar techniques, if necessary.  
A suitable approach for lumped network modelling 
of leakage fields for dynamic simulation was dis-
cussed in detail. Insertion of appropriate leakage per-
meances into a magnetic network model requires 
splitting of a devices coil into separate mmf sources. 
This is challenging due to the multiple couplings 
between the electrical and the magnetic domain in 
such a model.  
For some electromagnetic devices, lumped network 
modelling is not possible or reasonable due to dis-
tinct leakage fields, complex pole shapes or - with 
certain actuators - flux tubes and network structures 
that vary considerably with armature motion. Exam-
ples of such devices are inductors without a closed 
core or proportional solenoids. In this case, dynamic 
models for system simulation can be created with 
look-up tables obtained from stationary FEA or simi-
lar techniques. One of several possible structures of 
such a model is shown in section 4.  
At present, network modelling of translatory actua-
tors is supported by the library. If needed, the pro-
vided model components can be adapted to network 
modelling of rotational devices. Hysteresis of ferro-
magnetic materials is currently neglected, since the 
intention of the library is to support the rough design 
of electromagnetic devices where a limited accuracy 
is often sufficient. If necessary, the provided flux 

tube elements can be extended so that hysteresis is 
considered.  
It is planned to include the developed library into the 
Modelica Standard Library after an evaluation pe-
riod.  
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Abstract 

This paper presents how complex phasors are used 
for quasi-stationary analysis of electrical circuits, i.e. 
with sinusoidal excitation neglecting dynamic tran-
sients. The theoretical background of complex 
phasors is elaborated and a Modelica implementation 
– the AC Library – is presented. Additional exam-
ples demonstrate the possibilities of the application 
of complex phasors. 
Keywords: electrical circuit, sinusoidal excitation, 
quasi-stationary analysis, complex phasors 

1 Introduction 

In the simulation of physical systems described by a 
system of algebraic and ordinary differential equa-
tions we distinguish different types of simulation 
analysis: 
• The transient analysis is the most general analy-

sis, showing both the dynamic transients as well 
as steady-state solutions (if steady-state is 
reached). 

• A stationary analysis (sometimes also called DC 
analysis) eliminates the derivatives with respect 
to time, determining steady-state solutions. 

• The so-called small signal AC analysis linearizes 
a non-linear model in a certain point of operation 
(which is found by a stationary analysis), only 
applying excitations with small amplitudes. 

Mainly in the field of electrical engineering – due to 
the nature of electrical power plants that provide 
nearly perfectly sinusoidal voltages with fixed fre-
quency and amplitude – one more type of analysis is 
of great importance: 
• Quasi-stationary analysis applies sinusoidal ex-

citations with known frequency, amplitude and 
phase shift. In a circuit with isolated sub-circuits, 
each sub circuit may be operated at different fre-

quencies, however. Each frequency with respect 
to a sub-circuit is known due to the respective ex-
citation. Fast dynamic transients are not consid-
ered. In a quasi-stationary analysis the unknown 
voltages and currents, with respect to their phase 
shift and amplitude, have to be determined. Re-
garding the consideration of exactly one fre-
quency for each sub-circuit it has to be assumed 
that the only linear circuits are investigated. 

This paper will demonstrate how complex phasors 
simplify the quasi-stationary analysis, and how com-
plex phasors could be modeled using Modelica. Con-
sidering some limitations in the current Modelica 
version will lead to suggestions for improvement. 

2 Complex Phasors 

2.1 Representation of Sinusoidal Voltages and 
Currents 

Any sinusoidal oscillation can be expressed by com-
puting the real part of a complex time-dependent 
phasor according to Fig. 1: 

 ( ) ( ) ( )ϕω=ϕ+ω= jtj eeReA2tcosÂta  (1) 

 ( ) ( )tjj eARe2taeAA ωϕ ⋅=⇒⋅=  (2) 
 

 

Fig. 1 The real part of a rotating phasor equals a             
sinusoidal oscillation; depicted phasor with ϕ = 0;                   

left: complex phasor tjeA2 ω ;                                   
right: time domain signal  )t(a ω
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The magnitude  of the complex phasor A A  is the 
root mean square (RMS) value of the cosine wave. 
The phase shift  is the phase shift of the cosine 
with respect to its maximum at . Time depend-
ence is considered by the phasor  and 

ϕ
0t =
tje ω 2  is the 

ratio between the amplitude and the RMS value of 
the sinus waveform. 
This background of complex phasors can also be 
applied to sinusoidal voltages and currents using 
complex voltage and current phasors: 
 
 ( ) ( ) ( )tj

v eVRe2tcosV̂tv ω⋅=ϕ+ω=  (3) 

 ( ) ( ) ( )tj
I eIRe2tcosÎti ω⋅=ϕ+ω=  (4) 

Assuming sinusoidal excitation of an electric circuit, 
all voltages and currents are of sinusoidal waveform 
with the same angular frequency . Therefore 
the complex voltage phasor  

f2π=ω

 vjeVV ϕ⋅=  (5) 

and the complex current phasor 

 IjeII ϕ⋅=  (6) 

are sufficient to describe quasi-stationary voltages 
and currents. 
The derivative of a complex phasor A  with respect 
to time leads to: 

 ( ) ( )tjejARe2
dt

tda ωω⋅=  (7) 

The time derivative of a sinusoidal waveform is thus 
considered in the complex domain by multiplying 
the original phasor with ωj . This relationship also 
implies the result of the integration with respect to 
the time domain. Since the constant of integration is 
zero for quasi-stationary analysis, the complex repre-
sentation of a time domain integration is determined 
by the division of the original phasor by  ωj .

2.2 Modeling a Linear Resistor 

A linear resistor can be described by the algebraic 
equation: 
 iRv ⋅=  (8) 
Using complex phasors of voltage and current, we 
can replace the algebraic equation by a complex al-
gebraic equation: 
 IRV ⋅=  (9) 

2.3 Modeling a Linear Conductor 

A linear conductor can be described by the algebraic 
equation: 
 vGi ⋅=  (10) 
Using complex phasors of voltage and current, we 
can replace the algebraic equation by a complex al-
gebraic equation: 
 VGI ⋅=  (11) 

2.4 Modeling a Linear Inductor 

A linear inductor can be described by the differential 
equation: 

 
dt
diLv =  (12) 

Exploiting the sinusoidal waveform of the current 
(4), we can replace the differential equation by a 
complex algebraic equation: 
 IXILjV L ⋅=⋅ω=  (13) 

We find a complex version of the equation describ-
ing a resistor, using the complex reactance 

LjXL ω= . 

2.5 Modeling a Linear Capacitor 

A linear capacitor can be described by the differen-
tial equation: 

 
dt
dvCi =  (14) 

Exploiting the sinusoidal waveform of the voltage 
(3), we can replace the differential equation by a 
complex algebraic equation: 
 VYVCjI C ⋅=⋅ω=  (15) 

We find a complex version of the equation describ-
ing a conductor, using the complex admittance 

CjYC ω= . 

2.6 Kirchhoff’s Laws 

For complex voltages and currents, respectively, 
Kirchhoff’s Laws can be applied equivalently: 
 0Ii =∑  (16) 

The sum of all complex current phasors flowing to a 
node is zero. 
 0Vi =∑  (17) 

The sum of all complex voltage phasors in a closed 
loop is zero; this also implies that directly connected 
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nodes have the same complex potential. Both laws 
are inherently considered in Modelica connections. 

2.7 Power 

Multiplying a time dependent voltage (3) and the 
corresponding current (4), we obtain the instantane-
ous electrical power: 
 ( ) ( ) ( )titvtp ⋅=  (18) 

Substituting (3) and (4) in the electric power equa-
tion we obtain: 

 

( )
( ) ( )
( ) ([ IVIV

IV

t2coscosIV
tcosI2tcosV2

tp

ϕ+ϕ+ω+ϕ−ϕ⋅⋅
=ϕ+ω⋅ϕ+ω

=

)]
 (19) 

The instantaneous power oscillates with double the 
frequency of voltage and current, respectively. The 
average value of instantaneous power is dependent 
on the phase shift between voltage and current; this 
term is the active power: 
 ( ) ( )IVIV cosScosIVP ϕ−ϕ⋅=ϕ−ϕ⋅⋅=  (20) 

Apparent power S is defined as the product of the 
RMS values of the voltage and the current: 
 IVS ⋅=  (21) 
Reactive power is defined as quadratic complement: 

 ( IV
22 sinSPSQ ϕ−ϕ⋅=−= )  (22) 

Using complex phasors, we obtain: 
 jQPIVS +=⋅=  (23) 

In this equation, S  is the complex apparent power; 
the amplitude of this complex quantity is the appar-
ent power (21). 

3 Design of an AC Modelica Library 

3.1 Implementation of Complex Arithmetics 

Unfortunately complex numbers are not an intrinsic 
data type in the Modelica language. As a work-
around, a record Complex containing both the real 
and the imaginary part of the complex number can 
be defined: 
record Complex 
  Real re "Real part"; 
  Real im "Imaginary part"; 
end Complex; 

In some cases, the polar representation of a complex 
phasor, consisting of length and phase angle, is ad-
vantageous, however: 

 ϕ⋅=⋅+= j
ImRe eÂAjAA  (24) 

record Polar 
  Real len "Length of the phasor"; 
  Modelica.SIunits.Angle phi "Phase angle"; 
end Polar; 

Of course we have to provide functions for complex 
arithmetic + - * /, like 
function '+' "Complex add" 
  input Complex c1; 
  input Complex c2; 
  output Complex c3 "= c1 + c2"; 
algorithm  
  c3 := Complex(c1.re + c2.re,  
                c1.im + c2.im); 
end '+'; 

as well as complex functions like  
• abs length of the phasor 
• arg phase angle 
• conj conjugate complex 
• sqrt square root 
• exp natural exponentiation 
• log natural logarithm 
• sin sine 
• cos cosine 
which can be implemented according to a mathe-
matical textbook. 
It is not very elegant to use these functions: 
 v = Complex.'*'(Complex(0, w*L), i); 

Therefore an intrinsic implementation (or at least 
operator overloading) would allow reading, type and 
understanding code easier. 
Additionally, we need conversion functions between 
rectangular and polar representation: 
function fromPolar 
  input Polar polar; 
  output Complex result; 
algorithm 
  result.re :=polar.len*cos(polar.phi); 
  result.im :=polar.len*sin(polar.phi); 
end fromPolar; 

function toPolar 
  input Complex c; 
  output Polar polar; 
algorithm  
  polar.len := Complex.'abs'(c); 
  polar.phi := Complex.arg(c); 
end toPolar; 

The tricky part of the conversion from rectangular to 
polar representation is obtaining an angle that may 
be smoothly differentiated to obtain the angular ve-
locity of the corresponding phasor. With the pre-
sented implementation the wrapping of the phase 
angle at 2π cannot be avoided. Instead, a continuous 
growth of the phase angle for non-zero frequency is 
desired. 
A rather difficult exception of a smooth angle is the 
following example: Imagine a phasor with constant 
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angle, but length varying with time. The length 
shrinks within a certain time to zero, growing again 
in the opposite direction afterwards. This would lead 
to a discontinuity by π when the phasors crosses the 
origin. 
Additionally, we have to define complex phasors 
with physical units, like: 
record ComplexVoltage = Complex ( 
    redeclare Modelica.SIunits.Voltage re, 
    redeclare Modelica.SIunits.Voltage im); 

record ComplexCurrent = Complex ( 
    redeclare Modelica.SIunits.Current re, 
    redeclare Modelica.SIunits.Current im); 

to take advantage of a tool’s type checking capabili-
ties. Furthermore we have to define the polar repre-
sentations, too: 
record PolarVoltage = Polar ( 
  redeclare Modelica.SIunits.Voltage len); 

record PolarCurrent = Polar ( 
  redeclare Modelica.SIunits.Current len); 

3.2 Propagation of the Common Frequency 

Since different sub-circuits of an electrical circuit 
could have different frequencies – e.g. stator and 
rotor of an asynchronous induction motor– it would 
be advantageous to provide the local frequency of a 
component via the connector. Introducing an addi-
tional variable (reference angle, frequency or angular 
velocity) in the connector leads to over-determined 
connection equations. Fortunately, Modelica [4] pro-
vides methods to deal with this problem. This con-
nector variable has to be defined as a type or record 
with an additional function definition: 
record Reference  
  Modelica.SIunits.Angle phi; 
  function equalityConstraint  
    input Reference ref1; 
    input Reference ref2; 
    output Real residue[0]; 
  algorithm  
    residue := ...; 
  end equalityConstraint; 
end Reference; 
Additionally, the following functions are used to al-
low a tool to break algebraic loops: 
• Connect 

defines a breakable branch 
• Connections.branch 

defines a non-breakable branch 
• Connections.root 

defines a root node in a virtual connection graph 
• Connections.potentialRoot 

defines a potential root node in a virtual connec-
tion graph 

3.3 Single Phase Components 

The connector definition  
connector Pin  
  Types.ComplexVoltage v; 
  flow Types.ComplexCurrent i; 
  Types.Reference ref; 
end Pin; 

not only contains complex potential and complex 
current, but also the record providing the local fre-
quency respectively phase angle of the reference 
frame as explained in 3.2. 
Additionally, basic components as ground, resistor, 
conductor, capacitor and inductor are defined. Fur-
thermore, we need sensors and voltage sources as 
well as current sources. Fig. 2 gives an overview of 
the implemented components. 

 
Fig. 2 Structure of the AC library 
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As an example, the implementation of the inductor 
as well as the partial models that inductor extends 
from are shown: 
partial model TwoNode  
  Types.ComplexVoltage v =  
    Complex.'-'(p.v, n.v); 
  Types.ComplexCurrent i = p.i; 
  Modelica.SIunits.AngularVelocity w = 
    der(p.ref.phi); 
  AC.SinglePhase.Interfaces.PositivePin p;  
  AC.SinglePhase.Interfaces.NegativePin n;  
equation  
  Connections.branch(p.ref, n.ref); 
  p.ref.phi = n.ref.phi; 
end TwoNode; 

TwoNode defines the complex voltage drop along the 
component as well as the angular velocity by differ-
entiating the reference phase angle. 
partial model OnePort  
  extends TwoNode; 
equation  
  Complex.'+'(p.i, n.i) = Complex.'0'(); 
end OnePort; 

OnePort additionally defines that the sum of currents 
flowing into the component is zero. 
model Inductor  
  extends Interfaces.OnePort; 
  parameter  
    Modelica.SIunits.Inductance L=1; 
equation  
  v = Complex.'*'(Complex(0, w*L), i); 
end Inductor; 

Using these partial models Inductor is a simple im-
plementation of (13). 

3.4 Auxiliary Blocks 

Additionally to the basic components, blocks with 
complex inputs / outputs are needed. Therefore a 
complex signal is defined, as well as a polar signal: 
connector ComplexSignal = AC.Types.Complex; 

connector PolarSignal = AC.Types.Polar; 

These connectors are used to define ComplexInput, 
ComplexOutput, PolarInput and PolarOutput. In-
stances of these output signal connectors are  needed 
for sensors, as well as input signal connectors for 
variable sources. 
Additionally some useful blocks are defined: 
• ToComplex generates a complex phasor from real 

inputs, either real and imaginary part or ampli-
tude and phase angle. 

• FromComplex generates real outputs – real and 
imaginary part as well as amplitude and phase 
angle – either from a complex input or a polar in-
put. 

• ToPolar takes a complex input and generates a 
polar representation of the phasor as the output. 

• FromPolar takes a polar representation of a 
complex phasor on the input and generates a 
complex phasor as the output. 

• FromPolar calculates the complex sum of an 
array of complex input phasors. 

4 Simulation Examples 

For calculating quasi-stationary characteristic curves 
of an electrical circuit varying a parameter the usage 
of the AC library is advantageous. This will be dem-
onstrated on four examples: 
• Current of a series resonance circuit, varying the 

supply frequency 
• Voltage of a parallel resonance circuit, varying 

the supply frequency 
• Torque and current of an asynchronous induc-

tion machine, varying slip 
• Terminal voltage of a synchronous induction 

machine, varying load impedance (resistive and 
inductive). 

4.1 Series Resonance Circuit 

As a first example, we model a series resonance cir-
cuit (Fig. 3). 

 
Fig. 3 Model of a series resonance circuit 

We apply sinusoidal voltage with constant amplitude 
and phase to a series connection of a resistor, an in-
ductor and a capacitor. Frequency varies according 
to a ramp.  
Analytically the resonant frequency of this simple 
experiment can be determined: 

 
LC
1

res =ω  (25) 

With H
2
1L
π

=  and F
2
1C
π

=  we derive a reso-

nance frequency at f = 1 Hz. From the amplitude 
(Fig. 4) as well as the phase shift (Fig. 5) of the cur-
rent, the resonance frequency is evident. 
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Fig. 4 Amplitude of current versus excitation frequency 

 
Fig. 5 Phase shift of current versus excitation frequency 

4.2 Parallel Resonance Circuit 

Furthermore, we investigate a parallel resonance cir-
cuit (Fig. 6). 

 
Fig. 6 Model of a parallel resonance circuit 

We inject a sinusoidal current with constant ampli-
tude and phase to a parallel connection of a resistor, 
an inductor and a capacitor. Frequency varies ac-
cording to a ramp. The resonant frequency of the 
parallel resonant circuit is: 

 
LC
1

res =ω  (26) 

With H
2
1L
π

=  and F
2
1C
π

=  we derive a reso-

nance frequency at f = 1 Hz. From the amplitude 
(Fig. 7) as well as the phase shift (Fig. 8) of the volt-
age, the resonance frequency is evident. 

 
Fig. 7 Amplitude of voltage versus excitation frequency 

 
Fig. 8 Phase shift of voltage versus excitation frequency 

4.3 Asynchronous Induction Machine 

Quasi-stationary operation of a three-phase asyn-
chronous induction machine with squirrel cage 
(AIMC) may be described by an equivalent circuit as 
depicted in Fig. 9. This equivalent circuit represents 
one phase of a symmetrical three phase asynchro-
nous induction machine, however. 

 
Fig. 9 Single phase equivalent circuit of an AIMC 
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In this equivalent circuit Rs is the stator resistance, 
Lsσ is the stator leakage inductance, and Lm is the 
main field inductance. In the rotor circuit Lrσ' is the 
rotor leakage inductance and Rr' is the rotor resis-
tance. Both these rotor components refer to an 
equivalent stator winding and are thus indicated by '. 
An implementation of this equivalent circuit in Mod-
elica is shown in Fig. 10. 
For an induction machine slip  

 
s

1s
ω
ω

−=  (27) 

is the relative deviation of the mechanical angular 
velocity from the synchronous angular velocity: ω

 
p

f2
s

π
=ω  (28) 

 
Fig. 10 Model of an AIMC 

In the presented example slip is modeled as a ramp 
from slip 100% (i.e. stand-still) to slip 0% (i.e. no-
load). Dividing the rotor resistance by the slip is 
equivalent to multiplying the rotor conductance by 
slip. The slip dependent rotor conductance is thus 
modeled by a variable conductance gr_s. Using the 
conductance avoids division of zero slip at no-load: 

 
s
'R

'R r
actual,r =  (29) 

The motor parameters used for this example are the 
same as those of the dynamic model  
Electrical.Machines.BasicMachines. 
AsynchronousInductionMachines. 
AIM_SquirrelCage. 
This leads to the quasi-stationary motor characteris-
tics depicted in Fig. 11 and Fig. 12. The horizontal 
axis of these plots shows the relative (per unit) speed 
which is equal to (1–slip). 
Fig. 12 shows only 1/3 of the total air gap power of 
the machine since only one phase is modeled. The 
total airgap torque can thus be determined by: 

 
s

airgapP3
T

ω

⋅
=  (30) 

 
Fig. 11 Stator current versus (1-slip) 

 
Fig. 12 Airgap power versus (1-slip) 

4.4 Synchronous Induction Machine 

A synchronous induction machine feeding an iso-
lated system is presented in this example. Two cases 
are investigated: resistive load (Fig. 13) and induc-
tive load (Fig. 14). 
In both cases, constant excitation is assumed. Syn-
chronous induced voltage is modeled by a voltage 
source with constant complex voltage phasor. ld 
represents the synchronous reactance and rs the re-
sistance of one phase. Variable load is prescribed by 
a ramp with logarithmic scale. 

 
Fig. 13 Synchronous induction machine with R-load 
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Fig. 14 Synchronous induction machine with L-load 

Fig. 15 shows the characteristic voltage versus cur-
rent from nearly no-load (high resistance and induc-
tance, respectively) to nearly short circuit (low resis-
tance and inductance, respectively).  
The machine parameters used for this example are 
the same as those of the dynamic model  
Electrical.Machines.BasicMachines. 
SynchronousInductionMachines. 
SM_ElectricalExcited. 

 
Fig. 15 Voltage versus current for 
resistive load and inductive load 

5 Conclusions and Outlook 

The design of a Modelica library for quasi-stationary 
analysis of electrical single-phase circuits has been 
presented. The application of complex algebraic 
equations instead of dynamic differential equations 
leads to high performance simulations. 
With respect to the current Modelica version 3.0, the 
implementation of complex numbers is possible but 
not really satisfying. The authors would suggest the 
introduction of complex numbers as an intrinsic data 
type. This data type and complex arithmetics would 
improve the Modelica language, however. 
Based on the presented draft of an AC library, the 
next steps will be extending the components for 
multi-phase circuits as well as modeling of asyn-

chronous and synchronous induction machines for 
quasi-stationary analysis. These machine models are 
planned to be based on space phasors as described 
in [6]; the transformation of space phasors with re-
spect to different reference frames has to be imple-
mented. 
For applications focused on the energy consumption 
of an electric drive over a longer period of time, the 
fast electrical transients can be neglected.  Using 
complex quasi-stationary models would lead to faster 
simulations, however. 
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Tiziano Pulecchi Francesco Casella
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

A library of components for modelling hybrid au-
tomata in a natural fashion has been implemented in
Modelica. This library exploits and extends the free
Modelica library StateGraph to the modelling and sim-
ulation of deterministic hybrid systems described by
the hybrid automaton formalism. In this contribution
the library’s main features are described and its flexi-
bility highlighted by developing models for two classic
hybrid systems literature examples.
Keywords: hybrid automata; simulation

1 Introduction

Hybrid systems (see [7]) are dynamical systems in-
volving the interaction of both continuous state and
discrete state dynamics. Recall that a state variable
is called discrete if it can take a finite (or countable)
number of values and continuous if it takes values in
the Euclidean spaceRn for somen≥ 1. By their na-
ture, discrete states can change value only through a
discretejump; on the other hand, continuous states can
change values either through ajump, or by flowing in
time according to a given differential equations set.
Physical systems are by their own nature inherently
continuous. Nevertheless, because of the couplings
with very high frequency dynamics, or in presence of
mechanisms too complicated to be dealt with in sim-
ulation by a sound physical description, many physi-
cal systems can be conveniently represented under the
hybrid systems paradigm. This provides a convenient
framework for modelling systems in a wide range of
engineering applications, including for instance elec-
trical circuitry, where continuous dynamic is affected
by switches opening and closing; chemical processes
control, where the continuous evolution of chemical
reactions is controlled by valves and pumps; or digital
control, where digital computers interact with a con-
tinuous time physical system. Of course, highly non-

linear systems such as for instance diodes, switches,
valves, mechanical backlashes and dead strokes, can
be conveniently described via abstracted hybrid mod-
els.

The analysis and design of hybrid systems is in gen-
eral more demanding than that of purely discrete or
purely continuous systems, because of the necessity to
accurately deal with the interplay between the discrete
and continuous dynamics. The same consideration
holds true for their simulation, that presents specific
challenges requiring special care. Specifically, it is
of paramount importance to be able to determine with
great accuracy the time instant when discrete jumps
take place, and consistently deal with simultaneous
events occurrences, which represents one of the main
sources of modelling inconsistencies.

Nowadays, general purpose simulation packages such
as Matlab and Simulink can deal adequately with most
complications. Specialized packages have also been
developed that allow accurate simulation of hybrid
systems (seee.g. [2], [3], [1], [5]). The interested
reader is addressed to [4] for a thorough overview on
the subject.

In this paper a library of components for modelling
(autonomous) hybrid automata (HyAuLib), imple-
mented in Modelica (see [9, 6]), has been designed.
Modelica is already capable of efficiently handle hy-
brid systems modelling and simulation via suitable
scripts (see [8]). Nevertheless, sometimes this oper-
ation can turn out to be very cumbersome and error
prone for the unexperienced user. This library, extend-
ing the free Modelica library StateGraph (see [10]),
overcomes these difficulties by providing an easy way
to the consistent modelling and simulation of hybrid
systems described by the hybrid automaton formalism.

The paper is organized as follows: in Sections 2 and 3
the hybrid automaton formalism and the implemented
Modelica HyAuLib will be respectively described. In
Section 4, the library capabilities shall be illustrated
on two classic hybrid systems textbook examples. Fi-
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nally, in Section 5 concluding remarks and future de-
velopments will be presented.

2 Hybrid Automata

A hybrid automaton is a dynamical system describ-
ing the evolution in time of a set of discrete and
continuous variables. In this paper we will focus on
autonomous hybrid automata,i.e. hybrid automata
which have no inputs nor outputs. More specifically,
the transitions between two modes of our automata
shall occur in accordance with a user-specified deter-
minism. This topic will be thoroughly discussed in
Section 3. The hybrid automaton will answer to the
following definition (seee.g.[7]):

Definition 2.1 (Hybrid Automaton) A hy-
brid automaton H is a collection H =
(Q,X, f , Init ,D,E,G,R) where

• Q = {q1,q2, . . .} is the set of all admissible dis-
crete states, ormodesof H;

• X ⊆ Rn is the set of continuous states;

• f (·, ·) : Q×X → Rn is avector field, defining the
evolution in time of the continuous part of the
state ofH;

• Init ⊆ Q×X is the set of all admissible initial
states forH;

• Inv(·) : Q→P(X) is a theinvariant setor domain;

• E ⊆ Q×Q is a set ofedges, defining all transi-
tions from one mode ofH to the next;

• G : E→ P(X) is the set ofguardconditions;

• R(·, ·) : E×X → P(X) is areset map,

whereP(X) denotes the power set (the set of all pos-
sible subsets ofX), and the pair(q,x) ∈ Q×X is the
state ofH, made up by its discrete and continuous con-
tributors.
Hybrid automata define possible evolutions for their
state. Roughly speaking, starting from an initial value
(q0,x0) ∈ Init , the continuous statex flows according
to the differential equation

{
ẋ = f (q0,x)
x(0) = x0

defined by the hybrid automaton vector field, while the
discrete stateq remains constant,i.e.,

q(t) = q0

as long asx ∈ Inv(q0). If at some pointx reaches
the guardG(q0,q1) ⊆ Rn of some edge(q0,q1) ∈ E,
then the discrete part of the stateq maychange toq1.
If this happens,x is reset according to the reset map
R(q0,q1,x). After a discrete transition has taken place,
continuous evolution resumes, until a new transition is
triggered, and so on.
To define the time horizon over which the states
of the hybrid system evolve, we need to introduce
the concept of Hybrid Time Set by the following
definition (seee.g. [7]):

Definition 2.2 (Hybrid Time Set) A hybrid time set is
a sequence of contiguous intervalsτ = {I0, I1, . . . , In}
finite or infinite such that

• Ii = [τi ,τ ′i ] for all i < n;

• if N < ∞ then eitherIN = [τN,τ ′N] or IN = [τN,τ ′N);

• τi ≤ τ ′i = τi+1 for all i,

whereτ ′i represents the time instant immediately pre-
ceding a discrete transition occurrence, whereasτi+1

corresponds to the time instant just following the dis-
crete transition. The adoption of this representation of
time in hybrid automata allows the handling of situa-
tions where multiple transitions occur simultaneously.
When the range of a generic intervalI j shrinks to a
single valueτ j , it means that the associated modeQk

has been entered and exited in the very same instant.
If multiple transitions are enabled and do occur si-
multaneously, the automaton evolves to its new mode
Qr passing through several intermediate modes, whose
associated residing times are zero.
The triple(τ,q,x) consisting of a hybrid time set and
two sequences of functionsq = {qi} andx = {xi} is
named ahybrid trajectory, whereas anexecutionof H
is a hybrid trajectory(τ,q,x) admissible by the hybrid
automatonH.
Note in passing that the exploitation of the invariant
set definition, allowable within the hybrid automa-
ton formalism, could be used to efficiently simulate
a broad variety ofunconventionalengineering appli-
cations, such as, for instance, the suitability of the
designed safety procedures for continuous dynamical
systems. This could be achieved simply by modelling
the safety critical conditions for the system via unde-
sirable regions for the continuous state (by defining the
automaton domain accordingly). As a consequence,
if the recovery procedures fail, the automaton will vi-
olate the invariant set and the simulation will be ter-
minated with a warning message specifying the safety
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critical condition violated, leading to a procedure re-
design. Many other useful controls of this kind, such
as for exampleZeno behaviordetection, can be easily
incorporated into the Modelica HyAuLib.
Another interesting field of application for the
HyAuLib could be in the framework of simulation of
systems undergoing failures. Let’s focus on a simple
example, where a relief valve is used to control the
pipeline pressure in an hydraulic plant. During nomi-
nal operational regime, the valve remains closed while
pressure at the valve inlet is lower than the valve pre-
set pressure. When the preset pressure is reached, the
valve is opened and the pressure at the inlet reduced.
Now, if the valve experiences a failure and got stuck in
the open position, and for some operational reason the
pressure in the pipeline crosses the valve preset pres-
sure and keeps rising, either the valve’s backup (if any)
will be activated, or the system will suffer damage and
loose functionality. If no backup is activated, or it re-
sults ineffective, the pressure will utterly increase to
the point of exceeding a new threshold value (defining
when the system is no more operative), specified via
the invariant set. The simulation will be either termi-
nated if the experienced failure is classified as safety
significant or safety critical (the system architecture
needs a redesign), or kept running with the system in
failure. Note that our simple example requires that the
transition between the operational modes of the pres-
sure relief valve (open and close) is triggered either by
an opening (resp. closing) command or as a conse-
quence of a failure experienced by the equipment and
associated to a probability of occurrence. Relevant
data both in terms of failure modes and failure rates
can be obtained from the equipment’s Failure Mode
Effect and Criticality Analysis document, and the nec-
essary hybrid models easily implemented exploiting
the HyAuLib models, described in the following Sec-
tion 3.

3 The Modelica HyAuLib

The Modelica HyAuLib addresses the problem of sup-
porting the designers working with hybrid systems, by
providing them with an efficient and intuitive mod-
elling and simulation tool for hybrid automata. The
library has been derived by extending the free Mod-
elica StateGraph library by Otter and Dressler (see
[10]), which is based on the JGraphChart method and
provides components to model finite state machines.
The HyAuLib allows for the modelling of complex
hybrid systems that can be represented throughout the

hybrid automata paradigm in a natural fashion. Al-
though such models could of course be obtained by
writing explicitly the relevant Modelica code, this task
is likely to turn out to be burdensome and error prone
even for very simple models. The HyAuLib, by au-
tomatically managing all state transitions and the dis-
crete/continuous domains interaction, seeks to mini-
mize all possible sources of wrong modelling behav-
ior. An expanded view of the HyAuLib tree is given in
Figure 1.

Figure 1: The Modelica HyAuLib library’s tree.

The Modelica HyAuLib encompasses two basic com-
ponents, theFiniteStateandTransitionmodels, which
are briefly summarized in the following:

• ComponentFiniteState: defines each finite state
(or mode) for the generic automaton. Embed-
ded in this model are the definitions of the vec-
tor field and of the invariant set associated to the
present state of the hybrid automaton. Compo-
nentFiniteStateextends StateGraph’sStepcom-
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ponent, which is used to define which state is
presently active. (See Figure 2, where the Mod-
elica code used to generate theFiniteStatecom-
ponent is shown.)
The FiniteStateoptions selection mask is shown
in Figure 3. For everyFiniteStatecomponent
instantiated in the hybrid automaton model, the
number of input and output connections needs
to be specified, jointly with the selection be-
tween StateGraph’s InitialStep and Step compo-
nents (for further information on StateGraph, see
[10]). Finally, notice that a given time continu-
ous dynamics and invariant set must necessarily
be specified. These models can be elementar-
ily defined by extending suitable interfaces pro-
vided within the HyAuLib library. Several of
such examples are provided in the library’sEx-
amplefolder.

• ComponentTransition: defines the generic tran-
sition between modes. The model, extending
StateGraph’sTransition component, comprises
the definition of the guard and the reset condi-
tions. Notice that all transitions are triggered ac-
cording to a deterministic mechanism,i.e., at the
moment no provision is given within the library
in order to assign a probability to the transition.
Two possible reset conditions are available: the
standard option guarantees the continuity of the
continuous state variable throughout the transi-
tion, whereas the second option allows for the
definition of a specified reset. The Modelica code
for theTransitionmodel is provided in Figure 4.
Also, Figure 5 shows the options selection mask
for the HyAuLibTransitioncomponent.

Both models take full advantage of the Modelicare-
declareconstruct feature, which makes it possible to
create general classes which are defined only when the
model is instantiated. It is then possible, once suitable
models for the hybrid automaton’s dynamics, invariant
sets, guards and reset conditions have been defined, to
simply drag and drop in the automaton model the base
FiniteStateandTransitionmodels, select the relevant
features from the graphical user interface, and connect
them to reproduce the automaton scheme.
The HyAuLib supports multiple edges connection be-
tween different modes (the number of input and out-
put connections being a parameter of themodecompo-
nent). The transition mechanism adopted is determin-
istic. The transition is triggered as soon as the guard
condition is satisfied, or with a delay that can be spec-
ified as a function of the hybrid automaton state and

current time. Future development will comprise the
implementation of a probabilistic approach in the def-
inition of the transition occurrence.
Notice that no care needs to be taken in the HyAuLib
with respect to the definition of an hybrid time set for
the automaton execution. Modelica is indeed capable
of dealing with this issue, requiring no further mod-
elling endeavor.

4 Case studies

In the following, two classic applications, which have
been extensively discussed in the hybrid systems con-
trol literature, are presented to illustrate the HyAuLib
capability when modelling hybrid automata.

4.1 Bouncing ball

A bouncing ball is a very effective example of an
highly nonlinear dynamical system, which can be con-
veniently represented as a simple hybrid automaton
with a single discrete state, describing the ball being
above the ground. Here, all the system nonlinearities
are easily modelled by introducing a hybrid compo-
nent in the model.
The system state is a two dimensional vector compris-
ing the ball’s center of gravity height from ground and
its derivative, the vertical velocity. The state continu-
ous time evolution is then described by

{
ẋ1 = x2

ẋ2 =−9.81

wherex1, x2 are the vertical position and velocity re-
spectively, and the associated invariant is given by the
conditionx1 ≥ 0 (ball in the air).
The only transition possible occurs from the state to it-
self when the ball hits the ground: the associated guard
condition is then

x1 = 0 and x2 ≤ 0 .

A nonconservative description of the phenomenon
may be easily accounted for by acting upon the reset
condition. Proceeding like that, we could easily force
an energy loss due to the deformation of the system
simply by setting

x2 :=−cx2

with c non negative and less than unity.
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Figure 2: Modelica code of theFiniteStatecomponent.

Figure 3: User’s selection mask for the HyAuLib library’sFiniteStatecomponent.
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Figure 4: Modelica code of theTransitioncomponent.

Figure 5: User’s selection mask for the HyAuLib library’sTransitioncomponent.
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Figure 6: Vertical position of the bouncing ball vs.
time. HyAuLib model.

Figure 6 shows the evolution in time of the ball posi-
tion, given an initial height of 2 meters, a null initial
velocity and a damping coefficientc = 0.8.

Both a Simulink/Stateflow and a Modelica flat model
for the bouncing ball were realized, to serve as a refer-
ence for a discussion about the HyAuLib modelling
performance. Both models (provided that the zero-
crossing block is used in Simulink) provide good ac-
curacy as long as the ball’s energy is sufficiently large.
Anyway, theZeno behaviortypical of this example,
cause a severe impair of performance when the ball’s
vertical positionx1 gets very small. Due to numer-
ical errors,x1 will eventually become negative and,
since the equations used to describe the model are
still satisfied, the ball position will keep decreasing.
This behavior, depicted in Figure 7, corresponds to the
ball passing through the floor and keep falling, and is
of course not admissible. This problem is naturally
avoided if the HyAuLib’s components are used, since
the specification of the hybrid automaton invariant set
clearly marks negative values forx1 as unfeasible.

4.2 Air conditioning system

Let’s now consider the problem of designing a room
air conditioning system. We want to keep the room
temperature within a specified range by acting upon a
heating device. Assume that the desired temperature
is 19 degrees centigrade, and the thermostat policy is
to turn the heater on whenever the room temperature
drops below 17◦C, and turn it off when is passes 21◦C.
For simplicity’s sake let the room temperature evolu-
tion in time be subjected to the simplified law

Ṫ =−0.05T + 1.5δ ,

Figure 7: Vertical position of the bouncing ball vs.
time. Modelica flat code.

whereδ = 0 if the heater is turned off andδ = 1 if the
heater is on. The hybrid automaton will then comprise
two modes and two transitions, which can be defined
as follows:

1. Hybrid Automata modes:

a) heating on (q = ON)
The continuous state evolves according to

Ṫ =−0.05T + 1.5 (1)

whereas the invariant set isT ≤ 21.

b) heating off (q = OFF )
The continuous state evolution is given by

Ṫ =−0.05T (2)

whereas the invariant set isT ≥ 17.

2. Transitions:

a) from ON to OFF
The guard condition isT ≥ 21,
whereas the reset condition isT := 21.

b) from OFF to ON
The guard condition isT ≤ 17,
whereas the reset condition isT := 17.

Notice how the evolution of the continuous and dis-
crete states of the automaton are tightly coupled.
Wheneverq = ON, the temperature rises according
to (1), whereas it decays according to (2) whenq =
OFF . Likewise, the evolution in time of the discrete
state is constrained by the continuous state value: it
cannot jump from ON to OFF or viceversa unless the
guard condition is triggered.
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Figure 8 shows the evolution in time of the room air
temperature and the periodic switching of the heater
from power on to power off and viceversa. The air con-
ditioning system was initialized in power off, with a
room temperature of 14◦C. Whenever the temperature
upper bound (21◦C) is reached, the heater is powered
off, and the room starts cooling until the lower bound
for the admissible temperature (21◦C) is hit. Then, the
heater is powered off and a new cycle begins.
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Figure 8: Room temperature and Heater ON status vs.
time.

5 Concluding Remarks

In this paper the HyAuLib, a Modelica library for
modelling and simulation of autonomous hybrid au-
tomata, extending the free Modelica StateGraph li-
brary for Finite State Machines, has been presented,
and its main features illustrated throughout the simu-
lation of two classic hybrid system textbook case stud-
ies. The HyAuLib allows, even to the most unexpe-
rienced user, to derive in a natural way models for
simulating complex hybrid systems. Future develop-
ments of the HyAuLib will comprise the inclusion of
a probabilistic approach with respect to the transition
occurrence and the exploration of the library’s capabil-
ities and efficiency in modelling complex applications
in the system safety design area.
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Abstract 

Powerboats in operation represent a system consist-
ing of a number of complex components such as: 
surface propellers, aerodynamics and hydrodynam-
ics; which interact with each other and with the wind 
and water surface conditions.  By measuring the be-
haviour of the powerboat it is possible to create a 
mathematical model using system identification 
methods.  A neural network model has been gener-
ated which can be used to predict how the powerboat 
will perform under different driver inputs for the 
purpose of optimizing performance. 

 

Keywords: neural networks; system identification; 
powerboats 

1 Introduction 

There are many different approaches to mathematical 
modelling and the decision about the most appropri-
ate method to use is based on what a priori  knowl-
edge is known about the system.  Modelica is typi-
cally used for white box modelling, which is based 
on the application of the universal laws and princi-
ples.  This paper discusses the use of black box mod-
elling techniques that are entirely based on the use of 
measurement data to generate the mathematical 
model [1]. 

In black box modelling, the inputs and outputs of an 
unknown system are used to create a model that pro-
duces an output “close” to that of the actual system, 
when supplied with the same inputs.  Neural network 
system identification is one method that can be used 
to create black box models. 

In the case of a powerboat, it is convenient to model 
the system as a black box, as it is not feasible to 
model the behaviour of the system as a white box 
model.  Figure 1 shows a class 1 powerboat under 
race conditions.  To create a white box model we 
would need to create models of the aerodynamic and 
hydrodynamic effects, and their interaction with the 

surface propellers and environmental conditions 
(such as the water surface and wind speed and direc-
tion).   

The aim of generating a mathematical model of the 
system was to be able to investigate the effect on the 
boat performance of variations in driver input and 
boat setup.  A neural network system identification 
method was selected as the most appropriate way to 
model the system.  Neural network techniques can be 
very effective at identifying complex nonlinear sys-
tems when complete model information cannot be 
obtained [2]. 

A Modelica library called ANN_SID has been de-
veloped to facilitate system identification using neu-
ral networks.  The library contains different types of 
neural network and several training methods and has 
been applied to study the powerboat system. 

  

 
Figure 1. View of a powerboat during operation.  
Image courtesy of Victory Team 

2 Neural networks 

2.1 An artificial neural network 

An artificial neural network is a network of functions 
called neurons, which are connected by weighted 
signals (see Figure 2).  This architecture is loosely 
based on a biological neural network.  Neural net-
works can be used for a variety of tasks such as sys-
tem identification and classification.  The ANN_SID 
library provides neural networks appropriate for sys-
tem identification tasks. 
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Figure 2 shows a simple diagram of a typical neural 
network, commonly called a feedforward neural 
network, which consists of an input layer, a hidden 
layer and an output layer.  In both the hidden and 
output layers, the weighted sum of the inputs to the 
layer and the bias, are applied to neuron functions.   

The formulae that describe the feedforward neural 
network in Figure 2 are shown below. Equation (1) 
calculates the outputs of the hidden layer and equa-
tion (2) calculates the output of the neural network.   
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where: 

oj is the output of the hidden layer 

Oj is the hidden neuron function 

ui is the input 

vn+1j is the bias weight for the j neuron (there are n 
inputs) 

yk is the output of the neural network 

Yk is the output neuron function 

wm+1k is the bias weight for the k neuron (there are m 
hidden neurons) 

t is the current sample 

 

Within the ANN_SID library the most common neu-
ron functions such as linear, sigmoid and tanh are 
available.  The user can also easily add their own 
neuron function by extending from the neuron func-
tion base class and implementing the required func-
tion.   

 

2.2 Types of neural networks implemented in 
the ANN_SID library 

The ANN_SID library provides pre-defined neural 
network models for feedforward neural networks and 
a form of dynamic recursive neural networks called 
Neural Network Output Error.  Within each type of 
neural network there can be any number of inputs, 
hidden neurons, neuron layers and output neurons.  

In the dynamic recursive neural network, the output 
of the neural network can be used as an input to the 
neural network, as shown in Figure 3.  This type of 
recursive network is used for modelling dynamic 
systems where the next output is affected by the pre-
vious output values and previous input values.  

2.3 Training of the neural network 

The weights and biases in a neural network have to 
be trained so that the output of the neural network 
approximates the actual system well.  The mean 
square error between the actual output and predicted 
output is the cost function determining the measure 
of the closeness of the approximation of the neural 
network to the actual system, as in equation (3). 
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2

1
   (3) 

 

where: 

MSE is the mean square error 

z is the target value (output from the actual system) 

y is the output of the neural network 

N is the total number of target values 

 

The process of minimising the cost function of the 
neural network is called training.  In the ANN_SID 
library both backpropagation and the Levenberg-

 

delay 

delay 

Figure 3. Dynamic recursive neural network  
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Marquardt training methods are available.  These 
methods have been implemented in Modelica in both 
continuous and discrete forms. The choice of method 
to train a neural network is influenced by the size of 
the neural network and the amount of data being 
used to train the network. 

The continuous training methods have the advantage 
that the gradient, which is the rate of change of the 
weights, is accurate everywhere, not only at the lin-
earization points as with discrete methods.  This can 
result in the search method travelling along the bot-
tom of valleys of the cost function and not oscillating 
along valley walls.  

The continuous method interacts with the variable 
step solvers to determine the step-size. If the gradient 
changes suddenly then the solver will reduce the step 
size to deal with this efficiently.  The disadvantage 
of the continuous method is that it generates huge 
numbers of equations due to the way that Dymola 
expands the for loops used in the model.  By using 
Modelica functions and external C functions these 
problems can be minimized through the reuse of 
code sections.   

Data storage and the manipulation of large matrices 
in Dymola can also generate problems with large 
neural networks if the continuous training methods 
are used.  The discrete methods have been imple-
mented to overcome these issues. 

2.3.1 Backpropagation 
It is possible to train a neural network by calculating 
the gradient of the cost function with respect to the 
weights, and to then adjust the weights in the appro-
priate direction to reduce the cost function.  This 
method is called backpropagation and can be slow to 
converge to a solution.  Appendix A has further in-
formation about how the gradient is calculated. 

2.3.2 Levenberg-Marquardt 
The Levenberg-Marquardt training method generally 
requires fewer iterations than the backpropagation 
method to train a neural network.  However the LM 
method is more complex and requires more compu-
tation and memory to perform each iteration. 

The rules used to calculate the weights are described 
in Appendix B. 

2.3.3 Recursive method 
In this method the partial derivative of the neural 
network with respect to the weights is required.  
From this partial derivative the gradient and Hessian 
matrices can be calculated.  Once we have deter-
mined these matrices either the backpropagation or 

Levenberg-Marquardt training methods can be used 
to minimise the cost function. 

Modelica provides semantics to define partial deriva-
tives and Dymola is able to utilise these semantics to 
generate the symbolic derivative of functions.  Ex-
ample 1 shows how the partial derivatives are de-
fined in Modelica. This method was used to help 
define a function to calculate the partial derivatives 
of the neural network with respect to the weights.  

 
[Example: The specific enthalphy can 
be computed from a Gibbs-function as 
follows:  
function Gibbs  
input Real p,T;  
output Real g;  
algorithm  
...  
end Gibbs;  
 
function Gibbs_T=der(Gibbs, T);  
 
function specificEnthalpy  
input Real p,T;  
output Real h;  
algorithm  
h:=Gibbs(p,T)-T*Gibbs_T(p,T);  
end specificEnthalpy;  

] 

Example 1. An example of Modelica code for the gen-
eration of the partial derivative of a function.  Quoted 
from Modelica 3.0 Specification [4] 

 

2.3.4 ANN_SID Implementation 
An example of training a neural network using the 
ANN_SID library is shown in Figure 4.  The training 
methods are implemented in the replaceable training 
component and the user simply selects the required 
method. 

 

 
Figure 4.  ANN_SID training performed in a model 

Training 
component 
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2.4 Improving the neural network training 

When training a neural network it is important to 
have confidence that the neural network will ap-
proximate well with inputs that are not part of the 
training data. This ability is known as generalisation 
[5].  One way to investigate this is to divide the data 
into two sets, one that is used to train the neural net-
work (training data), and one that is used to test the 
generalisation of the neural network (test data).   

Generalisation is likely to be improved by reducing 
the number of weights used in the neural network 
[3].  The ANN_SID library supports both weight 
decay and pruning methods to reduce the number of 
weights and improve generalisation. 

Two pruning methods are available in the library and 
these are known as Optimal Brain Surgery and Op-
timal Brain Damage.  These algorithms determine 
which weights to remove from the neural network.  
The remaining weights are then updated to reduce 
the errors introduced by removing the weights (for 
further details refer to [3]). 

Weight decay is another approach to removing 
weights from a neural network.  In this method a 
penalty proportional to the magnitude of the weights 
is added to the cost function (see [3] for further de-
tails).  All cost functions should contain a measure of 
the closeness of the neural network outputs to the 
desired output.  Adding a weight penalty to the cost 
function generates a trade off between reducing the 
magnitude of the weights and reducing the closeness 
measure.  As a result of this the weights that have 
little effect on improving the closeness measure will 
now be reduced in magnitude. 

3 Powerboat operation 

The type of powerboat that has been modelled using 
the ANN_SID library is a Victory Team class 1 off-
shore powerboat as shown in Figures 1 and 5.  These 
boats have a catamaran hull with two engines and a 
central rudder.  Each engine drives a height adjust-
able, steerable propeller.  The boats are operated by 
two crewmembers: a throttle man and a driver. Be-
tween them they have 5 controls, which are: 

• A steering wheel that directly controls the 
rudder angle.  The steered angle for the pro-
pellers is also controlled by the steering 
wheel angle. 

• The propeller heights are set using two 
rocker switches.  These control the trim pis-
tons that move the propellers vertically. 

• Throttle position is set using the throttle lev-
ers for the left and right engine. 

 

 
Figure 5.  Rear view of a powerboat.  Image cour-
tesy of Victory Team 

 

As the boat accelerates it begins to plane and travels 
higher above the water, i.e. less of the hull is below 
the water line.  As the boat lifts out of the water, the 
propellers are lowered (trimmed down) to control 
their depth in the water. 

The trim height (or propeller depth) also affects the 
pitch angle at which the boat travels. In general, the 
lower the depth of the propellers, the lower the pitch.  
If the boat is travelling at a pitch angle that is too 
high for the speed it is doing, it will flip over (a 
blowover).  If the pitch angle of the boat is too low 
the result will be a larger surface area of the boat in 
the water and thus an increase in drag. 

When cornering, the catamaran powerboat rolls to 
the inside of the corner (due to the asymmetrical hull 
design).  If the cornering is too severe for the current 
speed, the boat will begin to roll to the outside of the 
corner, and will roll over if the drivers do not take 
correcting action.  A typical cornering manoeuvre 
requires the throttle man to reduce the throttle to 
slow the boat to a controllable speed before the cor-
ner, and the driver to steer the boat along the course, 
ensuring that the steering angle is not too steep for 
the current speed. 

trim 
piston rudder 
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Figure 6. A Racecourse.  The powerboats must 
travel along a course defined by buoys.  There are 
three different types of laps.  The start lap in red, the 
short lap in black and the long lap in green.  Supplied 
courtesy of IOTA. 

 

A race involves the boats travelling around a course 
defined by buoys laid out in the water (see Figure 6).  
The drivers try to select good trim height to maxi-
mize acceleration while maintaining stability.  The 
drivers also try to find good throttle, rudder and trim 
positions for cornering that result in fast and stable 
cornering.  The neural network can investigate dif-
ferent possible driver inputs and predict their effects 
on boat performance over a lap. 

4 Powerboat model 

4.1 Defining the neural network 

To model the powerboat using neural network tech-
niques, a significant amount of data is used to char-
acterise the system.  During races and testing ses-
sions the boats are fitted with a data logger that re-
cords the data required to train the neural network.   

The input data required is: 

• The engine throttle positions 

• The rudder angle 

• The trim height of both propellers 

 The target output data required is: 

• The engine speed of both engines 

• The boat speed 

• The yaw rate of the boat 

Using this input and output data we can train a neural 
network to represent the powerboat system and then 

use the neural network to investigate the system per-
formance with different inputs.   

As the boat is an example of a dynamic system, the 
dynamic recursive neural network was chosen.  The 
model has been generated from data recorded by 
Victory Team from their racing boat number 77 dur-
ing the 2007 Arendal race.  During this race the boat 
completed 12 laps of the course.   

The measured data was filtered using Basel and 
Chebyshev filters to reduce the amount of noise and 
high frequency components in the data.  The filtered 
data was then re-sampled from 100Hz to 1.7Hz to 
reduce the number of duplicate data points and to 
decrease the amount of time required to train the 
neural network.  Finally the data was divided into 
training and test data sets. 

4.2 Training the neural network 

Training a neural network for such a complex system 
is done in a number of steps.  When first training a 
dynamic recursive neural network it is not known 
how many past outputs and inputs will result in the 
model giving a good representation of the powerboat 
system.  It is also not known how many neurons will 
be required, or which neuron functions should be 
used.  These can only be determined by trying differ-
ent configurations to find the best setup. 

The first step in training this type of neural network 
is to train it to only predict the next output value 
from the previous data value. The weights from this 
training are then used as the initial weights for the 
recursive training.  The recursive training algorithm 
described in 2.4.3 was used with the Levenberg-
Marquardt method to train the neural network. To 
improve the generalization, weight decay was used.   

4.3 Correlation results 

After training, the MSE for the neural network using 
the training data set was 0.0035 and the MSE for the 
test data set was 0.0064. This means that the neural 
network has been trained successfully and is able to 
accurately predict the performance of the powerboat, 
as shown in Figure 7.   

In Figure 7, the recorded driver inputs have been fed 
in to the trained neural network and the outputs for 
boat speed, engine speed and the yaw rate of the boat 
are compared to the measured data.  Overall the re-
sults show that there is very good correlation be-
tween the neural network and the real powerboat.   

There are some small deviations which could be due 
to a number of different factors, such as swell and 

Application of Neural Networks to model Catamaran Type Powerboats

The Modelica Association 251 Modelica 2008, March 3rd − 4th, 2008



wind conditions along the course, that are not ac-
counted for in the neural network.   

 

Figure 7.  Comparison of simulated neural network 
with recorded data for a single lap of the course. 

4.4 Optimisation of the trim strategy 

Section 3 describes how the propeller height (trim 
height) affects the performance of the powerboat.  
By using the neural network it is possible to deter-
mine what the optimum trimming strategy is for the 
powerboat. 

The model shown in Figure 8 uses the trained neural 
network to simulate the powerboat accelerating from 
an initial speed up to its maximum speed.   

 

 
Figure 8.  Acceleration model test.  The throttle po-
sition is set to 100% and the boat is travelling in a 
straight line.  

 

Figure 9 compares an example trimming strategy 
extracted from the race data and the optimized trim 
strategy that has been determined with the use of the 

neural network.  Using the optimised trimming strat-
egy the powerboat would take 1s less to travel along 
a 2km straight than using the example trim strategy. 

 

 
Figure 9.   Comparison of a simulated trim strategy 
with a real trim strategy.  The simulated optimal re-
sults (Simulated Speed and Simulated Trim) assume 
the boat is travelling perfectly straight.  The Example 
Trim strategy was taken from the race data and ap-
plied to the simulator. 

 

The neural network used in the model can only be 
expected to accurately model an operating region if 
this region was sufficiently excited during the data 
recording stage.  In Figure 10 the histogram data 
identifies what trim position data is available for the 
operating region of the simulated result.  The opti-
mum trim strategy is limited by the availability of 
data (see Figure 10).  The upper bound on the trim 
data is probably due to driver caution because of the 
risk of a blowover in this operating region. 

 

 
Figure 10.  Histogram plot of recorded trim position 
at the operating state.  The optimised trim position is 
plotted over the histogram as white circles 
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5 Conclusions 

A library called ANN_SID has been developed for 
the development and training of neural networks for 
system identification.  This library was used to gen-
erate a black box model of a powerboat, and this 
model was then used to determine an improved 
trimming strategy that should deliver improvements 
in boat performance. 
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APPENDIX A:  Backpropagation al-
gorithm 

By calculating the gradient of the cost function (see 
Section 2.3) it is possible to update the weights in a 
way that will reduce the cost function.  The example 
below is how backpropagation would be used to up-

date a feedforward neural network using the MSE as 
the cost function. 

  

The following equations describe a neural network.  
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The cost function is the mean square error (i.e. 
MSE): 
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The calculation of the partial derivative of MSE with 
respect to output weight wjk follows: 

∑
=

−
∂

∂=
∂
∂ N

tjkjk

tytz
Nww

V

1

2 )))()((
2

1
(  

∑
= ∂

∂−=
∂
∂ N

t jk

k
k

jk w

ty
t

Nw

V

1

)(
)(

1 ε      (let ε  =  z(t)-y(t) ) 

Substituting in (2): 

∑
∑

=

+

∂

⋅+∂
−=

∂
∂ N

t jk

j
kmjkjk

k
jk w

wwtoY

t
Nw

V

1

1 )1)((

)(
1 ε  

∑
=

⋅
∂
∂−=

∂
∂ N

t
j

k

k
k

jk

to
a

y
t

Nw

V

1

)()(
1 ε  

(where ak= )1)( 1kmjkj wwto +⋅+  

 

The calculation of the partial derivative of the cost 
function with respect to hidden weight follows: 
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The discrete weight update method is: 
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By choosing η sufficiently small, the cost function 
can be decreased at each iterate. 

 

The continuous method uses the gradient calculated 
above to update the existing weights continuously. 

APPENDIX B:  Levenberg-Marquardt 
algorithm 

In the backpropagation algorithm the search direc-
tion is calculated from the first order Talyor ap-
proximation of the cost function.  The Levenberg-
Marquardt algorithm makes use of the second order 
Talyor approximation of the cost function to update 
the weights.  The second order approximation of the 
cost function follows: 

 

)(
^

θV = V(θ*) + (θ -θ*)V′(θ*) +  

                  ½(θ -θ*)V(θ*)′′(θ -θ* )  

)(
^

θV  = V(θ*) + (θ -θ*)G + ½(θ -θ* ) H(θ -θ* ) 

 

where: 

θ  represents all the weights in the neural network 

θ* are the weights at which the Taylor approxima-
tion is made. 

V′ is dV/dθ and equal to the gradient G 

V′′ is d2V/dθ2 and equal to the Hessian H 

 

In the Levenberg-Marquardt method a further ap-
proximation is made; the Hessian is approximated by 
the following equation: 
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This is valid when the MSE is the cost function. 

 

Let the approximation of the cost function be: 

L(θ)= V(θ*) + (θ -θ*)G + ½(θ -θ*) R(θ -θ*)            (4) 

 

This cost function is minimised using an iterative 
process; where the next weights are limited to a re-
gion around the current weights (see (5)).  Limiting 
the range of the search is often effective as “If the 

minimum of L is far from the current iterate, θ(i)
, a 

poor search direction may be obtained.” [3]. 

)(minarg )()1( θθ
θ

ii L=+   

subject to |θ(i+1) - θ(i)| ≤ δ(i)                         (5) 

where: 

λ
(i) has a monotonic relationship with δ(i) [3].  Where 

increasing λ(i) decreases δ(i) and visa versa. 

 

The weights are updated using the following rule: 

[R(θ(i)) + λ(i)I]∆θ  = -G(θ) 

where: 

∆θ = θ(i+1) - θ( i) 

 

The update rule for the λ value follows:   

1.  If the L(i) value approximates MSE well, then  

  λ
(i+1) = λ(i)/2 and thus increasing the search re-

gion. 

2.  If the L(i) value does not approximates MSE well, 
then λ(i+1) = λ(i)*2  and thus decreasing the search 
region. 

3.  Leave λ* if neither the 1 or 2 thresholds are true. 

 

To get a more detailed explanation on the update rule 
for λ* refer to [3].  

G. Fish, M. Dempsey

The Modelica Association 254 Modelica 2008, March 3rd − 4th, 2008



ModeGraph - 

A Modelica Library for Embedded Control Based on Mode-Automata 
Martin Malmheden1, Hilding Elmqvist1, Sven Erik Mattsson1, Dan Henriksson1, and Martin Otter2 

1Dynasim AB (A Dassault Systèmes Company), Ideon Science Park, SE-223 70 Lund, Sweden 
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen, 

82234 Weßling, Germany 
{Martin.Malmheden, Hilding.Elmqvist, SvenErik.Mattsson, Dan.Henriksson}@3ds.com , 

 Martin.Otter@dlr.de

Abstract 

The ModeGraph library is a new Modelica library 
for modeling of hybrid and embedded control sys-
tems based on Mode-Automata semantics. Actions 
can be associated with discrete states in a way that 
makes sure that the single-assignment rule is ful-
filled. Consequently, non-deterministic variable as-
signment is impossible, which is usual in nearly all 
other state machine formalisms. Besides Mode-
Automata, concepts from Sequential Function Charts 
(SFC)/Grafcet, Statecharts, and Safe State Machines 
(SSM) are utilized to provide a flexible modeling 
environment for safe, hierarchical state machines 
where Modelica is used as action language. Mode-
Graph shall replace the existing Mode-
lica.StateGraph library. The implementation of 
ModeGraph requires extensions to the Modelica lan-
guage, in order to support the Mode-Automata se-
mantics and to drastically reduce code overhead and 
improve performance of modeled graphs.  
Keywords: Statechart, Mode-Automata, Finite State 
Machines, Hybrid Control, StateGraph, Modelica 

1 Introduction 
The StateGraph library  [5] is a sublibrary in the 
Modelica Standard Library 2.1 (from 2004) and later 
versions, providing components to model hierarchi-
cal state machines using Modelica as an action lan-
guage. The StateGraph library has several significant 
drawbacks that are mainly due to the underlying im-
plementation language Modelica 2, where some spe-
cial features needed for hierarchical state machine 
modeling and for Mode-Automata are missing.  
A new Modelica library for modeling hierarchical 
state machines is proposed in this paper. It is a more 
Statechart  [2] oriented approach compared to State-
Graph, but avoids several deficiencies of the State-

chart formalism in order to arrive at safe state ma-
chines. The library is capable of handling extended 
state machine properties, such as hierarchy (meta 
states), orthogonality (parallel substates), synchroni-
zation, and preemption. All StateGraph functionality 
is available, but with a new simplified implementa-
tion. The ModeGraph library ensures safe state ma-
chines, especially with respect to 
1. upper limit on execution time of one cycle, 
2. guaranteed deterministic variable assignment. 
The library is based on extensions to the Modelica 
language, e.g., ensuring mutual exclusivity between 
states. Usage of the new Modelica 3.0 graphical an-
notations provides a more modern look and feel. 
In the following sections the ModeGraph library will 
be explained and excerpts of the implementation will 
be presented. A ModeGraph is defined in Modelica 
using Boolean equations. As a result, the exact se-
mantics of ModeGraph is formally defined with the 
Modelica semantics (equations are sorted and itera-
tion takes place, if pre(x) ≠ x). General concepts 
taken from Finite State Machines (FSM), Statecharts 
 [2], Sequential Function Charts (SFC)  [7], and Safe 
State Machines (SSM)  [1] will be used as references 
and benchmarks to demonstrate the feasibility and 
applicability of ModeGraph. 

2 Steps and Transitions 
An FSM describes a behavior by decomposing it into 
a distinct finite set of states visualized by state-
transition diagrams. States are usually illustrated by 
rectangles with rounded corners. An FSM is often 
used to model reactive systems, which means it re-
acts to certain stimuli, usually called inputs. A transi-
tion is depicted with an arrow between two states 
and a transition condition written next to the arrow. 
When the condition evaluates to true, the transition is 
taken, and a change of state is performed. As an ex-
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ample, see Figure 1, where the system initially is in 
state A. When input α occurs, the state will change 
from A to B. The arrow originating in a small black 
dot is used to mark the initial state of the system. 

 
Figure 1: Simple state machine with two states  

and two transitions. 

Inheriting much of the semantics from StateGraph, 
the basic components of ModeGraph are Steps and 

Transitions that are both 
similar to the correspond-
ing StateGraph objects. 
Figure 2 shows the 
ModeGraph equivalent of 
Figure 1. We will proceed 
to describe the Steps and 
Transitions in more detail. 

2.1 Steps 

There are two types of 
Steps: a regular Step and 
a StepWithSignal. The 
state of a regular Step is 
represented by a Boolean, 
active. In the case of 
the StepWithSignal, ac-
tive is instead a Boo-
leanOutput that can be 
graphically connected to 
other components, typi-
cally to logical blocks: 

newActive =(anyTrue(inPort.fire) or 
              pre(newActive)) and not 
               anyTrue(outPort.fire); 
active    = pre(newActive); 

For a Step with one inport and one outport avail-
able is defined as: 
available = active; 

The function anyTrue iterates through its argument 
array of connectors and returns true if any of them is 
true. The state of the Step in the next iteration is 
called newActive, hence active is set to 
pre(newActive). A Step is said to be available to 
the successor Transition when active is true. 
Several transitions can lead to and from a Step, re-
spectively. This is implemented with two vectors of 
connectors, called inPort and outPort. The Step 
component is said to be a mode, hence only one Step 

at each hierarchical level is allowed to be active at a 
given time instant. This requires restrictions on the 
outPort fire mechanisms, which will be explained in 
detail below. 

2.2 Transitions 

Transitions are used to decide when a change of state 
should be performed. A basic Transition will check 
if its predecessor Step is available and evaluate if its 
transition condition is true (visualised by the condi-
tion being colored green). If this is the case, it will 
send a signal, fire, to its surrounding Steps. Hence, 
the previous Step will turn inactive and the following 
will turn active.  
inPort.fire  = condition and 
                    inPort.available; 
outPort.fire = inPort.fire; 

The signal flow between Steps and Transitions is 
viewed in Figure 3. 

 
Figure 3: Signal flow between Steps 

and Transitions. 

2.3 Delayed Transitions to Break Loops 

Consider the sequence of Steps and Transitions with 
true conditions in Figure 4. A graph like this is said 
to be unstable. At a given time instant, the active 
Step is undefined, because all Transitions will evalu-
ate to true at all times. The code below represents the 
evaluation of the chain in Figure 4. 

 
Figure 2: A ModeGraph 

comprised of two Steps and 
two Transitions. s1.newActive = (pre(s1.newActive) 

                     and not t1.fire) 
            or t2.fire or entry.fire; 
t2.fire = condition and 
                   pre(s2.newActive); 
s2.newActive = (pre(s2.newActive) 
                     and not t2.fire) 
                         or t1.fire; 
t1.fire = condition and 
                   pre(s1.newActive); 

Examining this code, it is clear that there is no de-
fined active Step at a given time instant, since it 
would immediately fire and activate the next Step. 
Loops like this illustrate the need for a Transition 
that requires the preceding Step to be available and 
its condition to be true for a certain period of time 
before it fires. This is shown by t2 in Figure 5. This 
type of Transition is called delayed Transition and 
requires additional equations to decide how long a 
transition is delayed until it can fire. 
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Figure 4: An infinite loop of 

true transitions. 

 
Figure 5: A loop broken by

a delayed Transition t2. 

In the present ModeGraph prototype, a parameter 
waitTime > 0 defines the duration for which the 
fire conditions need to be true before the transition 
can fire. The release version will alternatively allow 
definition of the delay by the number of sample peri-
ods (with a default of one period), if the ModeGraph 
is used in a sampled data system. A delayed Transi-
tion is currently defined as: 
enableFire = condition and 
                    inPort.available; 
when enableFire then 
  t_start = time; 
end when; 
fire = enableFire and 
          time >= t_start + waitTime; 
inPort.fire = fire; 
outPort.fire = fire; 

The concept of delayed transitions is a generalization 
of the SFC semantics, where every transition from 
“bottom” to “top” is delayed by one cycle. Introduc-
ing delayed transitions explicitly allows drawing 
state machines arbitrarily without the restriction to 
always draw it from “top” to “bottom” which is not 
practical for Statechart-type state machines. Delayed 
transitions are, e.g., also present in SSM  [1], where 
transitions are by default delayed by one cycle. In 
SSM “immediate transitions” (denoted with the “#” 
symbol) are “immediate” and equivalent to the nor-
mal Transitions in ModeGraph. 
ModeGraph has the essential requirement, that every 
loop must have at least one delayed transition. In the 
next section it is described how a violation is de-
tected during translation. This gives both a guarantee 
that infinite looping is not possible, and it gives an 

upper limit on the evaluation time of a ModeGraph 
at any time instant. Both properties are important for 
safe embedded control systems. 
As mentioned above, Steps can have multiple input 
and output transitions, and only one Step is allowed 
to be simultaneously active at every level. This re-
quires priorities among the output transitions. The 
most intuitive way is to use the index of the port ar-
ray as priority. A lower index represents higher pri-
ority. 
The available flag needs to take priority into account 
and a port is available if the Step is active and if no 
port with higher priority fires:  
for i in 1:size(outPort,1) loop 
  outPort[i].available =  
    if i == 1 then  
      active  
    else  
      active and not  
        outPort[i-1].fire; 
end for; 

2.4 Graphs with Infinite Loops 

Assume that a user creates a graph containing a loop 
where the conditions of all Transitions are true, as in 
Figure 4. With the current Step and Transition defi-
nitions, the graph will translate, but the solver will 
not be able to converge towards a single active Step. 
This kind of undefined behavior is obviously dan-
gerous and is not allowed. To identify cases like this 
during translation, the signal flow can be slightly 
changed by introducing a Boolean, loopTest. The 
new signal flow between Steps and Transitions is 
depicted in Figure 6. 

 
Figure 6: New signal flow with added loop checking. 

The idea is to let Steps and undelayed Transitions 
just pass the signal on, while a delayed Transition 
and all entry points will set loopTest to true. If 
only Steps and undelayed Transitions are present in a 
loop, the translator will recognize an algebraic loop 
of Boolean equations, and will print an error mes-
sage because Boolean algebraic loops cannot be 
solved. If a delayed Transition is included, the alge-
braic loop will be broken, and the graph will safely 
translate. The code for the loop testing is simple: 
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In a Step: 
for i in 1:size(outPort,1) loop 
  outPort[i].loopTest =  
           anyTrue(inPort.loopTest);  
end for; 

In a Transition: 
outPort.loopTest = inPort.loopTest; 

In a delayed Transition  
outPort.loopTest = true; 

This “brute force” method has the slight drawback 
that no better loop breaking check can be provided. 
In principal, it might be possible to have only unde-
layed transitions and if the transition conditions are 
restricted, it might be possible to prove that infinite 
looping is not possible. 

3 Encapsulation and Aggregation 
The FSM formalism is adequate as long as the mod-
eled behavior remains reasonably simple. When the 
number of states and transitions increases, the com-
plexity of the FSM grows exponentially. This is fatal 
to readability and strongly confines the viability of 
the graph. Thus, when a state machine grows in 
complexity, a strong formalism should support ob-
ject-orientation and proper encapsulation of isolated 
parts of the behavior to ensure well-defined inter-
faces. 
Some remedies for the mentioned problems were 
introduced by David Harel in Statecharts  [2], where 
several new properties were presented to extend 
FSM. Being able to cluster states into a superstate 
makes it possible to identify similarities between a 
number of states and draw advantages from common 
properties among them. Clustering of states enables 
reuse of larger parts of a behavior than just a single 
state. The superstate has a default entry point, which 
is connected to the initial state with the same nota-
tion as the initial state arrow. In Figure 7, B and C 
share the common property of transition β leading to 
state A.  

 
Figure 7: Three states of which two share common prop-

erties. 

Thus, B and C can be clustered together into state D 
in Figure 8. Note the improved visual appearance in 

Figure 8 compared to Figure 7, despite the exact 
same behavior of states A, B, and C. 

 
Figure 8: Two states clustered together in a superstate. 

Refinement of a state involves identification of a 
number of child states with unique properties within 
a particular state. In Figure 8, states B and C can be 
said to be a refinement of state D. Hence, state D is 
said to be the superstate of state B and C. Being in 
one of the substates implicitly means also being in 
the superstate. The superstate D in Figure 8 is said to 
be the XOR-decomposition of its substates. 

3.1 ModeGraph Composite 

ModeGraph allows aggregation of states into super-
states. A Composite component inherits from 
ModeGraph.Composite and has inPort and outPort 
connectors defined, like a regular Step, but also sus-
pend ports and resume ports - like in StateGraph. 
Figure 9 shows a ModeGraph corresponding to the 
chart in Figure 8. 

 
Figure 9: ModeGraph containing two Steps clustered 
inside a Composite. State D is a Modelica mode block 

where the diagram layer is visible in the icon. Compare 
with Figure 8. 
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The initial Step, B, of the Composite is connected to 
the entry port, depicted with a black dot. Similarly, 
there is an optional exit port, illustrated with two 
circles at the bottom of the Composite. This notation 
is inspired by the semantics of SSM, but is slightly 
modified to provide a more consistent look. In SSM, 
a specific 'final step' indicates when the superstate 
may be exited through the outPort, and is depicted 
with two circles. To prevent misuse, there is an exit 
port in the Composite and Parallel ModeGraph com-
ponents that the 'final step' should be connected to. 
When this step is active, the outPort of the Compos-
ite becomes available. 
The difference between entry/exit and the existing 
StateGraph approach extends beyond the mere 
graphical deviation. The entry model contains a state 
connected to the black connector dot that is initially 
true. Having an entry state, no specific InitialStep 
component is required. This prevents the user from 
making mistakes by, for example, placing two Ini-
tialStep components in a graph. The code below de-
fining the entry point ensures that the state remains 
true for one iteration, when the Composite turns ac-
tive, and then switches to false. 
  Entry entry(fire(start = false, 
                   fixed = true)); 
protected 
  Boolean active(start = true); 
                 fixed = true)); 
equation 
  active = pre(active) and not 
                   pre(entry.fire); 
  entry.fire = pre(active); 

When the Step connected to the exit port is active, 
the Transition connected to the outPort of the Com-
posite may fire (if its condition is fulfilled). This 
calls for a definition of how the state of a Composite 
is evaluated: 
available = exit.exit.available and 
    allSubBlocksFinished and active; 

newActive = (active and not  
        anyTrue(outPort.fire) and not 
        anyTrue(suspend.fire)) or  
        anyTrue(inPort.fire) or  
        anyTrue(resume.fire); 

active = pre(newActive); 

In the code above, the state of the Composite, ac-
tive is set to pre(newActive) to avoid an alge-
braic loop involving mode conditions that will be 
introduced later in this paper. 
An important feature of ModeGraph is conditional 
execution. This applies for the Composite compo-
nent, whose associated code is only executed when 
the composite is active. This will be further ex-
plained in Section  6. 

4 Preemption and Exception 
Aggregation of states introduces new possibilities. 
Being an own entity, it is possible to have a transi-
tion drawn directly from the superstate. This will 
result in a preemption, and the superstate is left re-
gardless of which of the substates is active, see, e.g., 
transition β in Figure 8. Of course, normal exit is 
possible by having a transition originating in an inner 
state and targeting an outer. Notice how state D in 
Figure 10 is only left through transition β if state C is 
active. 

 
Figure 10: Superstate D can only be left when in 

substate C. 

4.1 ModeGraph Exit and Preemption 

To exit a Composite, the final step is connected to 
the mentioned exit port. When the final step is ac-
tive, exit.exit.available = true, and a tran-
sition connected to the Composite outport becomes 
enabled. The ModeGraph realization of Figure 10 is 
shown in Figure 11. 

 
Figure 11: Composite D can only be left if Step C is ac-
tive, compare with Figure 10. 
A ModeGraph Composite has an array of suspend 
connectors. Recalling the active condition of the 
Composite, it is clear that after a suspend port fires, 
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the Composite is no longer active. This behavior is 
used to preempt a Composite without necessarily 
having reached the final Step, i.e., the one connected 
to the exit port. The condition of sus-

pend.available needs to equal the state of the 
Composite, since it should be preempted only when 
it is active. The same kind of prioritization as for 
Steps is performed here: 
for i in 1:nSuspend loop  
  suspend[i].available =  
         if i == 1 then  
            active  
         else  
           active and not 
                   suspend[i-1].fire; 
end for; 

The suspend port can be compared to the Statechart 
equivalence of drawing a transition directly from the 
superstate to an outer state, compare for example 
transition β in Figure 8 and its equivalent in Figure 9. 
The deactivation of the Composite does not, explic-
itly, influence the internal states of the Composite. 
The state of the subblocks will be kept, but all inter-
nal interaction will be frozen. 

4.2 History and CLH 

The concept of preemption introduces an additional 
way of entering a superstate. Normally, entry is per-
formed through the default entry point, as mentioned 
above. This behavior can be compared to a subrou-
tine that has only one entry point. There is an obvi-
ous advantage of offering additional ways of enter-
ing an aggregation, similarly to the ways a co-routine 
may be entered. Hence, re-entering a superstate, it is 
also reasonable to be able to enter the most recently 
visited substate.  
Memory of the internal state of a superstate is called 
“entry by history” in Statecharts, and depicted with 
an encircled H to which transitions can be connected. 
The H-entry will make the previously visited state 
before preemption at the current level active. If the 
superstate is entered for the first time, the default 
entry arrow is used. Assume for example that state C 
is active and transition β is taken in Figure 12. If 
subsequently transition α is taken, state C (and of 
course also state D) will once again be entered. 

 
Figure 12: Superstate D is entered through an H-entry. 

To handle history of several nested superstates, the 
H-entry can be extended to be applied all the way to 
the lowest level. This is in Statecharts called an H*-
entry. Assume that state C in Figure 13 is active, and 
transition β is taken (leaving superstate F). If later 
transition α is taken, state C will be active, since α is 
connected to an H*-entry. 

 
Figure 13: Superstate D is entered through an  

H*-entry. 

Having the possibility to utilize history functionality, 
an obvious requirement is to also clear this memory 
and enter an aggregation as normal. We will intro-
duce the concept of actions and activities before this 
property is defined. 

4.3 Actions and Activities 

A transition action in FSM can be performed when a 
transition fires, which is denoted at the transition 
condition after a '/' character. An action is assumed 
to be performed instantaneously in ideally zero time.  
Statecharts also defines activities that, opposed to 
actions, are performed in non-zero time, and are used 
to carry out tasks of some sort. For each activity ∂, 
the following two actions are defined: start(∂) and 
stop(∂) which are true when an activity starts and 
stops, respectively. Also, a new condition is defined: 
active(∂), which is true when ∂ is active. 
In SFC, actions are associated with a state instead of 
being executed upon a transition being fired. Actions 
in SFC are not instantaneous as in Statecharts and 
may also be conditional. 
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4.4 CLH 

With the definition above, a special action called 
clear-history(state), clh(state), can now be defined. 
When clh is performed, the history at the level of the 
state is reset. Just as with the H-entry, it is possible 
to perform a clear-history down to the deepest level. 
This action is consequently called clh(state*). Con-
sider the graph in Figure 14 and assume that state C 
is active when transition β is taken and clh(F) is per-
formed. 

 
Figure 14: The history of superstate F is reset when tran-

sition β is taken. 

If transition α is subsequently taken, the choice 
stands between state D or E, and since clh(F) has 
been performed at this level, the default arrow, and 
consequently, state E will be active. Note that if now 
transition ε is taken, state C will be active, since no 
clh occurred at this level. 

 
Figure 15: The history of superstate F and all descending 

substates are reset when transition β is taken. 

In Figure 15 clh(F*) is performed instead. If now 
transition α is taken, state E would be entered. If 
transition ε is taken, it would result in state B being 
active, since all superstates are entered through their 
respective default arrows on all descending levels 
due to the earlier performed recursive clh. 

4.5 ModeGraph History and CLH 

The ModeGraph equivalence of the History junction 
is the resume port. When the resume port fires, the 
Composite is simply activated. This means that a 
superstate that is always entered through a history 

junction, like the one in Figure 12, is directly imple-
mentable in ModeGraph by always entering through 
the resume port, like in Figure 16. 

 
Figure 16: ModeGraph Composite being entered only 

through the resume port, compare with Figure 12. 

Note that when a Composite is suspended, all states 
all the way down the hierarchy keep their current 
state, which actually corresponds to the H*-entry. 
Figure 17 is the ModeGraph implementation of 
Figure 13. Clear History is performed in ModeGraph 
upon normal entry through the inPort of a Compos-
ite. 
 

 
Figure 17: Two nested ModeGraph Composites that are 
both entered through their resume ports, compare with 

Figure 13. 
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5 Parallelism 
Parallelism and synchronization are important prop-
erties of a state machine to prevent exponential 
blow-up of the number of states as complexity 
grows. Assume, for example, two subsystems having 
x and y states, respectively. When executing in paral-
lel, the number of states would obviously be x + y. 
However, realizing the system without the parallel 
states would require x·y states. 
Orthogonality provides the possibility to have sev-
eral superstates executing in parallel. Assume state D 
being the orthogonal product of states B and C, D = B 
× C, then D is said to be the AND-decomposition of B 
and C, see Figure 18. 

 
Figure 18: Superstate D is the orthogonal product 

of B and C. 

In practice, it is common to graphically omit the sur-
rounding orthogonal product state, and in this case 
instead connect transitions directly to the B × C state.  
Another important aspect of subsystems running in 
parallel is synchronization. An orthogonal product of 
states should provide the possibility of only being 
left if a particular set of states is active. In State-
charts, this is performed by using guards on a pre-
emptive transition originating in the orthogonal 
product state. This can successfully be used to let 
sequences synchronize before continuing further 
execution. 
Being a sequence-control-oriented formalism, 
SFC/Grafcet implements parallelism somewhat dif-
ferently compared to the illustrated example. In SFC, 
a transition can be split up in parallel paths. Conse-
quently, several paths can be joined by an AND-
junction. This sequential approach suits its sequence 
control purposes very well, and supports synchroni-
zation in a natural way. 

5.1 ModeGraph Parallelism 

The existing StateGraph Parallel component follows 
the Grafcet/SFC tradition by dividing one connection 

into a new given number of subpaths that are later 
joined to a single connection. Hence, synchroniza-
tion is implicitly demanded of parallel branches. 
However, it is sometimes useful to have subsystems 
working independently of each other that never syn-
chronize, as is the case for states B and C in Figure 
18. Those two systems will run concurrently until 
they are preempted by transition β. Hence, no syn-
chronization will ever occur in this case.  
Implementing this in StateGraph will result in a 
rather messy graph with an unconnected Parallel join 
component, see Figure 19. This use of unsynchro-
nized subsystems is common in Statecharts, and a 
more flexible way of implementing orthogonality is 
thus desirable. 

 
Figure 19: A StateGraph containing two 

unsynchronized subsystems. 

In ModeGraph, a more Statechart-oriented design is 
introduced without compromising existing possibili-
ties of synchronization. A Parallel component inher-
its from ModeGraph.Parallel and is placed within a 
Composite to enable preemption. Figure 20 shows a 
ModeGraph implementation of Figure 18.  

 
Figure 20: A ModeGraph Composite that contains two 

independent Parallel subsystems. 
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As can be seen, ModeGraph incorporates an ap-
proach to orthogonality that is very similar to State-
charts. Note, that one or more Parallels are placed in 
a Composite to provide the possibility of preemption 
and synchronization of the Parallel children. As 
shown in the code below, the active flag of a Parallel 
component is always true. The reason for this is that 
its activeness should always be decided by the parent 
Composite. Alternatively, if the Parallel is the root of 
the graph, it should indeed always be active. 
output Boolean active 
          "= true if parallel step is  
           active, otherwise the  
       parallel step is not active"; 
equation 
  active = true; 

One important feature of the ModeGraph Parallel 
component is that synchronization is still available. 
Each Parallel block also contains a Boolean variable, 
finished, which is true when the Step connected to 
the exit port is active. 
Assume the scenario in Figure 18 with the modifica-
tion that transition β can be taken only if Step F and 
Step H are simultaneously active. This would result 
in a ModeGraph implementation shown in Figure 21. 

 
Figure 21: A ModeGraph Composite with two parallel 

subsystems that must synchronize to allow the Composite 
to exit. Note that the exit ports of the Parallel components 

are now connected. 

To utilize exit connectors of the Parallel component, 
it is required to set the parameter withExit to true. 
If withExit is false, finished will be set to true. 
This becomes useful when synchronizing Parallel 
states with exits when there are additional Parallel 
states without exits present in the same Composite. 
The new approach of parallelism supports safe 
graphs in a natural way. As stated in  [5] the Parallel 
and Alternative components in StateGraph are vul-
nerable to misuse. The problem is that the Alterna-

tive/Parallel components are instantiated at the same 
level as their branches. This makes it possible for a 
user to freely connect a branch outside the compo-
nent without properly synchronizing it, see Figure 22 
for an example. Analysis to identify such cases 
forces unnecessary code overhead. 

 
Figure 22: Example of unsafe StateGraph. 

In ModeGraph, this kind of misuse is not possible. 
Since the user is forced to inherit from Mode-
Graph.Parallel and build the parallel branches within 
a model, i.e., on a different level, there is no way of 
connecting to outer Steps or Transitions, since the 
icon layer is closed. 

6 Modelica Mode 
To implement Mode-Automata in Modelica, a 
mechanism for enabling/disabling a block is needed. 
There must be a way to conditionally evaluate code 
within a Composite and enable/disable its children. 
The Modelica mode comprises five variables that 
define the behavior of the inheriting block. The vari-
ables define under what conditions equations within 
the block and its children will be evaluated and when 
to reset states and outputs. The proposed built-in 
base class mode is defined as: 
partial block mode 
  input Boolean finished = false 
     "The execution of the mode 
            block is finished"; 
protected  
  Boolean enable = true  
     "Enable/disable block and all 
                           children"; 
  Boolean enableSubBlocks = true 
     "Enable/disable children"; 
  Boolean resetStates = false 
     "Reset all continuous and 
      discrete states of this block 
      and all its children"; 
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Boolean resetOutputs = false  
     "When a block is disabled, set 
      all its outputs to their start 
      values"; 
end mode; 

The translator will assert that only one block inherit-
ing from mode at every level is enabled at the same 
time instant. This will make it possible to ensure 
consistency of the single assignment rule in the 
Mode-Automata context. 
Naturally, the ModeGraph Step component extends 
mode, and only one of Steps A and B in Figure 2 can 
thus be enabled at a given time instant. A proposed 
Modelica extension would make it possible to assign 
a variable y as: 
Step A equation 
  y = expr1; 
end equation; 

Step B equation 
  y = expr2; 
end equation; 

The same restriction as in a when-clause applies, i.e., 
there must be a variable reference on the left hand 
side of the equal sign (here: y). This code will be 
transformed by the translator and will result in the 
following single equation: 
y = if A.enable or 
       A.enableSubBlocks then  
       expr1  
    elseif B.enable or 
           B.enableSubBlocks then 
       expr2 
   else pre(y); 

The expressions expr1 and expr2 are thus defined 
within A and B, respectively, and the equation above 
is generated by the translator to ensure that the single 
assignment rule is not violated. 
As a consequence this means that in the generated 
code every variable is only defined at one place. For 
example, it will not be possible to assign the same 
variable in two parallel branches of a Composite step 
with two Parallel modes. If this is attempted, an error 
occurs, since the number of equations and unknowns 
is not the same. Nearly all other formalisms lack 
such a property and therefore it is possible to assign 
to the same variable several times and then non-
intuitive rules are used to determine which assign-
ment takes priority. Stated differently, ModeGraph 
guarantees deterministic variable assignment, 
whereas most other state machine formalisms have 
non-deterministic variable assignment. 

6.1 Composite Mode 

Just like the Step, the Composite component inherits 
from the mode base class. It is by purpose that a 
Composite and a Step on the same level are mutually 
exclusive. All components inside the Composite will 
in turn be gathered and evaluated in the same man-
ner. 
The modifiers of the mode block need to be config-
ured according to the desired behavior of the Com-
posite. When the inPort fires, resetStates is set to 
re-initialise all the states of the Composite and its 
children to behave exactly like if it was indeed the 
first time it was entered. The attribute enableSub-
Blocks will be true when the Composite is active, 
enabling children as long as the Composite stays ac-
tive. When the block is not enabled, all outputs of the 
Composite and all children should be reset, hence 
resetOutputs is set to true. The mode modifier is 
shown below.  
partial block Composite 
  extends mode( 
  enableSubBlocks = active, 
  enable = true, 
  resetStates = inport_fire, 
  resetOutputs = true, 
  finished = allSubBlocksFinished); 

The proposed built-in operator allSubBlocks-

Finished expands to a check if all children of the 
mode have their finished variable set to true. Hence, 
if allSubBlocksFinished is true, the Composite 
may be left through the outPort, since its finished 
flag becomes true. 

6.2 Parallel Mode 

The final discussion relates to the Parallel Compo-
nent. Since we think in terms of an orthogonal prod-
uct, A×B, several Parallel components will indeed be 
simultaneously active. To avoid violation of the 
Mode-Automata semantics, the Parallel component 
is not itself a mode, but contains sets of modes. Since 
the sub-components are not instantiated at the same 
level as the Parallel components this does not con-
flict with the Mode-Automata theory. 
Since the Parallel component is not a mode, it is not 
conditional. There is, however, no need for this, 
since Parallels are placed inside Composites, and 
thus ‘inherit’ the conditional behavior of the parent 
Composite. Note that a Parallel can be placed at the 
top level. In fact, this is the intended way to define a 
top level ModeGraph, since the top component of a 
graph should always be active. 
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7 Application Example – 
Harel’s wristwatch 

When David Harel introduced Statecharts in  [2], he 
identified and mapped the behavior of a Citizen 
Quartz Multi-Alarm III wristwatch using the new 
semantics. This complex, yet comprehensible graph 
has been realized in ModeGraph as a case study. Se-
lected parts of the ModeGraph implementation of 
Harel’s wristwatch  [2] will be used to illustrate the 
functionality of the mode concept. The main inter-
face of the ModeGraph implementation is shown in 
Figure 23. It is comprised of a main display, buttons 
for interaction, and indicator lamps to show the 
status of the alarms. 

 
Figure 23: ModeGraph Wristwatch main window. 

More information about this implementation of 
Harel’s wristwatch can be found in  [3]. 
An example where the mode semantics becomes 
very convenient can be found in the time update 
mechanism of Harel’s wristwatch. In update mode, 
different time quantities can be traversed by pressing 
a button, c. When another button, d, is subsequently 
pressed, the quantity defined by the active state is 
incremented, see Figure 24. 

 
Figure 24: Update mechanism of wristwatch. 

The ModeGraph realization of Update is shown in 
Figure 25. 
 

 
Figure 25: ModeGraph realization of Update. 

Declaration of the Step components should accord-
ing to the proposed mode declaration look like: 
Step second equation 
  inc_time_second = 1; 
end equation; 

Step minute equation 
  inc_time_second = 60; 
end equation; 

Step day equation 
  inc_time_day = 1; 
end equation; 
Hence, inc_time_second would, e.g., be auto-
matically gathered into a single if-statement like: 
inc_time_second =  
   if second.enable 
      or second.enableSubBlocks then  
      1 
   elseif minute.enable  
       or minute.enableSubBlocks then 
      60 
   ... 
   else pre(inc_time_second); 
... 

Harel’s wristwatch contains a state, chime-status, 
shown in Figure 26. This state controls the chime 
function that is an alarm that sounds every whole 
hour that may be either enabled or disabled. Addi-
tionally, when enabled, it can be either quiet (the 
default) or beeping every time the clock reaches a 
whole hour. Notice that when chime-status is 
active, it can be left regardless of which of the inter-
nal states is active. The ModeGraph realization of 
chime-status is shown in Figure 27. Recall that 
every time a ModeGraph Composite turns inactive, 
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Figure 28: Stopwatch. 

When the states display and run are entered, the 
stopwatch starts running (state on) and displays 
regular time (state reg). Pressing button b, the user 
can turn the stopwatch on/off. Pressing button d has 
different meanings depending on the current active 
state of run. If the stopwatch is running, pressing 
button d switches between display modes regular 
and lap. If instead the stopwatch is in state off, 
button d is used to exit to state zero, thus resetting 
the time of the stopwatch. The ModeGraph realiza-
tion of the stopwatch is shown in 

Figure 26: Chime – Status. 

interactions between all child states are frozen and 
no code within the block is evaluated. Hence, if the 
Composite is activated anew, the last active sub-
blocks will once again be active. When entering state 
enabled, sub-state quiet should be activated by 
default. In the ModeGraph realization, the step rep-
resenting state quiet is connected to the entry point. 
Hence, entering enabled through the inport, re-
setStates becomes true, and the Step connected to 
the entry point will be active. 

Figure 29. 

 

 
Figure 29: ModeGraph realization of Stopwatch. 

An additional Composite displayrun is introduced 
to encapsulate the two parallel states display and 
run, see Figure 30. The transition condition d(in on) 
in 

Figure 27: ModeGraph realization of Chime-Status. 
Figure 28 becomes true when button d is pressed 

and state on is active. It is realized in ModeGraph by 
the state on (in Parallel run) sending its state out on 
the bus, which is read by the transition 
reg_d_in_on located in the Parallel display. This 
is a good example of how inter-mode 

The state stopwatch in Harel’s wristwatch is a 
good example of the need of flexible parallel states 
that support easy synchronization. The Stopwatch 
can either display zeros or the running/frozen time, 
depending on the context of the parallel states dis-
play and run, see Figure 28. 
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Figure 30: Contents of the ModeGraph Composite 

displayrun. 

communication can be performed with expandable 
connectors, often called buses. This is an important 
difference in ModeGraph compared to other types of 
state machines. Since ModeGraph is implemented in 
Modelica and modes are basic blocks, the variables 
in a mode block are local variables. In other formal-
isms, variables are usually available as global entities 
on all levels. For embedded systems the ModeGraph 
approach is safer, since variables of composites are 
encapsulated. 
Also note, in Figure 30, how Steps off and reg are 
connected to the exit points of their respective Paral-
lel parent. When both these Steps are active, Paral-
lels run and display both declare themselves fin-
ished, which enables transition dis-

playrun_d_in_off in Figure 29 to fire, since its 
allSubBlocksFinished attribute will return true.  
What has just been discussed is the core functionality 
of the ModeGraph library. The possibility of simply 
ignoring equations within a disabled mode, that also 
are guaranteed to be mutually exclusive with respect 
to other modes on the same level, reduces code and 
introduces powerful properties allowing equations to 
be associated with modes. 

8 Conclusions 
In this paper the ModeGraph library has been intro-
duced. The motivation for ModeGraph originates in 
the inadequacy of StateGraph in terms of implement-
ing Statechart-oriented state machines. ModeGraph 
offers improved flexibility of graphical modelling of 
state machines, regardless if they are SFC/Grafcet- 

or Statechart-oriented. Graphically, ModeGraph pro-
vides a modern look and feel with components based 
on Modelica 3.0 graphical annotations. Furthermore, 
the Mode-Automata semantics offers a convenient 
way of managing complex conditional structures for 
the user. Large-scale systems will successfully draw 
advantage of the fact that only relevant parts of the 
code (i.e., the code of the current active modes) are 
evaluated. The conditional structure also prevents the 
user from unintentionally abusing the available com-
ponents in dangerous ways without having extensive 
code overhead.  
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Abstract 

The paper presents the use of a subset of UML State-
charts to model discrete control components together 
with the physical model within a Modelica simula-
tion environment. In addition, we show how state-
charts can also be used to describe assertions charts 
for checking the compliance of user defined model 
properties and model behaviour during simulation. 
As the main difference to other approaches, neither 
Modelica language enhancements nor special librar-
ies are necessary. The statechart model is automati-
cally mapped onto standard Modelica constructs and 
can be simulated with any common Modelica stan-
dard simulator. Controlled by the user, the Modelica 
model can be automatically instrumented by addi-
tional Modelica code to examine the state coverage 
and transition coverage during simulation. 
Keywords: state machine; statechart; control system, 
assertions, state coverage, transition coverage 

1 Introduction 

The modelling of discrete and hybrid control algo-
rithms [1] is not a novel application area for Mode-
lica. In the last years, Modelica libraries for Petri 
Nets [2] [4], Statecharts [3] or StateGraph [5] were 
introduced. Furthermore, the extension of Modelica 
with a new statechart section is discussed in [6].  
In this paper, we present a new approach for model-
ing and verification of discrete control components 
within a Modelica environment. In contrast to the 
solutions mentioned above, we create the control 
component models of the physical system outside 
Modelica. The other modules of the physical system 

are modeled as usual in the Modelica environment. 
In a second step, Modelica standard code is gener-
ated for the control components automatically. The 
insertion of the generated code into the Modelica 
physical model completes the system model (Fig. 1).  

 

Physical System Model 

Controller as  
UML Statechart Model 

Logic

DC_MotorDC_Motor

screw

J=0.001

ballScrewDrive…
GND

VD
C

=1
2 +

-

Vt
=0

.0
4

v1

Vt
=0

.0
4

v2

Vt
=0

.0
4

v4

mass

s

se
ns

or

sP
lu

s1

Vt
=0

.0
4

v3

sPlus2

sM
in

us
1

sM
inus2

lR_ControllerlR_Commands

Modelica Code Generation 

Fig. 1: Using UML Statecharts in SimulationX [9] 

As modeling language for the control components 
we use a subset of UML Statecharts [7]. We derived 
the subset from an analysis of typical control algo-
rithms in the domains mechanical and automotive 
engineering. 
Besides control components, UML Statecharts 
proves to be suitable for robust modeling of physical 
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effects or technical sub-systems with discrete states 
(friction, hysteresis, valves, switches, etc.).  
For our approach we see following advantages: 
• UML Statecharts are well established for model-

ing of control algorithms, especially for reactive 
systems. 

• The statechart creation outside Modelica allows 
the use of off-the-shelf UML development tools. 

• The approach provides not only an interface to 
Modelica. The approach is also open to interface 
specialized verification tools esp. formal verifi-
cation tools. 

• In the sense of model based design, the approach 
is expandable for generation of production code 
for different targets such as PLCs or embedded 
controllers.  

• The generated Modelica code can be simulated 
with any common Modelica simulator. 

For UML Statechart entry, an additional Graphical 
User Interface (GUI) containing a UML Statechart 
editor is necessary which comes usually with the 
UML development tool. The UML tool should meet 
following requirements: 
• The GUI as well as the UML tool code generator 

needs the ability to be customized. 
• The UML tool should support the interaction 

between GUI and generated code to establish a 
comfortable visualization and animation. 

In section 5 we present an UML Statechart editor 
which is completely integrated into the GUI of Simu-
lationX [9]. 
The paper is organized as follows. Section 2 gives an 
overview on the supported UML Statechart subset. 
In section 3 some techniques are introduced which 
allow an efficient verification of the statechart mod-
els. Section 4 presents a prototypic implementation 
of our approach. An outlook on future work is given 
in section 5. 

2 UML Statechart Subset 

In this section we present the subset of UML State-
charts which is implemented in our prototype (see 
section 4). The subset contains the minimum of 
UML Statechart constructs to model a control com-
ponent in a comfortable way:  
• States: Simple States, Non-Concurrent Compo-

site States, Pseudo States.  
• Transitions: Signal Triggers, Change Triggers, 

Time Triggers, Guards.  

• Activities: Modelica text. 
The UML Statechart subset as well as the resulting 
Modelica code is illustrated with a linear drive as an 
example.  

2.1 Example 

The linear drive (Fig. 2) is controlled by the Control-
ler module. Inputs for the Controller are the operator 
commands Run and Halt as well as the position x of 
the linear drive. As output, the controller delivers the 
DC motor supply voltage U=-10V for left run, 
U=+10V for right run and U=0V for stop. 
The specification of the controller is such as follows: 
• Start after Run is given and drive to left 
• Run 10 times between left and right end position 
• Pause 3 seconds, afterwards continue 
• Stop immediately after command Halt was given 
• Restart with the action which was suspended after 

Halt, when Run is given again. 

The physical system model of the linear drive exam-
ple depicted in Fig. 2 is a simplification of the more 
complex model shown in Fig. 1. 
 

 
 

Fig. 2: Over-all structure of the linear drive 

2.2 States 

The control program (Fig. 3) is divided into the 
states Stop and Go. Stop is a simple state, whereas 
Go is a composite state with the nested simple states 
GoLeft, GoRight, and Pause. In consideration of hi-
erarchy, the graph with the states Stop and Go is the 
top-level graph, implicit denoted as Main. The sub-
jacent graph comprises the sub-states of Go. 
For Modelica representation of state activities and 
state transitions, a state variable is declared for each 
hierarchy level. Their type declarations contain the 
enumerations of the state names. Each composite 
state is added with the enumeration InActive to indi-
cate the inactivity of the composite state. 
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2.2.1 Simple States 
In our subset, simple states may optionally have en-
try-activities, exit-activities, and activities which are 
initiated by internal transitions. These activities are 
simple Modelica algorithms. Modelica when-clauses 
are not allowed here. 
 

 

Fig. 3: Statechart model of the control program 

2.2.2 Composite States 
In comparison to simple states, composite states are 
extended each with a composition compartment. In 
our approach, this compartment comprises only one 
region of sub-states – this means, concurrency of 
activities can not occur within one statechart in-
stance. Concurrency is only possible between multi-
ple statechart instances. 
In the generated Modelica code, all entry-activities 
of the nested sub-states are gathered in a 
when-clause separately (see 2.4 Entry-activities of 
Go). All other activities are included in an if-clause 
which describes the transitions of the composite 
state. 

2.2.3 Pseudo States 
We support following pseudo states: initial state, 
junction, and shallow history. An initial state indi-
cates the default starting point of processing the 
statechart or a composite state. A junction merges 
multiple incoming transitions into a single outgoing 
transition, or conversely, split an incoming transition 

into multiple outgoing transitions. A shallow history 
stores the most recent active sub-state of a composite 
state after leaving it. When the composite state is 
newly entered via shallow history this sub-state be-
comes active again. 

2.3 Transitions 

Following kinds of transitions may be used: simple 
transitions (connecting two states), self-transitions 
(the same state acts as both the source and the desti-
nation), compound transitions (connecting many 
states via junction pseudo states), group transitions 
(originating from composite states), and internal 
transitions of simple states. A trigger, a guard, and a 
transition-activity may label a transition. 
The triggering of a group transition implies the exit-
ing of all the sub-states of the composite state and 
executing their exit-activities starting with the in-
nermost states. An internal transition executes with-
out exiting or re-entering the state in which it is de-
fined. 
In our approach, each transition is triggered with a 
single trigger as described below. 

2.3.1 Signal Trigger 
Generally, a signal trigger represents the receipt of 
an asynchronous signal instance [7]. In our interpre-
tation, a signal is either a record typed message with 
e.g. one integer and real component or a boolean 
typed variable, typically a controller input command. 
Every new signal is notified by toggling a flag which 
is an additional component of the message. In case of 
a boolean variable, Run and Halt in the example, the 
variable itself is toggled.  
Signals are produced either by modules of the physi-
cal system or inside the statechart instance. 
 
Signal type definition: 

 type SignalT = record SIGNAL 
    Boolean  flag; 
    Integer  int_val; 
    Real     real_val; 
 end SIGNAL; 

 
Signal assignment in physical system module: 

 SignalT Run; 
 when ( time >= 1 ) then 
   Run.flag := not Run.flag; 
   Run.int_val := 100; 
 end when; 

 
A toggled signal is detected by the Modelica change-
function, for instance change (Run.flag). 
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In addition to UML, signals can be also defined in a 
Signal Definition Table (Fig. 4). In the table, signal 
events are derived from the achievements of prede-
fined thresholds of physical system quantities or of 
internal statechart variables.  
 

 
Fig. 4: Example of the Signal Definition Table 
 

2.3.2 Change Trigger 
A change trigger specifies an event that occurs when 
a boolean-valued expression becomes true as a result 
of a change in value of one or more attributes [7]. In 
UML the life time of the change event is a semantic 
variation point. Related to control tasks, in our ap-
proach the change event remains true as long as the 
evaluation of the change expression results in true. In 
our linear drive example, change triggers are 
x < LimitLeft, x > LimitRight, and count > N_Max.  
The Modelica representation of this behavior is 
given by an if-clause in the transition block (see 2.4 
Transitions of Go). 

2.3.3 Time Trigger 
A time trigger specifies a time event, which models 
the expiration of a specific deadline [7]. We restrict 
the deadline to a relative expression. The expression 
is relative to the time of entry into the source state of 
the transition triggered by the event, e.g. after 
(t_Pause). The time event is generated only if the 
state machine is still in that state when the deadline 
expires.  
In Modelica this behavior is reflected in following 
steps: Firstly, if the source state entry is detected in a 
when-clause, a time variable is set to the time limit 
(see 2.4 Entry-activities of Go). Secondly, a when-
clause checks if the simulation time exceeds the time 
limit. If true, a timeout signal is toggled. This when-
clause belongs to the event generation block of the 
module (see 2.4 Event generations). Thirdly, if the 
source state will inactive due to another transition, 
the time variable is reset. 

2.3.4 Guards 
A guard is a Boolean expression written in terms of 
parameters of the triggering event or attributes of the 
context object [7]. It is evaluated only once when-
ever it’s associated event fires. If it is false, then the 

transition does not fire and the event is lost. In the 
linear drive example, the guards [dir==DirT.Left], 
[dir==DirT.Right] determine the target sub-states of 
Go after the Run command is given. 

2.3.5 Firing Priorities 
It is possible that more than one transition could be 
concurrently fired to change the state, e.g., they have 
the same trigger event and their guard expressions 
results in true. Then, in UML, an implicit priority 
rule is applied based on the relative position of the 
source state in the state hierarchy [7]. In addition, we 
allow the user to assign the transition priorities ex-
plicitly. A transition priority is denoted by a number 
1, 2, 3… where 1 symbolizes the highest priority. 
These priorities are depicted near the start points of 
the transition arrow lines. Chosen by the user, the 
priorities of group transitions are either higher or 
lower than priorities of inner transitions of composite 
states.  
The resulting priority number determines the posi-
tion of the transition in the check for firing. In the 
linear drive example, Halt shall have the highest pri-
ority to stop the machine, especially in case of an 
emergency. 

2.4 Over-all Modelica Code Structure 

The Modelica representation of a statechart consists 
of following sections: 
• Declaration of state variables, input/output sig-

nals, internal signals, system variables, auxiliary 
variables, parameters. 

• Initialization of state variables and auxiliary 
variables, execution of initial transition activities 
(when-clause). 

• Event generation block: generation of signal 
events according to signal event definition table, 
generation of timeout events (when-clauses). 

• Entry-activity block: detection of state entries, 
execution of entry-activities, assignment of time 
limits to time variables, generation of completion 
events of composite states (when-clauses). 

• Transition block: event detection, assignment of 
next state, execution of exit-activities and transi-
tion-activities, reset of time variables (if-
clauses). 

 
For the linear drive example the Modelica code is 
given below. To shorten, the declaration section is 
omitted.  
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 Module Controller 

Initialization: 

when initial()then 
   mainState:=MainStateT.Stop; 
   ontoMainState:=MainStateT.Stop; 
   goState:=GoStateT.InActive; 
   entryGoState:=GoStateT.InActive; 
   LimitLeft:=-0.4; LimitRight:=0.4; 
   t_Pause:=3;  
   t_PauseFinished:=0; 
   count:=0; N_Max:=10; 
   dir:=DirT.Left; 
   timeout:=false; 
   completeGo:=false; 
end when; 

Event generations: 

when (time>=t_PauseFinished) then 
   timeout:=not timeout; 
end when; 

Entry-activities of Main: 

when (mainState==MainStateT.Stop) then 
   U:=0; count:=0; 
elsewhen (mainState==MainStateT.Go) then 
   goState:=entryGoState; 
end when; 

Entry-activities of Go: 

when (goState==GoStateT.GoLeft) then 
   U:=-10; count:=count+1; 
   dir:=DirT.Left;  
elsewhen (goState==GoStateT.GoRight) then 
   U:=10; count:=count+1; 
   dir:=DirT.Right;  
elsewhen (goState==GoStateT.Pause) then 
   U:=0; count:=0; 
   t_PauseFinished:=time+t_Pause;  
elsewhen (goState==GoStateT.InActive) then 
   completeGo:=not completeGo; 
end when; 

Transitions of Main: 
if (pre(mainState)==MainStateT.Stop) then 
   if (change(Run)) then 
      if (dir==DirT.Left) then   
         mainState:= MainStateT.Go; 
         entryGoState:=GoStateT.GoLeft; 
      elseif (dir==DirT.Right) then 
         mainState:= MainStateT.Go; 
         entryGoState:=GoStateT.GoRight; 
      end if; 
   end if; 
elseif(pre(mainState)==MainStateT.Go)then 
   if (change(completeGo)) then 
      mainState:=ontoMainState; 
   end if; 
end if; 

 

Transitions of Go: 

 if (pre(goState)==GoStateT.GoLeft) then 
    if (change(Halt)) then 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (x<LimitLeft) then 
       goState:=GoStateT.GoRight; 
    end if; 
 elseif(pre(goState)==GoStateT.GoRight)then 
    if (change(Halt)) then 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (count>N_Max) then 
       goState:=GoStateT.Pause; 
    elseif (x>LimitRight) then 
       goState:=GoStateT.GoLeft; 
    end if; 
 elseif (pre(goState)==GoStateT.Pause)then 
    if (change(Halt)) then 
       t_PauseFinished:=time; 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (change(timeout) then 
       goState:=GoStateT.GoRight; 
    end if; 
 end if; 

end Controller; 

 

3 Verification 

The main tool for the verification of the Modelica 
model is the simulator. In this section we describe 
techniques to increase the efficiency of the simula-
tion based verification: Design Rule Check, State 
Coverage Analysis and Transition Coverage Analy-
sis, and Assertion Charts. 

3.1 Design Rule Check 

During graphical entry and compilation of statecharts 
the following design rules are currently checked: 
• Only one initial state is allowed on each hierar-

chy level. 
• An initial state has exactly one outgoing transi-

tion. Trigger and guards are not allowed. 
• Pseudo states must not connected by transitions. 
• A split junction has only one incoming transi-

tion. Only this transition has a trigger. 
• A merge junction has only one outgoing transi-

tion. Only this transition has a trigger. 
• Self-transitions are not allowed for composite 

states. 
• Each state, except initial state, has at least one 

incoming transition. 
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• Isolated sub-graphs are not allowed. 
• A warning is given when some outgoing transi-

tions of one state have the same priority number. 

3.2 State and Transition Coverage 

The analysis of both state activations and transition 
activations are measures for the achieved functional 
coverage during the simulation run.  
To measure the activation of states and transitions, 
additional Modelica code is automatically inserted 
into generated Modelica code (described in section 
2.4) by the Modelica code generator (see section 
4.2). The additional code basically consists of a set 
of counters. A unique counter is associated with any 
entry-activity block and any transition block. The 
counters are implemented as integer vectors. Every 
state or transition activation leads to an increment of 
the associated counter component. 
For comfortable use, the actual achieved counting 
results may continuously back-annotated into the 
UML Statechart schematic.  

3.3 Assertion Charts 

Our Assertion Chart approach is derived from [10]. 
Assertion Charts aim for watching the behavior of 
the system in respect of specified properties. With 
the help of Assertion Charts, we describe both non-
temporal and temporal system properties which have 
to be examined. 
For the linear drive, e.g., an assertion may be: If the 
DC motor supply voltage U alters to U > 0, then 
drive position x will exceed its limit within T sec-
onds, otherwise a fault will be reported (Fig. 5). 
 

  

Fig. 5: Assertion Chart example of the linear drive 

In our case, the charts are composed like ordinary 
statecharts and run simultaneously to them. We de-
liver a set of typical Assertion Charts concerning 
dedicated event sequences and time limits. The pre-
defined Assertion Charts are parameterized. 

4 Implementation Prototype 

The section introduces the first implementation of 
our approach into the SimulationX Modelica envi-
ronment [8][9]. The implementation consists of the 
components Statechart Editor, Modelica Code Gen-
erator, Run Time Visualization (simulation driven 
statechart animation, association of the State Cover-
age and Transition Coverage Analysis results). All 
additional functionality can be controlled by the user 
within the SimulationX GUI.  For easy use, a set of 
typical control domain Assertion Charts comes with 
the implementation. 

4.1 Statechart Editor 

The Statechart Editor (Fig. 6) is seamlessly inte-
grated into the SimulationX framework. The State-
chart Editor has the following features: 
• Schematic entry of the statecharts, 
• Definition of statechart activities as Modelica 

code, 
• Definition of triggers, 
• Definition of local types, variables and parame-

ters, 
• Definition of the interface to the physical sys-

tem. 
 

                 
 

 
 

Fig. 6: Statechart Editor window 
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Pressing the compile button starts the Modelica Code 
Generator. The structure of code is outlined in sec-
tion 2.4. 

4.2 Modelica Code Generator 

The Modelica Code Generator generates standard 
Modelica code from the UML Statechart model. The 
code is user-driven instrumented with additional 
code to perform the State Coverage Analysis and 
Transition Coverage Analysis and to associate Asser-
tion Charts with selected signals. In addition, the 
Modelica Code Generator accomplishes the Design 
Rule Check. Besides Modelica code the generator 
architecture is open to generate code for various tar-
gets such as formal verification tools or production 
code for PLCs or embedded controllers. 

4.3 Runtime Visualization 

SimulationX supports the visualization of statecharts 
at runtime by a specialized view. During simulation 
the active state and the latest transition are high-
lighted if a time step or time interval is completed 
(Fig. 7). Controlled by the user, state and transition 
coverage are also displayed.  The actual state and 
transition counter readings are annotated on the 
states and on the end points of transitions, respec-
tively.  
 

 

Fig. 7: Back-annotation of active states 

For checking the functionality of whole system, the 
common view of internal controller variables and 
variables of the equipment are essential. Therefore 
all variables of the statechart, inclusive the state 
variables, may be accessed by the user.  
In case of the linear drive example the causality of 
the system behavior (Fig. 8) is reflected by the sig-
nals Run and Halt of the operator, the variables 
goState and count of the controller, its output U, and 
the position x of the drive. The correlations between 
these quantities may be checked by assertion charts 
during the simulation. 

 
Fig. 8: Wave-forms of the linear drive example 

5 Conclusions 

We have applied our methodology to control systems 
in the area of automotive, robotics and manufactur-
ing systems engineering. The approach introduced in 
the paper proves to be very comfortable for modeling 
of control components and physical system within 
the SimulationX environment. Especially the inte-
grated verification support decreases modeling and 
simulation cycles and leads to robust control compo-
nents with high test coverage in relative short time. 
Our next steps are the successive extension of the 
approach to a Modelica model based design envi-
ronment for control algorithms.  
Next steps are: 
• Enhancements in code generation 

Right now, we generate Modelica code to validate 
the control component behavior within the physi-
cal system. For the implementation of the control 
component models, target code has to be derived 
from the models according to the target hardware 
platform, e.g. for PLC systems or embedded sys-
tems. 

• Enhancements in formal verification 
In the recent years, considerable progress has 
been achieved in the field of formal verification 
tools for model checking especially for digital in-
tegrated circuit verification. Therefore, we are en-
couraged to interface our modeling approach to 
selected model checker tools by transformation of 
our statechart models to the model checker input 
description.  
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Abstract

ABB Dynamic Optimization is an extension for the
control system 800xA. Exploiting the Aspect Objects
technology of 800xA, Dynamic Optimization allows
the seamless integration of model based applications,
such as model-based process control. Running offline
and online using one and the same software environ-
ment, Dynamic Optimization provides an attractive
framework to apply offline results online, in order to
optimize the efficiency of an industrial process.

1 Introduction

Industrial plants search for powerful diagnostic and
optimization tools to monitor and predict plant perfor-
mance, issue early warnings for equipment diagnosis,
sensor validation and preventive maintenance. New
modeling technologies and increasing computational
power make the online application of computer simu-
lations more and more attractive.
This paper shows how the Modelica technology is ex-
ploited in the Industrial IT Extended Automation Sys-
tem 800xA using the Dynamic Optimization frame-
work.

2 Dynamic Optimization framework

2.1 Industrial IT System 800xA

The architectural framework for the Industrial IT Sys-
tem 800xA is built upon ABB’s Aspect Object tech-

nology. Aspect Objects relate plant data and func-
tions – the aspects, to specific plant assets – the ob-
jects. Aspect objects represent real objects, such as
process units, devices and controllers. Aspects are in-
formational items, such as I/O definitions, engineering
drawings, process graphics, reports and trends that are
assigned to the objects in the system.
Aspect Objects are organized in hierarchical structures
that represent different views of the plant, such as
Functional Structure and Location Structure. One ob-
ject may be placed multiple times in different struc-
tures. The idea of placing the same object in multiple
structures is based on the IEC standard 1346 [7, 2].

2.2 Dynamic Optimization architecture

Figure 1 gives an overview about the software archi-
tecture. Many existing software interfaces and com-
ponents that are intended for process control are re-
used by Dynamic Optimization for model-based ap-
plications. These are in particular the connectivity to
a process and the treatment of trend&history data us-
ing OPC DA and OPC HDA technology, respectively.
Furthermore, these are operator graphics, alarms and
events, as well as a common configuration database.
Dynamic Optimization adds new software compo-
nents for the management of model knowledge and for
running model-based activities. Model variables are
treated like process signals by allocating OPC proper-
ties in a simulation server.
The models are being built and tested with a modeling
application such as Dymola or MathModelica. After-
wards executable model code is exported to Dynamic
Optimization. The numerical solver HQP is employed
at runtime. HQP combines a large-scale nonlinear
optimization solver with ODE and DAE solvers, see
e.g. [5].
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Figure 1: Software architecture of the Dynamic Optimization framework.

Excel serves as intermediate data layer between the
modeling application and the control system. This al-
lows to make small changes, e.g. to change parameter
values, at runtime. Moreover advanced model based
activities, including optimization objectives and con-
straints not covered by Modelica, can be specified in
Excel. Furthermore, an activity can be archived in
an Excel file, including the parameterization of the
model, solver settings, used process data, and results.

The use of standard interfaces and independent appli-
cations for modeling and numerical solution does not
only provide for seamless integration re-using exist-
ing tools, but it also gives more flexibility regarding
the framework itself. This way for instance research
studies can be done in a platform more appropriate for
research. As the same tools are used, the platform can
easily be changed to deploy research results later on.

Take the industrial case study [9] for example. The re-
search on model predictive control of batch processes
has been done using Matlab and Simulink as platform,
together with the HQP numerical solver and OPC pro-
cess interfaces [9]. Using Dynamic Optimization, the
research results can be deployed in the control system
800xA by running the same model code and using the
same solver.

2.3 Introductory example

Consider one wants to perform a simple calculation
online, like the determination of the efficiency of a pre-
heater in a power plant. According to water-tube boil-
ers standards [4], the efficiency of a heat exchanger is
defined as

η =
T22−T21

T11−T21
(1)

with T11 and T21 the inlet temperatures at primary and
secondary side, respectively, and T22 the outlet temper-
ature at the secondary side.
The heat exchanged in a preheater mostly results from
the condensation of the fluid at the primary side. This
is why the inlet temperature T11 is not used directly
from a measurement. It is replaced by the saturation
temperature Tsat(p11) for a measured pressure p11 at
the primary side. This gives a more reliable value for
the preheater efficency.
The calculation can be set up graphically in a Mod-
elica tool, see Figure 2. The block heatExchangerEf-
ficiency contains the general calculation given in (1).
The saturation temperature Tsat(p11) is calculated for
a measured p11 using a function available in the stan-
dard Modelica.Media library.
In order to run the calculation in the control system
800xA, first appropriate Aspect Objects have to set

R. Franke, B.S. Babij, M. Antoine, A. Isaksson

The Modelica Association 280 Modelica 2008, March 3rd − 4th, 2008



Figure 2: Graphical implementation of a preheater efficiency calculation in Dymola.

Figure 3: PreheaterEfficiencyMeter in 800xA Plant Explorer Workplace.
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up. They can be created from the modeling applica-
tion Dymola by invoking the menu command “Cre-
ate aspect object PreheaterEfficiencyMeter in 800xA”.
The menu command is included as annotation in the
model, being accessible from Dymola and calling the
according system command provided by Dynamic Op-
timization. The hierarchical structure of Aspect Ob-
jects in 800xA corresponds to the package structure in
Modelica, see Figures 2 and 3.
The model can be deployed with the menu command
“Deploy model PreheaterEfficiencyMeter to 800xA”.
The deployment process consists of multiple steps that
have been automated. First the model is translated and
an executable dynamic link library is created. Three
aspects are configured in 800xA for the Aspect Object
PreheaterEfficiencyMeter, see Figure 3 and the rela-
tion to the software architecture shown in Figure 1:

1. The Modelica Model aspect declares the interface
of the model through inputs, outputs, parameters
and states. Moreover the model aspect contains
attributes like value, unit and description for each
model variable. The empty columns “Ref’d Ob-
ject”, “Ref’d Aspect”, “Ref’d Property” can be
used to link model variables to signals in the con-
trol system.

2. The Control Connection aspect declares OPC
properties for the model variables, which are
served by the Simulation Server.

3. The Dynamic Calculation aspect links the model
to the solver and defines solver settings like sam-
pling rate for the calculation.

Besides the aspects, also the Simulation Server for
OPC properties introduced by the model and the Dy-
namic Optimization Service running HQP solver in-
stances are updated during deployment.

3 Model-based applications

The use of Modelica gives access to a broad range of
possible applications using a common modeling tech-
nology.

3.1 Technical calculations

Many calculations that are of interest for industrial
applications have been standardized. The water-tube
boilers standards are an example [4]. The standardized
formulae and algorithms can be implemented in Mod-
elica and evaluated online. This provides e.g. for the

online determination of thermal stress and the imple-
mentation of lifetime counters for critical components
of a power plant. Further applications cover the online
determination of the plant efficiency.
Such technical calculations are normally set up to run
automatically on a specified sample time interval. The
results of the calculations are added as new signals to
the control system.

3.2 Model-based simulation

Modelica is designed to allow convenient, component-
oriented modeling of complex physical systems.
Available model libraries significantly simplify the
object-oriented modeling process. Such models can
run online to analyze and optimize the modeled pro-
cess. Further applications of model-based simulation
include the training of plant operators and the valida-
tion of automatic controllers.
Take soot blowing, a cleaning mechanism for steam
boilers, as example. Due to constant fouling, the heat
transfer coefficient in superheaters and the steam pres-
sure decrease during the operation of a recovery boiler.
Soot blowing is applied to clean the boiler.
The modeling and simulation study [8] describes the
dynamic modeling of a recovery boiler of a paper mill
in Modelica, in order to simulate the effects of fouling
and soot blowing on drum pressure and heat transfer
coefficients.

3.3 Estimation and optimization

Prior to an online application, a model normally needs
to be tuned. Unknown model parameters, such as heat
transfer coefficients, need to be estimated based on
process data resulting from experiments. This can be
done using a Dynamic Estimation aspect. The exper-
iment data is directly available in 800xA through his-
tory Log Configuration aspects. The estimation setup
can be archived together with the used process data,
solver settings and estimation results in an Excel file.
Moreover estimation can be configured to run online,
in order to analyze the process or to validate mea-
surements. Future development may involve addition
of model validation against separate data sets as well
as adding grey-box calibration methods similar to the
ones described in [1].
Having a well tuned model, it can be used to opti-
mize the modeled process, such as the optimization of
steady-state setpoints or of transient control trajecto-
ries. The Dynamic Optimization aspect allows to setup
and solve optimization problems for a given model.
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Figure 4: Operator display for boiler startup optimization.

The solver HQP covers initial-value simulation prob-
lems for hybrid DAEs resulting from the translation
of a Modelica model. Mathematical optimization and
estimation problems, however, can currently only be
solved for a simplified hybrid DAE, containing no
state events. A formulation and solution of mixed-
integer nonlinear optimization problems, as required
for instance for planning&scheduling of production
processes, may be subject of future development.

3.4 Model-based control

Applying Model Predictive Control (MPC) technol-
ogy, a model can be used to predict the optimal opera-
tion of the process. The calculated predictions get ap-
plied in closed control loop. An example application,
that has been installed successfully in several power
plants, is the startup optimization of large steam boil-
ers [6, 5]. Appropriate process models can be built
based on the Modelica.Media and Modelica.Fluid li-
braries [3].
Figure 4 shows an operator display used for boiler
startup optimization. Elements known from a regular

operator graphics, such as temperature measurements
and operator controls, are seamlessly integrated with
new elements resulting from the model based Boiler-
Max application, such as thermal stress values, stress
limits and predicted startup time. Furthermore, the re-
sults of the predictive startup optimization are accessi-
ble in a regular trend display showing the optimization
results as future process data.

3.5 Runtime scheduling and supervision

Individual model based activities can be performed
for a specified sample time or triggered by changing
process data on-line. However, more advanced run-
time scheduling might be required for complex activ-
ities. For instance, one might want to synchronize
multiple activities, supervise solver times and imple-
ment specific error recovery strategies. Such advanced
runtime scheduling can be formulated in Modelica as
state graph [10]. In the Dynamic Optimization frame-
work, a runtime scheduler is running as additional ac-
tivity, triggering and supervising other activities, such
as state estimation and predictive optimization.
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Figure 5: Overview about the ABB solution OPTIMAX R©.

4 Optimizing energy efficiency in the
power industry

The primary key to energy efficiency in the power in-
dustry is reducing the cost of fuel and consumables.
Industrial plants are huge energy consumers; therefore
small percentage savings can have a significant impact
on their bottom line. Figure 5 gives an overview about
the ABB solution OPTIMAX R©, which uses Dynamic
Optimization as one tool, besides others.

4.1 Maximize operational performance & ef-
ficiency

OPTIMAX R©operations solutions can handle utilities
with complex generation portfolios which are seeking
to minimize energy generation costs, be it electrical or
a combination of electrical and other forms of energy.
In addition, deciding whether or not it makes sense
to buy or sell power or fuel, start or stop a unit, save
lifetime, or postpone a preventive maintenance outage
can be easily answered.

4.2 Minimize maintenance cost

Maintenance expenses are second only to fuel costs as
variable costs. The key to optimizing assets is often
having information that is accurate, timely and action-
able. Clearly, the ability to act on reliable information
is as essential as having access to the information in
the first place.
Work preparation and planned condition-based main-
tenance are increasingly important for reduction of
downtime. The benefit of OPTIMAX R©Maintenance
Management Solutions is to achieve and maintain a
high level of availability, quality and safety of the
plant. This applies to current plant operation but is
particularly valid for inspection, overhaul and service
activities. For industrial users this leads to a higher
Return On Asset (ROA) which is a key driver of share-
holder value.

4.3 Reduce emissions & waste

The measurement and reduction of hazardous emis-
sions is increasing in importance and regulatory stan-
dards are getting stricter every day. Emission of green-
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house gases now has measurable economic value and
operators have a real incentive to lower these emis-
sions. The OPTIMAX R©environmental solutions re-
duce emissions by monitoring flame quality, measur-
ing coal flow and carbon in ash content, and pro-
viding Advanced Process Control (APC) which opti-
mizes combustion, shortens boiler startup times and
improves efficiency.

4.4 Extend the Asset Life Cycle

From an economic perspective, plant managers seek
to balance their investment in new assets against per-
formance, risk and downtime. OPTIMAX R©solutions
for lifecycle optimization of assets are able to sched-
ule the most economical operation of different gen-
erating units and trade-off income from sales against
lifecycle costs. In addition, this approach is also ca-
pable of taking emission costs into account, i.e. more
stringent CO2 requirements may make plants that are
still mechanically functional uneconomic to run. The
advantage of these decision support tools is the abil-
ity to include plant ageing models to find the op-
timal operational strategy between maintenance out-
ages, especially when operating under environmental
constraints.

5 Conclusions

The Dynamic Optimization framework allows run-
ning model-based applications in the Industrial IT
Extended Automation System 800xA. The Modelica
technology and the Aspect Object technology of Sys-
tem 800xA are integrated seamlessly. Dynamic Opti-
mization provides software components that establish
links between industrial control and the world of phys-
ical modeling and simulation.
Simple model based simulations can be deployed di-
rectly from a graphical modeling application, such as
Dymola or MathModelica. Excel is used as intermedi-
ate data layer. This allows the treatment of advanced
solver settings, such as optimization constraints, and
of process data used for offline applications, such as
experiment data used for parameter estimation.
A broad range of model-based applications is becom-
ing possible. Examples are the simulation of recovery
boilers in pulp mills [8], model predictive control of
batch processes [9], and cost optimal startup of power
plants [5].
The optimization of energy efficiency is a particular
application area of high interest.
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Abstract

Bioethanol production from fermentation of a sub-
strate using biomass as catalyst is considered.
Four alternative reaction rate models with di¤er-
ent levels of details are derived and implemented
in Modelica. The problem of parameter estima-
tion of models using state/parameter estimation
techniques in a Modelica-Dymola/Matlab setup is
discussed. Practical aspects concerning the di¤er-
ent implementations of nonlinear estimators are
analyzed (EKF, UKF, and EnKF). The use of
Modelica-Dymola for �on-line� applications such
as state estimation poses the additional problem
of the e¢ ciency of the code; this will also be dis-
cussed. The four reaction rate models are �tted
using �ctitious experimental data generated from
one of the models to illustrate the parameter esti-
mation procedure.
Keywords: bioethanol fermentation, parameter es-
timation, nonlinear estimators

1 Introduction

Alcoholic fermentation is an important bio-
chemical process which has been known for some
5000 years. Ethyl alcohol, or more commonly
ethanol, has chemical formulae C2H5OH, and
�nds uses as (i) alcoholic beverage (beer, wine,
spirits), (ii) solvent, (iii) raw material in chemical
synthesis, and (iv) fuel.
With the current focus on CO2 release and global
warming, there is a considerable interest in pro-
ducing fuel from biomass. Production of ethanol
from fermentation typically involves a two step
process: (a) the main process where substrate
(glucose) is converted to ethanol and non-fossil
CO2 in an enzymatic process, and (b) the aero-

bic yeast growth through the consumption of sub-
strate and oxygen.

In continuous reactors, yeast is contiuously
washed out, leading to a less e¢ cient use of the
yeast. The use of immobilized yeast increases
the e¢ ciency of the process, as less substrate is
�wasted� for yeast production. In fermentation,
salts are involved as co-enzymes. The resulting
ions a¤ect the oxygen uptake in the reaction mix-
ture.

The produced (bio-) ethanol can be used as fuel
after some additional processing ��lter yeast, re-
move water by distillation, etc. Alternatively, the
ethanol can be converted to methane by microor-
ganism.

The e¢ cient production of ethanol in a fermenta-
tion reactor requires quantitative analysis of how
raw materials are converted to products. Static
models are often used for design purposes for con-
tinuous reactors, while dynamic models are re-
quired for batch reactors (e.g. beer production)
and for control analysis and design in continuous
reactors. A simple numeric dynamic model for
the continuous fermentation of glucose using the
yeast saccharomyces cerevisae is given in [1]. The
model is somewhat simpli�ed in that the dynam-
ics of the overall reactor volume is neglected, the
role of the salts as co-enzymes is neglected, and
somewhat simple kinetic reaction rates are used.
A more systematic development of reaction rates
for the continuous ethanol fermentation process is
presented in [2]. In [1], the e¤ect of ions on the
oxygen uptake in the reactor mixture is included,
but the e¤ect of glucose is neglected; expressions
for the e¤ect of ions and sugars are given in [3].
Most of the parameters of the model of [1] are
given in their publication; however there is one
or two typos, and the e¤ect of salt ions on the
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oxygen uptake is as if the salinity of the reaction
mixture was similar to that of sea water (due to
some mole-to-gram conversion problem).

It is of interest to study the parameter estima-
tion problem of the fermentation model for the
di¤erent rates of reaction models with the pur-
poses of control and identi�cation. Online pa-
rameter identi�cation can be achieved using re-
cursive state/parameter estimators. For linear
systems with normally distributed process and
measurement noise, the optimal recursive estima-
tor is the Kalman �lter. Estimation for non-
linear systems is considerably more di¢ cult and
admits a wider variety of suboptimal solutions.
The extended Kalman �lter (EKF), unscented
Kalman �lter (UKF), and the ensemble Kalman
�lter (EnKF) are implemented using Modelica-
Dymosim and Matlab. The fermentation with the
di¤erent reaction rates is implemented in Model-
ica and compiled into Dymosim. The parameters
are directly estimated using the parameter state-
augmented approach and the discrete version of
the estimators are implemented in Matlab.

The paper is organized as follows. In the next
section, an overview of the fermentation process
and its implementation is given. Di¤erent kinetic
reaction rates for the fermentation process are pre-
sented in accordance with biochemical engineering
principles. We give a brief introduction of the im-
plementation of the proposed models in Modelica.
In section 3, we discuss the problem of parame-
ter estimation of models using recursive nonlinear
state/parameter estimation techniques in a Mod-
elica/Matlab setup. The traditional use of the
Extended Kalman Filter poses some questions re-
garding the computation of the Jacobians of the
system. In more modern techniques such as the
Unscented Kalman Filter, and Monte Carlo tech-
niques such as the Ensemble Kalman Filter, the
computation of Jacobians is avoided. Also, these
more modern techniques handle nonlinearities in a
better way than the Extended Kalman Filter. In
particular when these estimation techniques are
used for parameter estimation, some of the �l-
ter constants need to be carefully tuned, and we
discuss this problem. Also, the use of Modelica
for �on-line�application such as state estimation
poses some particular problems with regards to
the e¢ ciency of Modelica implementations; this
will be discussed. Finally, we assume that the
model of [1] has been �tted well to experimen-

tal data. We then generate �ctitious experimental
data from the model of Agachi et al., and we illus-
trate the parameter estimation procedure by �t-
ting the new models to the generated experimental
data.

2 Fermentation model

2.1 Description

The nutrients in biochemical reactions are known
as substrates. The substrate for the ethanol pro-
duction process is thus glucose. For the yeast
growth process, the substrates are glucose and
oxygen. In the sequel we will use symbol S do de-
note glucose. Since oxygen has a relatively simple
chemical formulae, we will not introduce a partic-
ular notation for oxygen. Furthermore, we will use
symbol P for the main product, which is ethanol,
and symbol X for the yeast.
The original reaction kinetics given by [1] can be
seen in Table 3 with the superscript o for every
specie roj :
The fermentation reactor for the production of
ethanol is sketched in Fig. 1. Glucose (substrate
S, sugar) in a water solution is continuously fed
to the well stirred reactor; the volumetric feed
�ow is _Vi [volume/time] : The reactor contains
yeast (microorganisms X), which reacts with sub-
strate to produce ethanol (product P). We con-
sider this reaction 1, with kinetic reaction rate
r1 [mass/(volume time)] 1.

S
E1! P (1)

Simultaneously, in a second reaction (2), the mi-
croorganism breed under the consumption of oxy-
gen to produce more yeast; the kinetic reaction
rate is r2 [mass/(volume time)].

S+O2
E2! X (2)

The relationships between the rates of generation
rj [mass/(volume time)] with j 2 fP;X;S;O2g
can be seen in Table 3. All reaction rates have
dimension mass/(volume time). It follows that
r1 = rP is the mass of ethanol produced per vol-
ume and time, etc. Factor YSP has the meaning
of mass of ethanol (product) produced per mass of
glucose (substrate) consumed. Similar interpreta-
tions are valid for YSX and YOX.

1The CO2 specie is not considered in the expression.
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Fig. 1: Sketch of fermentation reactor.

Both in the inlet stream and in the reaction
medium, water is dominant such that the density
� of the mixture can be assumed to be constant.
For oxygen, there is an input �ow _mO2;a in that
oxygen is transported from air to dissolved oxygen
in the reaction medium,

_mO2;a = k`a
�
��O2 � �O2

�
V; (3)

where k`a [1/time] depends on the temperature,
V is the volume of the reaction medium, �O2 is
the mass based concentration [mass/volume], and
��O2 is the equilibrium concentration of oxygen in
water. ��O2 depends on salts in the mixture. It
is assumed that there is no O2 in the feed water
stream. In both reactions 1 and 2, CO2 is released
as a byproduct; here we do not model the carbon
dioxide production.
The total mass, species balances, and energy bal-
ance for the reactor and the water jacket models
are presented in Table 1. The fermentation bound-
ary conditions de�ned as inputs and outputs are
de�ned in this table. The fermentation model pa-
rameters of the original model developed in [1] are
shown in Table 2.

2.1.1 Fermentation reaction and rates

The elementary reaction rate re1 for the ethanol
production is developed considering the substrate-
enzyme interactions, the resulting rate is given by
the Michaelis-Menten kinetics. Additionally, the
presence of ethanol inhibits the ethanol produc-

Tab. 1: Fermentation model.
Reactor total mass and species balances:
d
dtm = _mi � _mo

d
dtmj = _mj;i � _mj;o + _mk

j;g with j 2 fP;X;S;O2g
Reactor rates of generation:

_mj;g = r
k
j V with j 2 fP;X;S;O2g

Reactor outputs:

_mo = k
p
V

_mj;o = _Vo�j with j 2 fP;X;S;O2g
Reactor inputs:

_mi = � _Vi

_mP;i � 0
_mX;i � 0
_mS;i = �S;i

_Vi

_mO2
= _mO2;a

Oxygen interface transport:

_mO2;a = k`a
�
��O2

� �O2

�
V

��O2
= ��O2;0

(T ) exp (�
P

n In �
P

m Sm)

with n 2 fNa+;Cl�;Ca+2;CO�23 ;Mg+2;H+;OH
�g

In =
1
2Hjz

2
j cjP

m Sm = SS = KScS
��O2;0

(T ) = �0 + �1T + �2T
2 + �3T

3

Reactor energy balance:

�ĉpV
dT
d = �ĉp _Vi (Ti � T ) + �Hr;2V rjO2

� _Qheatex

Water jacket mass balance:

_mJ;i + _mJ;o = 0

Water jacket energy balance:

�J ĉp;JVJ
dTJ
dt = �J ĉp;J

_VJ (TJ;i � TJ) + _Qheatex

Water jacket-reactor heat transfer:

Qheatex = UxAx (T � TJ)

tion rate (inactive enzymes), this e¤ect is also in-
cluded in this reaction rate. The combined e¤ect
is shown in Table 3.
A common simpli�ed model for the e¤ect of com-
petition for active sites yields the simpli�ed rate
rs1; where a specie that competes for an active
site and participate in the reaction has the form
�S=(KS;1+�S), while a specie that competes for an
active site and does not participate in the reaction
has the form 1=(1 + kP;1�P):

Another possible model for ethanol produc-
tion with ethanol inhibition is to notice that
exp

�
�kP;1�P

�
� 1=

�
1 + kP;1�P

�
: This exponen-

tial term can be explained by assuming inhibition
by ethanol may be caused by intracellular mech-
anisms.
A similar analysis can be done for the reaction
rate for the yeast production for the di¤erent ap-
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Tab. 2: Parameters for the fermentation reactor with
original reaction rates.
Reactor/Water jacket parameters:

� = 1080 g= l � ~Hr;O2
= �518 kJ=molO2

�J= 1000 g= l VJ= 50 l

ĉp= 4:18 J=( g
�C) UxAx= 3:6E5 J= ( h

�C)

ĉp;J= 4:18 J=( g
�C) (kla)0= 38h

�1

Rate of generation parameters:

�1= 1:79 h
�1 KS;2= 1:03 g= l

�O2
= 0:5 h�1 KO2

= 8:86mg= l

A1= 9:5E8 h
�1 kP;1= 0:070 l= g

A2= 2:55E33 h
�1 kP;2= 0:139 l= g

Ea1=R = 6:6185E3 K YSX= 0:607 gX= gS
Ea2=R = 26:474E3 K YSP= 0:435 gP= gS
KS;1= 1:68 g= l YOX= 0:970 gX= gO2

Oxygen interface transport parameters:

zNa+= +1 HMg+2= �0:314 l=mol
zCl�= �1 HCa+2= �0:303 l=mol
zCa+2= +2 KS= 0:119 l=mol

zCO�2
3
= �2 MNaCl= 58:44 g

zMg+2= +2 MMgCl2= 95:21 g=mol

zH+= +1 MCaCO3
= 100:09 g=mol

zOH�= �1 MO2
= 32 g=mol

HNa+= �0:55 l=mol MS= 180:15 g=mol

HCl�= 0:84 l=mol �0= 14:16mg= l

HOH�= 0:94 l=mol �1= �0:394mg=( l �C)
HCO�2

3
= 0:48 l=mol �2= 7:71E�3mg=( l �C2)

HH+= �0:77 l=mol �3= �6:4E�5mg=( l �C3)

proximations.
The original rates are closely related to the devel-
oped rates where product inhibition is explained
via intracellular transport. The original model
neglects the oxygen dependence of the intracellu-
lar model and neglects the substrate dependence
and the product inhibition. Clearly, when the ki-
netic rates change their functional form, the para-
meter/temperature functions change. The di¤er-
ent rate reaction rates are shown in Table 3.

2.2 Implementation

In Modelica it is important to implement a good
structure to enable easy modi�cation of the mod-
els. The core model of the fermentation reactor is
the basic volume model, there is where the total
mass, species mass balances, and energy balance
are de�ned. This model exchanges heat with the
water jacket model through an MSL heat port. It

Tab. 3: Parameters for the fermentation reactor with
original reaction rates.
Reaction rates 1:

ro1= �1�X
�S

KS;1+�S
exp

�
�kP;1�P

�
re1= �1�X

�S
KS;1+(1+kP;1�P)+�S

rs1= �1�X
�S

KS;1+�S

1
1+kP;1�P

ri1= �1�X
�S

KS;1+�S
exp

�
�kP;1�P

�
Reaction rates 2:

ro2= �2�X
�S

KS;2+�S
exp

�
�kP;2�P

�
re2= �2�X

�S�O2
KS;2KO2

+(1+kP;2�P)+KO2
�S+�S�O2

rs2= �2�X
�S

KS;2+�S

�O2
KO2

+�O2

1
1+kP;2�P

ri2= �2�X
�S

KS;2+�S

�O2
KO2

+�O2
exp

�
�kP;2�P

�
Rates of reactions for P;X;S;O2
rkP= r

k
1 , k = fo; e; s; ig

rkX= r
k
2 , k = fo; e; s; ig

rkS= � 1
YSP
rk1� 1

YSX
rk2 , k = fo; e; s; ig

rk
�

O2
= � 1

YOX
rk

�

2 , k�= fe; s; ig
roO2

= � 1
YOX

�O2
�X

�O2
KO2

+�O2

also has a chemical port (i.e. intensive variables:
temperature and mass concentration vector; and
extensive variables: mass �ow rates vector and
heat �ow rate) that connects with the rate of gen-
eration replaceable model and the oxygen trans-
port model, and two thermo�uid ports (i.e. in-
tensive variables: pressure, speci�c enthalpy, and
mass fraction vector; and extensive variables: en-
thalpy �ow rate vector, mass �ow rate vector, and
total mass �ow rate) to connect the basic volume
with the incoming mass �ow rate in and the out-
coming mass �ow rate out of the model. The ba-
sic volume is then connected to the water jacket
model, to the oxygen transport model, to the rate
of generation replaceable model as shown in Fig.
2.

The four di¤erent reaction kinetic rates (i.e. orig-
inal, elementary, simpli�ed, and intracellular) are
implemented using a replaceable component. A
common set of parameters and equations are de-
�ned in a partial model called rate of generation.
Speci�cs of every reaction rate model are de�ned
separately in each model that inherits the rate of
generation partial model. The heat of reaction is
also de�ned in these models. The water jacket
model uses two MSL �ow ports.
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O2 transport
interface model

Water Jacket
model

Mass and
energy balance
control volume

replaceable
rate of

generation
models

Fig. 2: Dymola diagram layout of the fermentation re-
actor component.

3 Nonlinear estimators

3.1 Description

The ethanol fermentation reactor model can be
written in the general discrete nonlinear state
space form:

xk = fk�1 (xk�1; uk�1; wk�1)

yk = hk (xk; vk) (4)

where fk�1 : Rnx+nu+nw ! Rnx is the discrete
state function, xk 2 Rnx is the discrete state vec-
tor, uk�1 2 Rnu is the discrete input, wk�1 2 Rnw
is the discrete process noise vector, hk : Rnx+nv !
Rnx is the discrete output function, vk 2 Rnv is the
discrete measurement noise vector, yk 2 Rny is the
output vector, and k is the time index. The noise
vector sequences fwk�1g and fvkg are assumed
Gaussian, white, zero-mean, uncorrelated, and
have the known covariance matrices Qk 2 Rnx�nw
and Rk 2 Rny�nv .

3.2 Augmented states

The augmented state space approach can be di-
rectly used to simultaneously solve the state and
the parameter estimation problem (e.g. see [4]).
An augmented state space representation is for-
mulated by adding the vector of parameters to be
estimated �k 2 Rn��1 as new states:

Tab. 4: EKF algorithm.

Initialization:
x̂0j0 � N (�x0; P0)
P0j0 = P0

for k = 1; 2; : : :

Propagation step:
( a priori covariance estimate)

Fk�1 =
@fk�1
@xk�1

���
x̂k�1jk�1

Lk�1 =
@fk�1
@wk�1

���
x̂k�1jk�1

Pkjk�1 = Fk�1Pk�1jk�1F
T
k�1 + Lk�1Qk�1L

T
k�1

( a priori state-output estimate)

x̂kjk�1 = fk�1(x̂k�1jk�1; uk�1; 0)

ŷkjk�1 = hk(x̂kjk�1; 0)

Measurement update:
(Kalman gain calculation)

Hk =
@hk
@uk

���
x̂kjk�1

Mk =
@hk
@vk

���
x̂kjk�1

Kk = Pkjk�1H
T
k (HkPkjk�1H

T
k +MkRkM

T
k )

�1

( a posteriori state-covariance estimate)

x̂kjk = x̂kjk�1 +Kk(yk � ŷkjk�1)
Pkjk = (I �KkHk)Pkjk�1

"
xk

�k

#
=

"
fk�1

�
xk�1; uk�1; w

(x)
k�1

�
�k�1 + Tsw

(�)
k�1

#
(5)

yk = hk (xk; vk) (6)

where Ts is the sampling time step, w
(x)
k�1 2 Rn

(x)
w

is the process noise vector that a¤ects the original

states; and w(�)k�1 2 Rn
(�)
w is the process noise vec-

tor that a¤ects the added parameter states. The
noise vector sequences fwk�1g and fvkg are as-
sumed Gaussian, white, zero-mean, uncorrelated,
and have the known covariance matrices Qk 2
R(nx+n�)�(n

(x)
w +n

(�)
w ) and Rk 2 Rny�nv

wk � N (0;blkdg(Q(x)k ; Q
(�)
k ))

vk � N (0; Rk)

During the propagation step, the augmented
states corresponding to parameters �k are consid-
ered equal to the previous time step �k�1 with
some additive process noise w(�)k�1. If it is assumed
that the parameters do not change at all, then
there is no process noise vector w(�)k�1, but for the
more general case of time-varying parameters (e.g.
fouling, etc.), the value of Q(�)k will be given by
the admissible range of variation of �k: During
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the measurement update step the parameter val-
ues are corrected.
For notational simplicity in the estimators algo-

rithms that follow, the augmented state vector is
referred to as xk, the state augmented function (5)
is referred to as fk�1, and the augmented process
noise vector is referred to as wk�1.

Tab. 5: UKF algorithm.

Initialization:
L = nx + nw + nv; � = �

2(L+ �)� L

 = 2

p
L+ �; �0m = �=(�+ L)

�0c = �=(�+ L) + (1� �2 + �)
for i = 1; 2; : : : ; 2L

�im = (2(�+ L))
�1; �ic = �

i
m

x̂0j0 � N (�x0; P0)
P0j0 = P0

for k = 1; 2; : : :

Propagation step:
(sigma points propagation)
~Pk�1jk�1 = blkdiag(Pk�1jk�1; Qk; Rk)

~x0k�1jk�1 = [(x̂k�1jk�1)
T ; 01�nW ; 01�nv ]

T

for i = 1; 2; : : : ; L

~xik�1jk�1 = ~x
0
k�1jk�1 + 
 chol(

~Pk�1jk�1; i)

~xi+Lk�1jk�1 = ~x
0
k�1jk�1 � 
 chol( ~Pk�1jk�1; i+ L)

~x
(x)i
kjk�1 = fk�1(~x

(x)i
k�1jk�1; uk�1; ~x

(w)i
k�1jk�1)

~yikjk�1 = hk(~x
(x)i
kjk�1; ~x

(v)i
k�1jk�1)

( a priori state-output estimate)

x̂kjk�1 =
P2L

i=0 �
i
m~x

(x)i
kjk�1

ŷkjk�1 =
P2L

i=0 �
i
m~y

i
kjk�1

( a priori state covariance estimate)

~eix;kjk�1 = (~x
(x)i
kjk�1 � x̂kjk�1)

Pkjk�1 =
P2L

i=0 �
i
c(~e

i
x;kjk�1)(~e

i
x;kjk�1)

T

Measurement update:
(Kalman gain calculation)

~eiy;kjk�1 = (~y
i
kjk�1 � ŷkjk�1)

Py =
P2L

i=0 �
i
c(~e

i
y;kjk�1)(~e

i
y;kjk�1)

T

Pxy =
P2L

i=0 �
i
c(~e

i
x;kjk�1)(~e

i
y;kjk�1)

T

Kk = PxyP
�1
y

( a posteriori state-covariance estimate)

x̂kjk = x̂kjk�1 +Kk(yk � ŷkjk�1)
Pkjk = Pkjk�1 �KkPyK

T
k

3.3 Nonlinear Recursive Estimators

The nonlinear estimation problem can be formu-
lated as a recursive Bayesian estimation problem
with a propagation and a measurement update

step. This is the optimal way of predicting a state
probability density function (pdf) p (xk) for any
system in state space representation with process
and measurement noise2.

Tab. 6: EnKF algorithm.

Initialization:
(initial ensemble)

for i = 1; 2; : : : ; N

xi0j0 � N (�x0; P0)
for k = 1; 2; : : :

Propagation step:
(ensemble propagation)

for i = 1; 2; : : : ; N

xikjk�1 = fk�1(x
i
k�1jk�1; uk�1; w

i
k�1)

yikjk�1 = hk(x
i
kjk�1; v

i
k�1)

(estimated state-output propagation)

x̂kjk�1 = (N)
�1PN

i=1 x
i
kjk�1

ŷkjk�1 = (N)
�1PN

i=1 y
i
kjk�1

(covariance calculation)

eix;kjk�1 = (x
i
kjk�1 � x̂kjk�1)

Pkjk�1 = (N � 1)�1
PN

i=1(e
i
x;kjk�1)(e

i
x;kjk�1)

T

Measurement update:
(Kalman gain calculation)

eiy;kjk�1 = (y
i
kjk�1 � ŷkjk�1)

Py = (N � 1)�1
PN

i=0(e
i
y;kjk�1)(e

i
y;kjk�1)

T

Pxy = (N � 1)�1
PN

i=0(e
i
x;kjk�1)(e

i
y;kjk�1)

T

Kk = PxyPy
�1

(state-out-covariance update)

xikjk = x
i
kjk�1 +Kk((yk + v

i
k)� yikjk�1)

x̂kjk = (N)
�1PN

i=1 x
i
kjk

Pkjk = Pkjk�1 �KkPyK
T
k

Assuming that the initial state pdf p (x0), the
process noise pdf p (wk�1) ; and the measurement
noise pdf p (vk) are known, a recursive solution of
the estimation problem can be found using �rst
the Chapman-Kolmogorov equation to calculate
the a priori pdf for the state xk based on the pre-
vious measurement yk�1 (propagation step)

p(xkjyk�1)=
R
p(xkjxk�1)p(xk�1jyk�1)dxk�1 (7)

where p (xkjxk�1) can be calculated from the state
function fk�1 and the pdf of the process noise wk.
Secondly, the Bayes rule to update the pdf of

the state xk with the new measurement yk (mea-
surement update) is

2Markov process of order one.
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p (xkjyk)=
p (ykjxk) p (xkjyk�1)R
p (ykjxk) p (xkjyk�1) dxk

(8)

where p (ykjxk) is available from our knowledge
of the output function hk and the pdf of vk, and
p (xkjyk�1) is known from (7). Although the initial
state pdf p (x0), the process noise pdf p (wk�1) ;
and the measurement noise pdf p (vk) are needed
to solve the recursive Bayesian estimation, no spe-
ci�c statistical distribution is required.
The recursive relations (7) and (8) used to cal-

culate the a posteriori pdf p (xkjyk) are a con-
ceptual solution and only for very speci�c cases
can these be solved analytically. In general, ap-
proximations are required for practical problems.
Three main groups of suboptimal techniques with
signi�cant performance and computational cost
di¤erences are used to approximate the recursive
Bayesian estimation problem: the classical non-
linear extension of the Kalman �lter (EKF), the
Unscented Kalman �lter (UKF), and the Ensem-
ble Kalman �lter (EnKF) approaches.

3.4 Extended Kalman Filter (EKF)

The discrete EKF is probably the most used se-
quential nonlinear estimator nowadays. It was
originally developed as a nonlinear extension by
Schmidt [5] of the seminal work of Kalman [6].
Based on the Kalman �lter, it assumes that the
statistical distribution of the state vector remains
Gaussian after every time step3 so it is only nec-
essary to propagate and update the mean and co-
variance of the state random variable xk. The
main concept is that the estimated state (i.e. es-
timated mean of xk) is su¢ ciently close to the
true state (i.e. true mean of xk) so the nonlinear
state/output model equations can be linearized
by a truncated �rst-order Taylor series expansion
around the previously estimated state.
The discrete algorithm is given in table 4. In

general, this algorithm works for many practical
problems, but no general convergence or stability
conditions can be established4 and its �nal per-
formance will depend on the speci�c case study.
For highly nonlinear models with unknown initial
conditions, the EKF assumptions may prove to
be poor and the �lter may fail or have a poor per-

3 this assumption is in general not true for nonlinear sys-
tems.

4except for some special cases [7].

dymosim ­i generates a
default dsin.txt file

­ Statistics of
the simulation.
­ Debug info

­ Results of the
simulation
­ Binary or text
formats

­ Final state
(same structure

as dsin.txt)

­Stand­alone
program that

­s simulate
­l linearize
­t inival. calc.

­ Optional file
to define
trajectories of
input signals

­Experiment description:
­start time
­stop time
­inival. (opt.)
­parameters,etc

dymosim ­l
­ linearize model
at initial values
­Jacobians

dymosim.exe

dslog.txt dsres.mat
dsres.txt dsfinal.txt

dsin.txtdsu.mat
dsu.txt

dslin.mat

Fig. 3: Dymosim and related input and output �les.

formance. The main tuning parameters are the
estimator covariance matrices Qk and Rk:

3.5 Unscented Kalman Filter (UKF)

The unscented Kalman �lter was originally devel-
oped by Julier and Uhlman [8, 9, 10, 11].
In the unscented Kalman �lters, instead of ap-

proximating the nonlinear state/output functions,
it is the probability distribution that is approx-
imated. Basically, a set of points, called sigma
points, are generated to match the state mean and
state covariance of the probability distribution of
the previously estimated state, then they are prop-
agated through the nonlinear function. The pro-
jected points are used to approximate the �rst two
moments (i.e. the a priori estimated state and
state covariance) that are necessary during the
measurement update step. This �lter normally
outperforms the previously presented EKF. Its
more general form has a higher computational cost
but it does not require the calculation of any Ja-
cobian matrices (i.e. derivatives). The algorithm
is given in table 5.
The tuning parameters of the UKF are also the

estimator process and measurement noise covari-
ance matrices, and the scalar parameters f�; �; �g:
� determines the spread of the sigma points
around the previous estimate, and the � value
depends on the type of distribution assumed (for
more details about their values see [11]).

3.6 Ensemble Kalman Filter (EnKF)

The EnKF uses an ensemble (i.e. particle set) dur-
ing the propagation step, but the classical Kalman
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measurement update equations (instead of using
the resampling with replacement approach of the
particle �lters) during the measurement update
step. The covariances matrices Pxy and Py ob-
tained from the propagation of the ensemble ele-
ments through the nonlinear state-space are used
to calculate the Kalman gain Kk: The a posteri-
ori ensemble is calculated from the Kalman gain
matrix and an arti�cially generated measurement
particle set that is normally distributed with mean
equal to the current measurement yk and covari-
ance equal to Rk. The a posteriori ensemble is
used to calculate the a posteriori state and co-
variance estimate, and it is used for the next �lter
iteration of the algorithm. For details about the
algorithm, see table 6. The EnKF was originally
developed in [12] to overcome the curse of dimen-
sionality in large scale problems (i.e. weather data
assimilation). It is suggested in the literature [13]
that ensembles (i.e. particle sets) of 50 to 100
are often adequate for systems with thousands of
states, but no conclusive work has been done on
this.

Besides the estimator process and measurement
noise covariance matrices, the other tuning para-
meter for this �lter is the number of ensemble el-
ements.

3.7 Implementation

The fermentation model is written in Modelica
and compiled in Dymola into a stand-alone ex-
ecutable �le called Dymosim. The di¤erent es-
timators are implemented in Matlab from where
Dymosim is sequentially called during the prop-
agation step to project the state vector (i.e. in-
tegrate over the sampling time) in the estimator
algorithms. The parameter state vector �k is di-
rectly propagated within the Matlab code so the
original model does not need to be modi�ed to
include the parameter dynamic equations.

Within the Modelica model the input vector uk,
the process noise input vector wk, and the para-
meter input vector �k must be de�ned. This can
be done in the following way at the top level of
the model:

model fermentation
...
input Real u_u1; // define model inputs
input Real u_w1; // define noise inputs
input Real u_p1; // define param. inputs
...
parameter Real p_u1;
parameter Real p_w1;
parameter Real p_p1;
parameter Real p_i1;
equation
fluidBCv.u[1]=u_u1+p_u1;
reactor.basicVol.w[1]=u_w1+p_w1;
reactor.RG.p_mu1=u_p1+p_p1;
reactor.i_rho[1]=p_i1;

end fermentation;

Additionaly, the discrete EKF estimator re-
quires the calculation of the discrete Jacobians
Fk�1; Lk�1;Hk;Mk. This can be done calculat-
ing a linearized model around the previous state
estimate de�ned by the operating point op =
[xTk�1; u

T
k�1; 0; �

T
k�1]

T with the following Matlab
code:

eval( ['! dymosim ', '­l ','dsin.txt'] );

In the �le �dsin.txt� (see Fig. 3) the operating
point is de�ned using parameters and the initial
state for every iteration. The calculated linearized
model is written in the �le �dslin.mat�and then it
can be loaded into Matlab using the Dymola add-
on function tloadlin which loads the matrices
A,B,C,D and the string vectors uname, yname, and
xname. These matrices correspond to
A = @f(x;u;w)

@x

���
op

B =
�
@f(x;u;w)

@u

���
op
; @f(x;u;w)@w ;

���
op
; @f(x;u;w)@�

���
op

�
C = @h(x;u)

@x

���
op

D = @h(x;u)
@u

���
op

The parameter augmented state space discrete ja-
cobians are approximated from the A;B;C;D ma-
trices

Ae =

"
A B(:;nu+nw+1:end)

0np�nx 0np�np

#
Fk�1 = @fk�1

@xk�1

���
op
� exp (Ae�t)

Be =

"
B(:;nu+1:end) 0nx�np
0np�nx 1np�np

#
Lk�1 = @fk�1

@wk�1

���
op

� [I�t+ 1
2!A

e�t2 + 1
3!A

e2�t3 + : : :]Be

Hk =
�
C 0ny�nx

�
Mk = D
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where nu is the input vector dimension, nw is the
process noise vector dimension, and so on. For
notation simplicity, the matrices in the previous
equations use Matlab notation.

4 Results

Due to the lack of experimental measurements,
simulated data sets from the model with the orig-
inal kinetic reaction rates are generated. The sys-
tem model is simulated for 1000 h and data sam-
ples are collected every 1 h. Because the transient
response is relevant to parameter identi�cation,
step-like input sequences with high frequency con-
tent are used (see Fig.4). The initial state vector
for the fermentation model is
x0 =

h
_V ; �P; �X; �S; �O2

; T; TJ

iT 0
= [1000; 12:9; 0:9; 28:6; 3:9; 30:4; 26:9]

T

The system model process and measurement noise
vector sequences fwk�1g and fvkg are Gaussian,
white, zero-mean, uncorrelated, and have constant
covariance matrices
Qk = blkdiag

�
Q
(x)
k ; Q

(�)
k

�
Q
(x)
k = diag ([1000; 15; 2; 100; 5; 35; 30]) � 1E�7

Q
(�)
k = diag ([1; 1; 1; 1; 1; 1; 1; 1]) � 1E�7

Rk = diag ([15; 2; 100; 5; 35; 30]) � 2E�3
A subset of 8 parameters � =
[�1;KS;1;KS;2; kP;1; kP;2; YSP; YSX; YOX]

T is
estimated for every estimator (i.e., the EKF,
the UKF, and the EnKF) using every reaction
rate model (i.e., the original, the elementary,
the simple, and the intracellular reaction kinetic
models). The initial parameter values for every
reaction rate model are adjusted to ensure that
all simulation results give the same steady state
values at initial time t = 0. The estimators
inputs are equal to the system model inputs
u = [ _VJ;i; �S;i]

T , and the measured outputs are
y = [�P; �X; �S; �O2 ; T; TJ ]

T (see Fig.4). The esti-
mators are simulated for 1000 h with a sampling
time of 1 h.
The estimators� initial state vectors are drawn
from a normal distribution with mean and covari-
ance equal to
x̂0j0 � N ([�xT0 ; ��

T
0 ]
T ;blkdiag

�
P
(x)
0 ; P

(�)
0

�
)

�x0 = [990; 13:9; 0:8; 27:6; 4:9; 27:4; 24:9]T

��0 = [1:49; 1:48; 1:23; 7:3; 1:19; 5:07; 4:55; 9:3]T

P
(x)
0 = diag(

�
0:125 � �x0j0

�
:^2)

P
(�)
0 = diag(

�
0:125 � ��0j0

�
:^2)

The UKF parameters are f�; �; �g =

f1E�3; 0; 0g, and the EnKF is evaluated
for an ensemble of N = 100 elements. The esti-
mators process and measurement noise sequences
are Gaussian, white, zero-mean, uncorrelated,
and have constant covariance matrices equal to
the system model.
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Fig. 4: Process inputs ( _VJ;i; �S;i), and measured out-
puts (�P; �X; �S; �O2

; T; TJ) with measurement noise
(grey line) and without it (black line).

Every di¤erent reaction rate is evaluated for
every estimator using 50 Monte Carlo simula-
tions. As a general notation, consider an ensem-
ble {xij (k)g where i indicates the realization, j the
state/parameter, and k the time index. The en-
semble average (over the realizations) is denoted
hxij (k)i:

hxij (k)i ,
P

i x
i
j(k)

nsimul

where nsimul is the number of realizations.
For every estimator with the di¤erent reaction
rates two performance values (averaged over the
number of Monte Carlo simulations) are calcu-
lated for each estimated parameter j: the averaged
estimated parameter for every time index k that
is used to evaluate the parameter estimation bias

wrt. the true parameter value h�̂ij (k)i, and the
averaged absolute estimated parameter error de-
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�ned as hjei�j (k) ji , hj�̂
i

j-h�̂
i

j (k)iji for every time
index k. This second performance value is used to
evaluate the convergence and consistency of every
estimator.

The Monte Carlo averaged performance of the es-
timators using the original reaction rate model is
shown in Fig. 5. The averaged estimated parame-
ters h�̂j (k)i converge to the true parameters for
all the parameters except for the slightly biased
ŶSP estimate and the more biased ŶSX estimate.
In Fig. 5 column (b), the averaged estimated pa-
rameter errors for the parameters fk̂P;2; ŶSP; ŶO2g
converge at a faster rate than for the other esti-
mated parameters f�̂1; K̂S;1; K̂S;2; k̂P;1; ŶSXg: The
EKF and the UKF have comparable averaged es-
timated parameters, while the EnKF has slightly
biased averaged estimated parameters. The best
performance wrt. the averaged absolute estimated
parameter error hjei�j (k) ji is achieved for the EKF
followed by the UKF and the EnKF.

The Monte Carlo averaged performance of the es-
timators using the elementary reaction rate model
is shown in Fig. 6. It can be seen that the av-
eraged estimated parameters no longer converge
to the true parameters of the original rate model
used in the system model simulations. It is to
be expected that some of the parameters will be
time-varying to compensate for the di¤erent ki-
netic rates (between the system and the estimator
kinetic rate models) and, in this way, keep a good
state estimation performance besides their di¤er-
ences. For this case, the averaged estimated para-
meters h�̂j (k)i are considered as an unbiased esti-
mate of the true (possibly time-varying) parame-
ters. The averaged estimated parameters h�̂j (k)i
take di¤erent shapes over time depending on the
speci�c estimator evaluated. In Fig. 6 column (b),
the averaged absolute estimated parameter errors
hjei�j (k) ji for the parameters fk̂P;1; k̂P;2; ŶSX; ŶSPg
and the EKF diverge while the UKF achieves the
best performance followed by the EnKF. It is then
reasonable to consider that the averaged estimated
parameters h�̂j (k)i that correspond to the UKF
are the best estimate of the true parameters �j (k)
for this estimator reaction rate model.

The Monte Carlo averaged performance of the es-
timators using the simpli�ed reaction rate model
is shown in Fig. 7. As for the elementary case, the
averaged estimated parameters h�̂j (k)i are con-
sidered as an unbiased estimate of the true (possi-
bly time-varying) parameters. The averaged es-

timated parameters h�̂j (k)i have similar values
for the EKF and the UKF and slightly di¤erent
for the EnKF. In Fig. 7 column (b), the low-
est averaged absolute estimated parameter errors
hjei�j (k) ji are achieved for the EKF, closely fol-
lowed by the UKF performance. For all the esti-
mators the averaged absolute estimated parameter
errors decrease over time.
The Monte Carlo averaged performance of the
estimators using the intracellular reaction rate
model is shown in Fig. 8. As for the elementary
and simpli�ed cases, the averaged estimated para-
meters h�̂j (k)i are considered as an unbiased esti-
mate of the true (possibly time-varying) parame-
ters. The averaged estimated parameters h�̂j (k)i
have similar values for the EKF and the UKF and
slightly di¤erent for the EnKF. In Fig. 8 column
(b), the averaged absolute estimated parameter
errors hjei�j (k) ji decrease over time for all the pa-
rameters and estimators, except for the estimated
parameter ŶSX with the EnKF.
In Table 7 the di¤erent reaction rate models are
evaluated for each �lter using the normalized
mean RMSE de�ned as

RMSE (x) =
Pnx

j

Pnsimul
i

2

sPnt
k (x̂j(k)�xtruej

(k))
2

nt

max(xtruej )�min(xtruej )

Tab. 7: Normalized mean RMSE for the estimated
state x and parameter � vectors .The best results for
every case is indicated by parentheses.

RMSE (:) EKF UKF EnKF
Original x 9.11E-2 9.13E-2 (8.44E-2)

� (1.22) 1.74 1.95

Elementary x 2.09E-1 1.00E-1 (9.35E-2)
� 5.57E-1 (2.73E-1) 7.54E-1

Simpli�ed x 8.36E-2 (8.05E-2) 8.77E-2
� (3.21E-1) 3.56E-1 3.28E-1

Intracellular x 8.94E-2 1.05E-1 (8.60E-2)
� (3.98E-1) 5.69E-1 4.71E-1

5 Conclusions

The recursive parameter estimation problem is an-
alyzed for an ethanol fermentation process with
di¤erent reaction rate models. The model is im-
plemented in Modelica and three nonlinear esti-
mators are evaluated using the compiled Modelica
model (Dymosim) with Matlab. Implementation
details (e.g. how to calculate Jacobians, de�ned
noise inputs, etc.) are presented.
Some relevant model parameters are estimated us-
ing the EKF, the UKF, and the EnKF from sim-
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Fig. 5: Original kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations for
the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter
estimates h�̂j(k)i for every time index k and true parameters �j (grey solid line); (b) mean absolute estimated
parameter error, hjei�j ji = hj�̂

i

j � h�̂j(k)iji for every time index k.
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Fig. 6: Elementary kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations
for the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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Fig. 7: Simpli�ed kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations for
the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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Fig. 8: Intracellular kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations
for the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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ulated data sets over 50 Monte Carlo simulations.
Four di¤erent reaction rate models are used by the
estimators while the simulated data sets are gen-
erated assuming that the original reaction rate
parameters have been estimated experimentally.
When using the original reaction rate model in
the estimator, the best parameter estimation is
achieved by the EKF with slightly poorer perfor-
mances for the UKF and the EnKF. The lower
performance of the UKF can be explained by the
lack of tunig of its parameters. For the estimator
using the elementary reaction rate model, the best
parameter estimation corresponds to the UKF,
while the EnKF has a poorer performance and the
EKF diverges for some of the parameters. For the
estimator with the simpli�ed reaction rate model
similar performances are achieved for the 3 esti-
mators; the UKF slightly outperforms the other
two. For the estimator with the intracellular re-
action rate model, the best parameter estimation
performance corresponds to the EKF.
The EnKF has a poor parameter estimation per-
formance for most of the cases but when consid-
ering the mean RMSE of the estimated states it
outperforms the other estimators for three of the
four cases (see Table 7).
The computational cost of the estimators increases
considerably from the EKF to the EnKF because
of the number of projections required for every
estimator iteration. The fermentation model is
run from a Dymosim executable �le and this slows
down the computational performance of the esti-
mators (i.e. the computational time required for
every estimator interation) mainly because Dy-
mosim uses a slow �le input/output interface. De-
spite this practical disadvantage, nonlinear esti-
mators can be evaluated with complex Modelica
models in a simple way. Our future work will focus
on the parameter identi�ability of the complete
model.
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Abstract

This paper reports on experiences from case studies in
using Modelica/Dymola models interfaced to control
and optimization software, as process models in real
time process control applications. Possible applica-
tions of the integrated models are in state- and parame-
ter estimation and nonlinear model predictive control.
It was found that this approach is clearly possible, pro-
viding many advantages over modeling in low-level
programming languages. However, some effort is re-
quired in making the Modelica models accessible to
NMPC software.
Keywords: Nonlinear Model Predictive Control, On-
line optimization, process control, offshore oil and gas
production

1 Introduction

Model Predictive Control (MPC) has becomethe ad-
vanced control strategy in the process industries [11].
MPC refers to control strategies which optimize future
performance as predicted by a process model, and im-
plement the first part of the calculated control inputs.
The optimization/implementation is repeated at regu-
lar intervals to achieve robustness through feedback.
Although linear MPC (based on linear, typically em-
pirical, process models) is prevalent, it is seen that in
many cases, MPC based on nonlinear process models
(NMPC), with models derived from first principles and
process knowledge, is advantageous or even necessary
to achieve better control performance over varying op-
erating conditions (due, for example, to varying prod-
uct specifications or large process disturbances). In
addition to the use of nonlinear process models, an-
other important aspect with NMPC based on models
from first principles, is that nonlinear state estimation
is an essential part of the control system.
NMPC has received considerable attention in
academia, especially in terms of optimization methods

[1] and requirements for stability of the resulting
closed loop [7]. However, when it comes to in-
dustrial application, use of NMPC clearly has an
unfulfilled potential, although some applications
are being reported, especially in polymerization
processes [8, 11].
One important reason for the limited practical use of
NMPC, is the substantial time and effort required for
developing, validating and maintaining nonlinear pro-
cess models that are valid over a wide operating range.
Importantly, but sometimes overlooked, these models
should at the same time be suitable for optimization,
in terms of issues such as complexity and smoothness.
An important step towards less costly model develop-
ment is the use of advanced modeling environments,
which promotes model structure, model reuse and
model maintenance through equation-oriented mod-
eling languages, object orientation and hierarchical
composition of sub-models.
Literature reveals some effort towards using advanced
process modeling environments in a practical dynam-
ical optimization setting, e.g. [9], where gPROMS are
connected to a software environment for dynamic op-
timization. However, the impression remains that this
is very much a developing area.
The use of such models is not limited to NMPC
in real-time process control settings. One can en-
vision many types of real-time model-based applica-
tions using such models, ranging from data reconcilia-
tion, estimation (states, parameters, disturbances, soft-
sensing) for monitoring and control, to advisory op-
erator support systems and finally to NMPC. One can
argue that a complete NMPC installation involves the
other applications mentioned, such that if Modelica
models can be used for NMPC, the other applications
follows naturally.
The aim of this paper is to discuss requirements, chal-
lenges, opportunities, and experiences from using an
advanced modeling environment, in particular Dy-
mola/Modelica, for developing models that are used
in model-based process control applications.
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Figure 1: Illustration of model component software structure

The paper is structured as follows: First, we give some
remarks on how we have integrated Modelica models
(developed using the Dymola tool) into the NMPC tool
CYBERNETICA CENIT (for state estimation and opti-
mization). Next, we give some comments on model-
ing and model types, and give a brief overview over
the modeling used in the case examples. In Section 4
we discuss using the Modelica models for state esti-
mation, and give briefly some results obtained using
real process data. In Section 5 we discuss optimization
in Nonlinear Model Predictive Control, and illustrates
with results from a simulation study.

2 Interfacing Modelica/Dymola mod-
els with NMPC estimation and op-
timization software

In this section, we discuss the integration of Modelica
models withCYBERNETICA CENIT, a software pack-
age for NMPC developed by Cybernetica.
The CYBERNETICA CENIT kernel consists of three
components: The NMPC optimization component, the
state estimation component, and the model compo-
nent. The components communicate (with each other
and externally) using prespecified interfaces. The two
first components are general, while the model com-
ponent of course is specific for each project. Other
CYBERNETICA CENIT modules, for example for of-
fline parameter estimation/optimization for fitting the
model to data, also exist and make use of the kernel,
but are not considered part of the kernel.
The model component includes discretization (simula-
tion of the model between sample intervals), such that
the model is discrete time as seen from the state esti-
mation and NMPC module.
Traditionally, the model component has been coded in
C. This has served the purposes well, but for a number
of reasons it is desirable to have a more user-friendly

way of implementing models, using a high-level mod-
eling language. The overall goal is to reduce the cost
of modeling, which is a significant cost factor in a
NMPC implementation project. Reasons for the cost
reduction include
• Promote reuse of models, also through building

of model libraries.
• Better overview of models, ease of implementa-

tion and modifications.
• Easier exploitation of modeling effort in other

contexts.
• Possibly easier integration of external models

(external libraries, customer models, thermody-
namics, etc.).

After an investigation of the available alternatives,
evaluated against a range of criteria including the is-
sues in the list above, it was found that Modelica was
an excellent possible choice for an alternative mod-
eling language. Moreover, the software tool Dymola
provided a good Modelica modeling environment, and
the opportunity to integrate the models in other soft-
ware, through the Dymola C-code export option.
With the C-code export, the Modelica model is avail-
able in a C-file,dsmodel.c, along with interface func-
tions. Figure 1 illustrates how this C-file can be inte-
grated to form a model component ready to use with
CYBERNETICA CENIT.
A distinct advantage of the C-code export offered
by Dymola, is that it allows compilation of the total
control system including model on any target system
equipped with an ANSI C compiler. This is in con-
trast to systems which base the interface on software
component interfaces such as CORBA, and requires (a
version of) the modeling environment to run simulta-
neously.
On the other hand, it might be conceived as a disad-
vantage that the interface is Dymola specific, and not
based on any standard.
Presently, the developed interface only allows obtain-
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ing sensitivity information by finite differences, but
with the availability of analytical Jacobian from Dy-
mola models, a natural next step, subject for current
development, is to include integration of sensitivities
in the model component. This can be an advantage
both for simulation of the model (see next section), but
perhaps more importantly, also for solving the NMPC
optimization problem (see Section 5).

3 Modeling and simulation

As mentioned in the previous section, the mod-
els developed in Modelica/Dymola must be
solved/simulated in the model component. In
this section we first give some general remarks on
modeling and simulation for NMPC, and thereafter
we briefly present the modeling that is done for the
case examples in Section 4 and 5.

3.1 Simulating the model

Using equation-based modeling environments such as
those based on Modelica, one generally ends up with
differential-algebraic equation systems (DAEs). In
Dymola, there are implemented algorithms for refor-
mulation (symbolic transformation) of the DAE sys-
tem such that it from the outside looks like an ODE
system,

ẋ(t) = f (t,x(t),u(t), p),
y(t) = g(t,x(t),u(t), p),

(1)

but where the evaluation of the right hand side in gen-
eral requires the solution of some nonlinear equation
systems. The reformulation ensures that these equa-
tion systems are as small, and hence as efficiently
solved, as possible. However, the solution is based
on iterative, local methods, such that it can in general
take many iterations to find an acceptable solution, and
worse, one is not always guaranteed to find a solution
at all. (Although for well-behaved models, one nor-
mally finds a solution in few iterations.)
Another issue is that the right hand side might be dis-
continuous in its arguments. If this is the case, the
solvers used to solve the (apparent) ODE above, must
be able to handle discontinuities. Moreover, the sys-
tem will often be stiff, calling for implicit methods
with variable step lengths.
Apart from any possible discontinuities, the above
issues (DAEs, stiffness, variable step lengths) do
not in principle imply any problems using Model-
ica/Dymola models with an NMPC tool likeCYBER-
NETICA CENIT.
Nevertheless, efficiency and robustness issues may
change the picture. Simulation in a NMPC system

involves frequent resetting of system parameters (ini-
tial states, inputs and estimated parameters), which for
DAEs in general requires online re-solving of the non-
linear equation set. For the ODEs exported by Dy-
mola, it leads to frequent re-solving of the ’hidden’
nonlinear equation sets.
If we can ensure that the model is a ’real’ ODE (with-
out nonlinear equation sets), this is avoided, resulting
in increased speed and robustness.
There are no direct help in Dymola to avoid the non-
linear equation sets leading to a DAE system, but the
reporting when translating models helps to identify
where these nonlinear equations are.
Additionally, ensuring that the model is continuous,
means that we can use more efficient solvers that do
not have to handle discontinuities.
These issues require more effort during the modeling,
and also imply that one often cannot apply other (li-
brary, customer) models directly. Nevertheless, the is-
sues are important: In our experience, it is a key aspect
of a successful implementation of a NMPC system to
find the correct balance between computational com-
plexity of the model/simulation and required model
accuracy. Required model accuracy is not easily de-
fined in general, but relates to the specific control ob-
jectives of the particular process. In this respect, more
complex models are not necessarily more accurate.
When building models from physics, one typically
ends up with stiff equation systems, which require im-
plicit solvers with variable step sizes to be solved effi-
ciently. If one chooses to exploit analytical Jacobians
in connection with optimization (see also Section 5),
this can in principle also be used in the implicit solvers
to speed up computation.

3.2 Control-relevant modeling of an offshore
oil and gas processing plant

In the North Sea (and on other continental shelfs), oil
and gas are produced by drilling wells into the ocean
bed. From the wells, a stream of typically oil, gas
and water arrive at a surface production facility which
main task is to separate the components and make oil
and gas ready for export, either through pipelines or by
ship. A schematic picture of such an offshore oil and
gas processing plant placed on an offshore platform is
given in Figure 2. In this case, we have to some ex-
tent disregarded water, to concentrate on the oil and
gas streams.
In Figure 2, we see that oil and gas enter from two dif-
ferent main sources (each main source is represented
by one oil and one gas source) into three separators
(the grey ovals). The separators are large tanks which
split oil, water and gas. The produced oil is leaving in
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the lower right corner of the figure, while the gas en-
ters a compression train from the second and third sep-
arator. The compressor train, consisting of five com-
pressors (five stages) compresses the natural gas for
re-injection or to export through a pipeline (upper right
corner). At the top, there is an additional gas import
(from another production platform) with an additional
gas compressor. Some of the gas is taken out (top left)
as fuel for on board generators.

As can be seen, this is a fairly complex system in
terms of numbers of components, however, many of
the components are of the same type (mainly separa-
tors, compressors, valves, PID controllers, in addition
to minor components such as sources, sink, splitter,
sensors, etc.), which simplifies overall modeling.

A brief description of some unit models is given be-
low:

• Separators: Separators are large tanks which due
to their construction, and the different densities
of the components, separate water, oil and gas
into different process streams. The dynamics of
the separator model is based on a mass balance
and flash calculations to calculate the split of oil
and gas. Based on the separator geometry (and
thermodynamics), water and oil levels and gas
pressure can be calculated from the component
masses.

• Compressors: The centrifugal compressor mod-
els are static models based on compressor maps
(specified by the compressor vendor) of poly-
tropic head vs. volumetric rate, parameterized in
compressor speed. The compressor maps are
interpolated to yield continuous relations. The
compressors are strongly nonlinear, that is, the
gain from compressor speed (input) to pressure
and volumetric rate are strongly dependent on op-
erating point.

• Valves: There are different valve models for liq-
uid and gas flow, both based on basic valve equa-
tions. Critical and sub-critical flow are handled.
The valve characteristics can be chosen to be ei-
ther linear or equal percentage via a drop-down
menu.

For real-time efficiency reasons, we have made an ef-
fort to ensure that we end up with an ODE model.
The main manifestation of this, is that we cannot have
more than one unit that determines flow between each
volume in the model. Therefore, we have introduced
semi-physical ’nodes’ (the grey round units in Fig-
ure 2), and tuned the volumes of these to retain good
transient response (for example, by tuning them to be
faster than the sample frequency, the exact value is not
important in terms of simulation accuracy vs. measure-

ments).
Thermodynamics are important in order to calculate
phase transitions between oil and gas. It is also essen-
tial to be able to describe the gas’ properties over a
large span in pressure. Furthermore, the model should
have real time capabilities, favoring simple/explicit re-
lations.
For phase equilibrium calculations, correlations of
k-values (as function of temperature, pressure and
molecular weight) were used together with a simpli-
fied representation of the many chemical species found
in the real process. Gas density was described by a
second-order virial equation, where the model coef-
ficients were fitted to an SRK-equation for the rel-
evant gas composition evaluated for the temperature
and pressure range of current interest.
The thermodynamic models have been implemented in
the style of the Modelica.Media library in the Model-
ica Standard Library.

4 State estimation

4.1 State estimation background

Nonlinear state-, disturbance- and parameter estima-
tion are essential for NMPC implementations, but are
also important in other settings than purely control-
related, such as monitoring and surveillance, and static
optimization/RTOs.
Estimation based on Kalman filter algorithms has be-
come tremendously widespread over the last almost 50
years. Other types of estimation algorithms also ex-
ist, but are much less used. For nonlinear state esti-
mation, Extended Kalman Filtering (EKF) algorithms
should be used. Traditionally, these are based on ana-
lytical linearizations, but over the last years, it is seen
that using divided differences (or similarly, Unscented
Kalman Filtering (UKF) approaches) in many cases
provides better performance than linearization-based
EKF.
Importantly, the perturbation schemes used in con-
nection with covariance update by divided difference-
approaches (including UKFs) obtain information be-
yond linearization. Thus, for these cases, availability
of analytical Jacobians from the model is not necessar-
ily an advantage (unless it speeds up simulation). On
the other hand, for estimation schemes based on lin-
earizations (e.g. traditional EKF), or estimation based
on numerical optimization (e.g. Moving Horizon Es-
timation (MHE)-approaches, taking inequality con-
straints into consideration), analytical Jacobians can
be exploited.
CYBERNETICA CENIT has implemented EKFs based
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Figure 2: Overview of an offshore oil and gas processing plant, as implemented in Dymola.

on divided differences (both DD1 [13] and DD2 [10],
in the notation of [10]), in addition to MHE [12]. For
further information and discussion, see also [14].

4.2 Example: State estimation of offshore
processing plant

The state and parameter estimation capabilities ofCY-
BERNETICA CENIT (extended Kalman filtering based
on finite differences in this case) was used to estimate
states and model parameters in a Modelica model of
the offshore oil and gas processing plant illustrated in
Figure 2. The Modelica model was integrated as aCY-
BERNETICA CENIT model component as explained in
Section 2. Logged data from real operation was used
in the test.
The process is fairly well instrumented (a subset of the
instrumentation is included in the Modelica model, see
Figure 2), but there is no overall reconciliation of the
individual measurements nor any overall measurement
of key figures. From the individual measurements,
most often in engineering units, it is hard to get an
overview of the state of the process. With a complete
process overview by the help of the model, it is pos-
sible to identify the current process state, being an es-

sential basis for taking the correct corrective actions
in case of abnormal incidents, and also essential as a
starting point for optimization of process operation.

The resulting ODE model of the system was fairly
stiff, with modes ranging from around 0.1 seconds to
hours, while the sampling time of the process was 1
minute. Therefore, it was absolutely necessary to use
an (implicit) ODE solver with varying step lengths. In
this case, the CVODE ODE solver1 was used, with Ja-
cobians found by finite differences. For this model,
with 38 states and 35 estimated parameters, the state
estimation ran more than 10 times faster than real time.

The state and parameter estimation was successfully
tuned and tested on data from several days of opera-
tion. An excerpt is shown in Figure 3, where the model
initially is simulated ’open loop’, and the state estima-
tion is turned on after 60 minutes. The figure demon-
strates, for a single compressor stage, how the com-
pressor parameters converge such that the estimated
variables match the measured ones.

1From the SUNDIALS package, seehttp://www.llnl.
gov/CASC/sundials/.
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Figure 3: State and parameter estimation of one of the compressor stages. Red lines are real process data, and
blue lines are estimated results.

5 Nonlinear Model Predictive Con-
trol

5.1 NMPC background

The NMPC optimization problem is a dynamic opti-
mization problem, usually discretized to have a finite
number of optimization variables (manipulated vari-
ables), that must be solved at regular (sampling) in-
stants. The first part of the optimal solution – the first
sample interval, is implemented to the process, before
the dynamic optimization problem is resolved before
the next sample instant. The optimization problem is
using updated process information from a state estima-
tion algorithm.
The optimization problem to be solved at timet, with
available state estimate ˆx(t), may look something like
this, after a piecewise constant parameterization of fu-
ture manipulated variables (u) over an horizonL:

min
u0,u1,...,uL−1

L−1

∑
k=0

F(xk+1,uk) subject to





xk+1− f (xk,uk) = 0, k = 0, . . . ,L−1,

x0 = x̂(t),
hx(xk) ≥ 0, k = 1, . . . ,L,

hu(uk) ≥ 0, k = 0, . . . ,L−1.

(2)

The discrete-time systemxk+1 = f (xk,uk) is in gen-

eral obtained by simulation of an ODE (1) over the
sample intervals. The functionshx and hu represent
constraints on states (or controlled variables) and ma-
nipulated variables.

In most cases, the (discretized) dynamic optimization
problem is solved using numerical algorithms based
on sequential quadratic programming (SQP). A SQP
method is an iterative method which at each iteration
makes a quadratic approximation to the objective func-
tion and a linear approximation to the constraints, and
solves a QP to find the search direction. Then a line-
search is performed along this search direction to find
the next iterate. General SQP solvers may be applied
to NMPC optimization, but it is in general very advan-
tageous to use tailor-made SQP algorithms for NMPC
applications.

Although a very crucial step in SQP algorithms tai-
lored for NMPC optimization is the linesearch, the
main approaches found in the literature are usually
categorized by the way they specify the QP for find-
ing the search direction. Arguably, the most common
method is thesequentialapproach [5], which at each
iteration simulate the model using the current value of
the optimization variables (u0,u1, . . . ,uL−1) to obtain
the gradient of the objective function (and possibly the
Hessian), thus effectively removing the model equal-
ity constraints and the statesx1,x2, . . . ,xL as optimiza-
tion variables. Thereafter a reduced space QP prob-
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lem is solved to find the search direction. Conversely,
in thesimultaneous[4, 2] approach, the model is im-
plemented as explicit equality constraints, meaning
that the optimization variables are bothu0,u1, . . . ,uL−1

andx1,x2, . . . ,xL. The third approach,multiple shoot-
ing [3, 6], can be viewed as a combination of the two
other approaches, where, loosely speaking, the control
horizon is divided into some ’sub-horizons’ which are
solved in a sequential fashion, and equality constraints
link the sub-horizons.

There is no general consensus as to which of the above
methods is best – probably, it is problem dependent.
Note that the two latter approaches allow closer coop-
eration between the ODE/DAE solvers and SQP opti-
mization than is revealed by the formulation (2).

A sequential approach to dynamic optimization is im-
plemented inCYBERNETICA CENIT. A central is-
sue is how to obtain the necessary sensitivity infor-
mation for solving the NMPC optimization problem.
The two main routes are either by finite differences
directly on the objective function, or by integrating
ODE/DAE sensitivities along with the model, and cal-
culate NMPC sensitivities based on this. For the latter
case, one can exploit the possibility of using analytical
Jacobians in Dymola.

Calculating the gradient by finite differences means
that many (depending on number of optimization vari-
ables) simulations over the control horizon has to be
done, which can be time-consuming. Calculating the
gradient based on sensitivity integration has the poten-
tial to be significantly more efficient, at least for some
problems.

A possible problem with forming the NMPC objec-
tive function gradient (and possibly Hessian) based on
ODE/DAE sensitivities, is that the resulting gradient
(and Hessian) is not necessarily a very good approxi-
mation to the NMPC objective function to be solved
numerically. Consider the following argument: By
using finite differences directly on the NMPC objec-
tive function (which includes solving the ODE/DAE),
we obtain a direct approximation to the gradient of the
“numerical” NMPC objective function, which is what
we are minimizing numerically. However, by com-
puting the gradient based on ODE/DAE sensitivities,
discretization errors will make the computed gradient
different from the gradient of the numerical objective
function.

Such errors may be important since one for computa-
tional complexity reasons is likely to push the accu-
racy limits for the ODE/DAE solvers.

5.2 Simulation example: NMPC of offshore
processing plant

The case used in this section is similar to the one used
in the previous section, but is based on (another) pro-
duction platform. In this case, the focus is on the
separation, and the gas compression is not modeled.
The process has five different streams of oil and gas,
that are to be separated in four separators (a separator
train). In contrast to Section 4, the water phase is now
explicitly modeled in the separators. The model was
tuned to fit data from the real process, but all results
shown in this paper are based on simulations.
The process is controlled by level controllers for water
and oil, and gas pressure controllers for each separa-
tor. This is a standard solution, which works well in
many/normal cases. However, in some cases, distur-
bances in the inlet flows from the inlet pipelines/wells
can cause problems for the control of the separators.
The levels in the separators will vary, which may cause
bad separation and may be detrimental for equipment
downstream the separators, due to uneven flow out of
the separator train. The purpose for this study is to see
if NMPC with state and disturbance estimation, using
the level controller setpoints as manipulated variables
(MVs), can exploit the buffer capacity in the separa-
tors to smooth out the outlet flows of water and oil.
The oil is in this particular case entering a distillation
column, and the water is entering a glycol regenerator,
for regeneration of glycol that is added in the process.
Smoother inflow to these units may allow more regu-
lar/increased production of the overall process.
There are six manipulated variables: The setpoints for
water and oil level controllers in the separators (two of
the separators does not separate water, and hence does
not have a water level controller). The controlled vari-
ables (CVs) are pressures, levels and valve openings
for all separators, and rate of change of glycol concen-
tration in one separator.
The resulting model, with 29 states, was not partic-
ularly stiff. Therefore, a simple forward Euler ODE
solver was used. The NMPC system, including state
and disturbance estimation based on finite differences,
and NMPC optimization with gradients found by fi-
nite differences, ran considerably faster than real time,
using a sample interval of 6 s.
Some simulation results with a disturbance, a time-
limited increased flow in one of the inflowing
pipelines, are shown in Figures 4–6. Figure 4 shows
how the NMPC reduces the level controller setpoints
in the inlet separator (resulting in increased outflow
valve openings, see Figure 6), to let the increased in-
let flow (detected by the state and disturbance estima-
tion) be smoothed out over all the separators. Figure 5
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demonstrates how the NMPC achieves smoother out-
flow from the last separator, and that the glycol frac-
tion in the water varies less.
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Figure 4: Oil and water levels in the inlet separator,
with MPC (solid) and without MPC (dashed).
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Figure 5: Glycol concentration in glycol/water mix-
ture (top) and oil flow rate (bottom) from the last
stage separator, with MPC (solid) and without MPC
(dashed).

6 Experiences with using Modelica
and Dymola for real time process
control applications

In this section, we summarize some of our experiences
with using Modelica and Dymola for process control
applications.
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Figure 6: Level controller setpoints (MVs, top) and
level and valve openings (CVs, bottom) in inlet sepa-
rator. Red line is oil, blue line is water, magenta is oil
valve opening, cyan is water valve opening.

6.1 Modelica modeling in Dymola

When it comes to modeling, Modelica and Dymola has
much to offer over implementing the models in C. Due
to the object orientation and the graphical interface it
is easy to work on details and at the same time have
an overview over the whole model. Using a tool such
as Dymola, tasks like manipulation, testing and simu-
lation of the model are convenient.
In this paper, we have used two cases from offshore oil
and gas production. We saw some advantages in terms
of reuse between these projects, but as we probably
will work more in this area, we expect to see further
advances at later stages. Using an object-oriented en-
vironment like Modelica, makes it easier to develop
unit models with more general interfaces, such that
they are easier reused. For some of the simple model
units, we could use units from the Modelica Stan-
dard Library, although in most cases, some modifica-
tions were done. By drawing inspiration from Mod-
elica.Media, we had a convenient structure for imple-
mentating the thermodynamics.
As with other equation-based modeling systems, de-
bugging models during model development is a chal-
lenge in Dymola, and tools to help model debugging
would be a benefit. However, by testing unit models
thoroughly before aggregating them, many problems
can be avoided.
When we have models with nonlinear equations sys-
tems (DAEs), we had in some cases problems with
initialization of the equation systems, and identifying
which variables that were part of the equation system.
Of course, when making sure the model was an ODE,
these problems were avoided.

L. Imsland, P. Kittilsen, T. Steinar Schei

The Modelica Association 308 Modelica 2008, March 3rd − 4th, 2008



6.2 Integration of Modelica/Dymola models
in NMPC software

Using the C-code export option of Dymola, it was
fairly straightforward to integrate the Modelica mod-
els asCYBERNETICA CENIT model components as
described in Section 2. However, some modifications
must be done to the Modelica model before it is ex-
ported, and some information, not directly available
from the exported C-code interface functions, must
currently be hand-coded into the model component.
These issues are discussed below.
A significant part of the effort in constructing the
model component based on the structure illustrated in
Figure 1, is to generate and keep up to date the ref-
erencing/indexing variables in the filemodel.c. This
information is necessary in the NMPC user interface,
for instance for tuning of the EKF and the NMPC con-
troller. This is presently coded by hand, but in the-
ory, it should be possible to auto-generate at least large
parts of this file based on the model information in the
file dsmodel.c. Another possibility might be if Dy-
mola added interface functions/functionality for this.
A NMPC system must exchange the following infor-
mation dynamically with the model (in addition to
states and state derivatives):
• Model inputs: The NMPC must (at least) be able

to set the manipulated variables (MVs), the mea-
sured disturbances (DVs) and the parameters that
are estimated by the EKF.

• Model outputs: Measured variables (for state es-
timation), and controlled variables (for NMPC).

We have (naturally) chosen to have the MVs and DVs
as Modelica inputs. For estimated parameters, there is
a choice involving some trade-offs:
• The estimated parameters could be part of the

Modelica inputs. The advantages with this is that
it is simple to manage in the model component,
and that it is possible to calculate analytical Ja-
cobians with respect to these parameters (for use
for instance in state estimation using MHE, or in
offline parameter estimation). The drawback is
that the Modelica unit models must be modified
to have these parameters as inputs, which makes
it cumbersome to use the same model both for
simulation and testing in Dymola, and as model
for generating the model component.

• We can access the estimated parameters the same
way as all other parameters2. This makes ’book-
keeping’ of the parameters in the model compo-
nent (model.c) more involved, and we cannot ex-

2Note that the estimated parameters will be constant in all sim-
ulations made, for instance over one sample interval in the EKF,
or over the control horizon in the NMPC.

ploit analytical Jacobians with respect to these
parameters. On the other hand, this choice sim-
plifies model maintenance, since we do not have
to make new models for estimating parameters.

Presently, our implementation is based on the first
choice, which in practice means we must maintain
two Modelica models with identical behavior – one
for simulation, and one for integration in the model
component. This situation is not ideal. One possibility
which might rectify the situation, is if Modelica had a
variable type that is both parameter and input, and a
kind of a ’master switch’ that switches the interpreta-
tion.
In some cases, it would be an advantage to be able
to debug the model code. Due to the structure of the
auto-generated code, this is hard.

6.3 Running Modelica/Dymola models in
NMPC software

There are some further interesting findings from the
case study in Section 5.2. We had this model imple-
mented as a model component in C before we im-
plemented it in Modelica. By using profiling tools,
we found that running NMPC with the model compo-
nent based on the Modelica model, used less than 20%
additional time compared to using the pure C model
component, where most of the difference must be at-
tributed to Modelica overhead since the models were
practically mathematically identical.
However, to get the Modelica-based model to run this
fast, we had to implement the Modelica functions used
in the Modelica-model in C. Not surprisingly, there is
considerable overhead in the implementation of Mod-
elica functions, especially related to indexing of ar-
rays. The possibility to implement Modelica functions
in C is supported by the Modelica specification, and
implemented in Dymola, and is a considerable practi-
cal advantage for real time applications.

7 Conclusions

It is possible to use Modelica/Dymola for modeling
for NMPC purposes, with many of the advantages
promised by such advanced modeling environments
fulfilled. Such environments are helpful in developing
complex process models, towards reuse of unit mod-
els, and we see potential for increased model value (by
extending the application area of the model) and easier
customer participation in model development.
However, using Modelica/Dymola models for NMPC
has some hurdles. Some effort is required to make
a Modelica simulation model ready to be used with
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NMPC software. In our experience, two main issues
are a) making Modelica model parameters accessible
to the NMPC through Modelica inputs and outputs,
and b) specifying the structure of state-, input-, output-
and parameter vectors (e.g. for NMPC and state esti-
mation tuning).
Finally, we emphasize that process models for NMPC
should be developed with the specific task in mind,
in terms of issues such as complexity, accuracy and
smoothness. In some cases, this means that the model
should be an ODE, while models from component-
based modeling languages such as Modelica naturally
translates into DAEs. It will in general require some
effort and compromises for Modelica models to trans-
late into ODEs.
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Abstract
The  formulation  of  steady-state  initialization 
problems for  fluid  systems is  a non-trivial  task.  If 
steady-state  equations  are  specified  at  the 
component level, the corresponding system of initial 
equations  at  the  system level  might  be  overdeter-
mined, if index reduction eliminates some states. On 
the other hand, steady-state equations are not suffi-
cient  to  uniquely identify  one equilibrium state  in 
the case of closed systems, so additional  equations 
are required.  The paper shows how these problems 
might be  solved in an elegant  way by formulating 
overdetermined initialization  problems, which have 
more  equations  than  unknowns  and  a  unique 
solution,  then  solving  them  using  a  least-squares 
minimization algorithm. The concept  is tested on a 
representative  test  case  using  the  OpenModelica 
compiler.

1 Introduction

The  Modelica  language  is  finding  more and  more 
applications  in  the  field  of  thermo-fluid  system 
modeling, due to the many advantages of the declar-
ative, object-oriented approach. In this context, it is 
very often the case that steady-state initialization  is 
required. 

Specifying  a  well-posed  steady  state  initialization 
problem  in  an  object-oriented  language  is  a  non-
trivial task for some fundamental reasons.  From an 
end-user point of view, the ideal situation is to select 
a  “steady-state  initialization”  option  on the system 
components,  without  worrying too much about  the 
actual internal implementation. This means that each 
component model should contain an initial equation 
section, with conditionally activated initial equations 
that  express  the  steady  state  condition  for  that 
model.  In  this  way,  initial  equations  are  specified 
locally  within  each  model.  Unfortunately,  a  well-
posed initialization  problem can only be formalized 
at the aggregate system level, i. e., on the system of 
DAEs describing the complete system. On one hand, 
index  reduction  can  lead  to  a  reduced  number  of 
states, if ideal pipes with zero pressure loss are used 
or ideal  controllers  are  employed,  so that  some of 
the locally specified initial conditions are redundant. 
On  the  other  hand,  some  model  structures  (e.  g., 
closed  systems)  may  be  such  that  the  locally 
specified steady-state conditions are not sufficient to 
completely determine the initial state. 
The  actual  type  and number  of  independent  initial 
equations  required  to  uniquely  determine  a 
consistent steady-state initialization  thus depends in 
a non-trivial way on the connection topology of the 
system.  It  is  therefore  impossible  for  the  library 
designer to write local steady-state initial  equations 
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which  are  always  good,  because  that  depends  on 
how the specific  model will  be connected  to other 
ones. Furthermore, it is exceedingly hard for the end 
user to determine the exact structure of the required 
initial  equations, because this would require a deep 
knowledge of the inner mathematical details  of the 
single  models,  and  of  the  mathematical  properties 
arising from the interconnection of the models. The 
former requirement is against the principle of encap-
sulation: one should not necessarily be aware of the 
implementation details of an object in order to use it; 
the  latter  can  be  even  more  difficult  for  large 
systems.
The  aim  of  this  paper  is  to  demonstrate  how  an 
elegant  and  user-friendly  solution  to  this  problem 
can  be  obtained  by  formulating  overdetermined 
initialization  problems,  with particular  reference  to 
fluid  systems.  No  extension  to  the  Modelica 
language is  needed.  Three  representative  examples 
will  be  presented,  then  solved  using  the  Open 
Modelica compiler and the methods presented in [1].

2 A Simple Circuit Model

The approach proposed in this paper will be demon-
strated on a small case study: the simplified model 
of a heating circuit. The system includes an accumu-
lator to pressurize the circuit, a pump, a heater (pipe 
with  prescribed  heat  flow),  a  valve and a  radiator 
(pipe with convective heat transfer to a fixed temper-
ature sink), connected in a closed loop configuration 
(Fig. 1). 

Figure 1. Flow diagram of the test case

The original model was built using components from 
the Modelica_Fluid library [2]. In order to overcome 
the  current  limitations  of  the  OpenModelica 
compiler,  the  SimpleFluid  library  has  been 
developed. The aim of this small library is to capture 
the essential  mathematical structure of fluid system 
models, while avoiding advanced language features, 
such as the semiLinear operator and the replaceable 
packages  of  the  Modelica.Media  library,  currently 
not supported by the compiler. These simpler models 
are more than adequate to demonstrate the proposed 
approach;  the  library  will  be  updated  with  more 
complex models and test cases as the OpenModelica 
compiler is improved.

2.1 Connectors

The fluid connectors of the library are similar to the 
connectors of the ThermoPower library [3]-[4]:

connector FlangeA "Type-A connector" 
 Types.Pressure p "Pressure";
 flow SI.MassFlowRate w "Mass flowrate";
 output Types.SpecificEnthalpy hAB 
    "Specific enthalpy of fluid flowing A->B";
 input Types.SpecificEnthalpy hBA 
    "Specific enthalpy of fluid flowing B->A";
end FlangeA;
connector FlangeB "Type-B connector" 
  Types.Pressure p "Pressure";
  flow SI.MassFlowRate w "Mass flowrate";
  input Types.SpecificEnthalpy hAB 
    "Specific enthalpy of fluid flowing A->B";
  output Types.SpecificEnthalpy hBA 
    "Specific enthalpy of fluid flowing B->A";
end FlangeB;

Locally  re-defined  types  are  used  in  order  to  set 
reasonable  non-zero  default  start  values  for  the 
thermodynamic properties. The reader is referred to 
[3] for details about the connector design. 
Thermal  transfer  is  described  by standard  Modeli-
ca.Thermal.HeatTransfer  connectors  and  compo-
nents.

2.2 Medium models

Medium properties  are  computed  by a  replaceable 
medium model, similar to the BaseProperties model 
of  the  Modelica.Media  standard  library.  The  base 
model  contains  the  pressure  p,  temperature  T, 
density ρ, specific enthalpy h, and specific energy u 
of the fluid,  as  well  as the partial  derivatives with 
respect  to pressure  and enthalpy which are needed 
for the mass and energy balance equations.
The test cases described in this paper use a model of 
a compressible liquid with constant specific  heat at 
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constant  pressure,  constant  compressibility  and 
constant thermal expansion coefficient.

2.3 Pump

Currently,  a trivial  pump model is  employed,  with 
prescribed  flow  rate:  this  could  represent  a  pump 
equipped  with  an  ideal  mass  flow  rate  controller. 
The prescribed flow rate is given by an input signal 
connector. The enthalpy increase due to the specific 
work added to the fluid is not taken into account, as 
it  is  negligible  compared to the heat  tranfer  in the 
heater and radiator models. 

2.4 Accumulator

Accumulators  are  usually  employed  to  pressurize 
liquid-filled circuit and accommodate the expansion 
and  contraction  of  the  fluid  due  to  the  thermal 
expansion  effect.  Typical  accumulators  are  built 
using  a  tank  partially  filled  with  air,  so  that  the 
amount  of  water  contained  depends  on  the  air 
pressure.  The  model  includes  the  three-way  T 
junction  to  the  circuit,  so  that  it  has  two  fluid 
connectors. 
A simple linear model has been used to compute the 
amount of liquid contained in the accumulator:
M=Cp ; (1)

where  C  is  the  hydraulic  capacitance;  since  the 
pressure  has  been  selected  as  a  state,  the  mass 
balance equation of the model
dM
dt

=w1−w2 , (2)

is written as

C dp
dt
=w1−w2 , (3)

w1 and w2 being the inlet and outlet mass flow rates. 
Since the flow rate of fluid going into and out of the 
accumulator is usually much smaller  than the flow 
rate  in the circuit,  trivial  energy balance  equations 
are assumed, where the specific enthalpy of the fluid 
going out  of the T junction  is  always equal  to the 
enthalpy of the incoming fluid.
The steady-state equation for this component, which 
contains a dynamic mass balance, should be
dM
dt

=0 ; (4)

given the choice of states, the initial equation in the 
model is written as:
dp
dt

=0 . (5)

2.5 Lumped volume

Mass  and  energy  storage  are  represented  by  the 
classical lumped-parameter mass and energy balance 
equations.  Pressure  and  temperature  are  used  as 
states.
M= V (6)
U=M u (7)

dM
dt

=V [d 
dp T

dp
dt

 d 
dT p

dT
dt ] (8)

dh
dt

= dh
dpT

dp
dt

c p
dT
dt

(9)

dU
dt

=M dh
dt


dM
dt

h−V dp
dt

(10)

The mass and energy balance equations
dM
dt

=w1−w2 (11)

dU
dt =w1 h1−w2h2Q (12)

are thus written  using the results  of equations (8)-
(10). Here, M and U are the mass and energy of the 
fluid contained in the model,  V is the volume,  cp is 
the specific heat at constant pressure,  h1 and  h2 are 
the  specific  enthalpies  of  the  fluid  entering  and 
exiting the volume, and  Q is the heat flow entering 
the volume. 
The steady-state equations for this component are:
dM
dt

=0 (13)

dU
dt

=0 . (14)

Given the  choice  of  states,  these  equations  can be 
more conveniently reformulated as 
dp
dt

=0 (15)

dT
dt

=0 . (16)

2.6 Pressure loss model

In order to avoid trouble with hard nonlinearities at 
this  stage,  a  simple  linear  pressure  loss  has  been 
assumed:
w=K  p , (17)
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where ∆p is the pressure drop across the component, 
w is  the  mass  flow  rate  through  it,  and  K is  a 
constant  flow  coefficient.  Future  version  of  the 
model  wil  consider  a  density-dependent,  quadratic 
pressure loss.
The energy balance  is  an isentalpic  transformation 
between the inlet and the outlet.

2.7 Valve

The  valve  model  is  similar  to  the  pressure  loss, 
except that the flow coefficient can be modulated by 
varying the valve opening input signal u from 0 to 1.
w=K u p . (18)

2.8 Pipe

Each  pipe  is  described  by  a  simple  symmetric 
lumped-parameter  model,  with  one  volume 
describing  mass  and  energy  storage,  and  two 
adjacent  pressure  loss  models  describing  the 
momentum balance.

2.9 Choice of physical parameters

The nominal operating point of the circuit assumes a 
flow rate of 1 kg/s, a thermal power of 84 kW, and a 
convective heat transfer to the environment such that 
the  temperature  of  the  radiator  is  10  K above the 
ambient  value  of  300  K,  while  the  heater  temper-
ature is 330 K. The pressure loss in the valve is 1 
bar, as well as the pressure loss in the pipes, which 
is equally divided between the two half-pressure-loss 
models.  The  hydraulic  capacitance  of  the  accumu-
lator is 3 kg/bar.

3 Initialization problems

3.1 Steady-state initialization of a closed circuit

The  components  of  the  circuit  model  have  5 
potential  state  variables:  the  pressure  and  temper-
ature  of  the  two volumes,  and the  pressure  of  the 
accumulator. 
Since the circuit is closed, the total mass of the fluid 
in the circuit  must be constant,  because there is no 
mass  flow  rate  entering  or  leaving  the  system. 
Therefore,  the  system  equations,  by  their  very 
nature, imply that

∑ j

dM j

dt
=0 (19)

where  Mj are the masses of the fluid in the compo-
nents with storage, i.e., the accumulator and the two 
pipe volumes. If one now sums the initial equations 
(4) and (13) for the accumulator and volume compo-
nents,  the  same  equation  is  obtained.  This  means 
that  the  simulation  equations  and  the  steady-state 
equations for a closed system will always be linearly 
dependent. The corresponding initialization problem 
is therefore  singular,  and has an infinite  number of 
solutions,  corresponding  to  different  amounts  of 
liquid  in  the  circuit  or,  equivalently,  to  different 
levels of pressure in the circuit. 
It is important to note that no single component has 
singular initialization equations: the singularity only 
arises at the system level. It is therefore convenient 
to leave all  the steady-state equations in the single 
components, and add one more initial equation at the 
system level, e. g. by specifying the pressure at one 
point  of  the  circuit  or,  alternatively, by specifying 
the total mass of liquid in the circuit.  This leads to 
an  overdetermined  system  of  initial  conditions, 
which  has  one  more equation  than  unknowns,  but 
now has one unique solution.

3.2 Steady-state  initialization  with  zero- 
pressure-loss flow components

Suppose that the pressure loss due to friction in the 
radiator is small, compared to other pressure losses 
in the circuit. In order to avoid highly nonlinear stiff 
equations, and to reduce the number of states in the 
system, a possible modelling option is to neglect the 
pressure loss entirely, i. e. use the equation:
 p=0 (20)

in place of equation (17) for the two pressure loss 
models of the radiator. This might be an interesting 
option for control-oriented models, where a reduced 
number of states is often sought. 
As a consequence,  the pressure  within  the radiator 
volume and the pressure within the accumulator are 
bound to be equal,  so that the resulting system has 
index 2. The index reduction  algorithm gets rid  of 
one of the two pressure states,  so that there now is 
one more redundant initial equation, compared to the 
previous  case,  even  though  the  overdetermined 
system of equation still has one unique solution. 
As  in  the  previous  case,  this  situation  does  not 
depend on equations which are local to a single sub-
model,  but  rather  depends  on  the  system-level 
structure  of  the overall  model,  due to the way the 
sub-model are connected. It is therefore very conve-
nient  if  the  user  doesn't  have  to  change  the  local 
initialization option for any sub-model, and still get 
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the unique steady-state solution for the initialization 
problem.

3.3 Steady-state  initialization  with  idealized 
controllers (inverse simulation)

So  far,  open-loop  simulation  problems  have  been 
considered, in which the three inputs corresponding 
to the three  actuators  (pump speed,  valve opening, 
burner power) are prescribed functions of time. One 
could then study a closed-loop control  problem, in 
which, e. g., the burner power is used to control the 
radiator temperature to a given set point, using a PI 
controller.  In  this  case,  one  more  steady-state 
equation  would  be needed  for  the  controller  state, 
but  this  would  not  cause  any  further  imbalance 
between  the  initial  states  and the  initial  equations. 
However, it would be necessary to tune the param-
eters of the PI controller in order to obtain a stable 
and satisfactory performance.
In some cases, one could be interested in evaluating 
the  transient  of  the  control  variable  (the  burner 
power) corresponding to some external disturbance, 
assuming  a  very  tight  control,  without  worrying 
about the actual tuning of the controller itself.  This 
kind  of  study  is  carried  out  easily  in  an  a-causal 
context, by just removing the equation which assigns 
the  prescribed  value  to  the  control  variable,  and 
adding an equation which prescribes the value of the 
controlled variable to be equal to the set point. This 
kind of approach is also know as inverse simulation 
problem  (see,  e.g.,  [5]).  The  prescribed  set-point 
must  be  smooth  enough  in  order  for  the  inverse 
simulation problem to have a well-defined solution, 
but  this  is  outside  the  scope  of  the  initialization 
problem.
In  the  specific  case  considered  in  this  paper,  one 
could prescribe the value of the radiator temperature, 
in  order  to  obtain  the  corresponding  value  of  the 
heater power input. This can be done both with the 
system described  in  Sect.  3.1,  as  well  as  with  the 
system described in Sect. 3.2.  In both cases, since 
the radiator temperature is one of the system states, 
the  connection  of the plant  model  to  the idealized 
controller will  enforce  an algebraic  constraint  on a 
differentiated variable; index reduction will have to 
be applied in order to get an index-1 DAE, and thus 
one more state will be eliminated. Once again, since 
this is a system-level issue, it would be nice not to be 
obliged  to  change  the  initialization  options  inside 
any specific sub-model of the plant, but rather keep 
the resulting overdetermined initial equation system, 
which still has one unique solution.

4 Numerical results

The three test cases described in Sect. 3 have been 
set up in the SimpleFluid library, described in Sect. 
2.  The  problems  have  then  been  solved  using  the 
OpenModelica  Compiler  (OMC) version  1.4.3  [6]. 
The current solution algorithm is summarized here:

● The  Modelica  code  is  flattened,  obtaining 
the declarations of all  variables,  parameters 
and  constants,  as  well  as  the  full  set  of 
equations and initial equations.

● Index  reduction  is  applied,  in  order  to 
obtained a reduced-order, index-1 system.

● The initialization  problem  f(z) = 0 is built, 
by adding the initial  equations to the set of 
index-1 DAEs of the system;  z is the vector 
including  the  algebraic  variables,  the  state 
variables, and the state derivatives, while f is 
the  vector  of  the  residual  functions.  Note 
that, in general, dim(f) ≥ dim(z).

● The initialization problem is then solved by 
minimizing the norm of the residual  vector 
F  z =∑ j f j

2 z , by using the Sequential 
Quadratic  Programming  optimization  code 
described  in  [7];  the  start  values  of  all 
variables are used as an initial guess for the 
iterative  algorithm.  If  the  initialization 
problem has  one solution,  the  minimum is 
unique and characterized by a zero residual.

OMC successfully solves all  the three initialization 
problems  described  in  Sect.  3,  finding  the  corre-
sponding initial steady state, provided that:

● all  the thermodynamic variables  (pressures, 
temperature,  densities)  are  given  a 
meaningful,  non-zero  start  value  –  this  is 
accomplished  by extending the standard  SI 
unit  types  with  suitable  default  start 
attributes within SimpleFluid;

● the  pressure  and  temperature  states  of  the 
volumes and of the accumulator are given a 
start  value close enough to the steady-state 
value.

Unfortunately,  convergence  of  the  initialization 
problem  seems  to  be  rather  sensitive  to  the  start 
values  of  the  temperatures  in  the  volumes:  a  start 
value  of  300  K  instead  of  330  K  for  the  heater 
volume is enough to make the algorithm fail. 
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5 Improvements and future work

Several  improvement  actions  are  proposed  in  this 
section,  which will  be  tested  in  future  versions  of 
OMC.
First  of  all,  the  size  of  the  optimization  problem 
corresponding  to  the  initialization  problem can  be 
roughly halved by just removing alias variables from 
the  flattened  model.  Although  this  sounds  like  a 
trivial operation, care must be exercised in order to 
avoid getting rid of user-defined start values, which 
might have been applied to only one of the variables 
in the alias set. For this purpose, it might be useful 
to define a suitable priority indicator for start value 
modifiers,  and  select  the  alias  variable  with  the 
highest priority start value in the set.
In order to further reduce the size of the optimization 
task, BLT partitioning of the initialization equation 
set could be performed, in order to split the original 
problem into smaller problems, to be solved sequen-
tially.  As the incidence matrix has more rows than 
columns,  one  has  more  degrees  of  freedom  in 
selecting  the  row/column  permutation  than  it  is 
possible in the standard square problem. This is an 
open  topic  for  further  research.  Tearing  methods 
could also be very beneficial in this context.
Better  scaling  must  be  ensured  to  improve  the 
robustness of the minimization algorithm. Currently, 
the  state  and  algebraic  variables  z of  the  initial-
ization problem, and the equation residuals  f(z) are 
directly  used  in  the  optimization  problem.  Some 
equations and some variables  thus have a predomi-
nating influence on the optimization problem, due to 
bad scaling. For example, in the test case discussed 
in this  paper, the mass flow rates have an order of 
magnitude of 1, while the pressures are around 106; 
the mass balance equations have residuals (i.e., flow 
rates)  of  the  order  of  1,  while  the  energy balance 
equations might easily give residuals (i.e. powers) of 
the order of 105. This might explain the failure of the 
initialization algorithm even for small changes in the 
start  values  of  the temperatures,  since  they mainly 
affect  the  energy  balances,  which  have  a  larger 
influence  on  the  residual  norm  than  the  mass 
balances. 
To  improve  this  situation,  the  algebraic  and  state 
variables  might  be  normalized  with  their  nominal 
values;  the  state  derivatives  might  be  normalized 
with the nominal values of the corresponding states, 
assuming a typical  time scale  of 1 second.  On the 
equation  side,  residuals  could  be  normalized  with 
scale  factors  obtained by a Monte Carlo approach: 
these could be estimated by computing the residuals 

with random small  variations  of the corresponding 
values around their start values.
Convergence of the minimization algorithm might be 
improved by introducing penalty functions which are 
added to the objective function  when the unknown 
variables gets out of their min-max interval. In fact, 
confidence intervals for the initial value are usually 
known,  which  are  much  narrower  than  min-max 
values  during  simulation  −  new  minStart  and 
maxStart attributes  for Real types could be defined 
in  Modelica,  in  order  to  specify  the  range  during 
initialization.
Finally, homotopy methods might be considered  in 
order to improve the robustness of the convergence 
for not too accurate choices of the start values.
In order to be able to evaluate the impact of all these 
actions,  it  is  important  to  be  able  to  monitor  the 
progress  of  the  iterative  minimization  algorithm, 
step  by  step.  Improved  diagnostic  features  (e.g., 
logging of iteration variable values) should then be 
implemented  in  OMC, which could  also  be  useful 
for  the  diagnostics  of  the  nonlinear  solvers  during 
simulation.
As the robustness of the initialization algorithm and 
the diagnostic  capabilities  are  improved, it  will  be 
possible to increase the complexity of the test cases, 
first  by  introducing  density-dependent,  quadratic 
pressure  losses  in flow models,  and then by trying 
more  complex  systems  with  larger  numbers  of 
equations and states.

6 Conclusions

Steady-state initialization problems for fluid systems 
are often naturally specified  in terms of overdeter-
mined  systems  of  initial  equations,  having  more 
equations  than  unknowns,  but  possessing  just  one 
unique solution. These problems can be solved using 
minimization  algorithms.  The  paper  motivates  the 
need  of  such  problems with  reference  to  a  simple 
test  case,  and  presents  results  obtained  with  the 
OpenModelica compiler. Suggestions to improve the 
robustness  of  the  OpenModelica  solver  are  also 
given. The Modelica source code of all the test cases 
is  available  from  the  authors;  contributions  to 
improve  the  algorithms  within  the  OpenModelica 
Compiler are welcome.
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Abstract 

Modelica is a modern language used to model 
physical systems. The language is object-oriented, 
non-causal1 and the models are mathematically 
described by differential algebraic equations. The 
characteristic of modelica language make it very 
suited to define model libraries with reusable 
components, model complex applications involving 
parts from several application domains, and many 
more useful facilities. 

InteDrive library was created for simulating 
automotive driving performance, fuel consumption 
and emissions. The library is yet under developed by 
Huazhong University of Science and Technology in 
modelica language. The aim of the library is to 
provide the user with an easy to use and highly 
replaceable set of vehicle component models, and 
predict the vehicle performance, especially fuel 
consumption for a given cycle. 

The main components of this library and their 
applications are introduced in this paper. The 
simulation was carried out by MWorks, which is a 
general modeling and simulation platform developed 
by Huazhong University of Science and Technology. 
The simulation results were compared with 
ADVISOR. The easy and fast modeling process 
shows that modelica is very useful for the modeling 
and simulation of vehicles. 
Keywords: InteDrive library; Simulation; Modelica; 

MWorks 

1 Introduction 

Automotive manufacturers have been striving for 
decades to produce vehicles which satisfy customers’ 
requirements at minimum cost. Many of their 
concerns are on fuel economy, road performance and 
driveability. Improving fuel economy is both a 
political concern of alleviating dependency on 
foreign fuel and a customer preference of reducing 
vehicle operating cost. Consumers also expect 
vehicles to provide satisfactory performance with 
desirable driving comfort. So it is very necessary to 

predict the vehicle performance when the vehicle is 
design. 

There have been a lot of program tools to predict 
vehicle performance, for example, cruise by AVL, 
ADVISOR, PSAT, etc. However, these tools are 
block-oriented and demand a huge amount of manual 
rewriting to get the equations into explicit form. 
Hence, these tools are less extensible, and hard to 
reuse. It brings too much inconvenience to the user. 

Modelica is an object-oriented language for 
modeling of large and heterogeneous physical 
systems. The language is object-oriented, 
non-causal1 and the models are mathematically 
described by differential algebraic equations. These 
characteristics make it fast in modeling and easy to 
reuse modeling knowledge[1]. Modelica has been 
used to model various kinds of systems and proved 
to have superiority over traditional tools in modeling 
efficiency, especially over Matlab/Simulink. 

InteDrive library was developed in modelica 
language to predict automotive driving performance, 
especially for fuel consumption. The aim of the 
library is to provide the user with an easy to use and 
highly replaceable set of vehicle component models. 

MWorks is under developed by Huazhong 
University of Science and Technology. It is a general 
modeling and simulation platform for complex 
engineering systems which supports visual modeling, 
automatically translating and solving, as well as 
convenient postprocessing. The current version is 
based on Modelica 2.1 and implements almost all the 
syntax and semantics of Modelica. 

A vehicle model was built with InteDrive library, 
and the simulation was carried out with MWorks. 
The simulation results are compared with ADVISOR, 
and show the correctness of the model. 

2 Components 

The InteDrive library contains some components 
of a conventional vehicle, such as engine, clutch, 
gearbox, etc. The modeling process have referred the 
paper[2-4]. The present structure of InteDrive can be 
viewed in Fig.1.  
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Fig.1 The structure of the InteDrive 

 
The components of the InteDrive library are 

described as below. 

2.1 Vehicles 

The vehicle is one of the main objects in a model. 
This component contains general data of the vehicle, 
such as nominal dimensions and weights. The library 
presents only dynamic models for the longitudinal 
motion of the vehicle. So a sliding mass may 
represent as vehicle body. The model will be 
developed in the future for considering the load 
transfer to the rear or front axle when the vehicle is 
accelerating or braking. 

2.2 DriveCycles 

The drive cycle is the vehicle speed trace versus 
time. It is very useful for the evaluation of fuel 
economy and emissions. When the simulation was 
carried out, the vehicle speed must follow the speed 
profile to calculate the fuel consumption and 
emissions. This package includes tables for several 
driving cycles. At present, it contains the NEDC, 
UDDS, NYCC, HWFET and some standard driving 
cycles. Any other cycle can be added easily if 
desired. 

Interpolation to the cycle table was used to get the 
vehicle speed when the simulation was carried out. 

2.3 Clutches 

The clutch contains the model of a friction clutch 
as used in cars with manual gear boxes. It is 
controlled by the driver via the clutch pedal position. 
In this paper, we adopt the clutch model in modelica 
standard library, and made some modification for 
simplification. The maximum normal force was 
changed to maximum transferable torque. So the 
parameters of the clutch may be acquired more 
easily. 

2.4 Brakes 

This is described by braking data and dimensions. 
By the implementation of a specific braking factor it 
is possible to model disc brakes as well as different 
forms of drum brakes. In this paper, a brake model in 
modelica standard library was adopted. 

2.5 Gears 

This package contains the gears in a vehicle, such 
as gear box, differential, final drive, etc.  

The engine torque is turned into a power take-off 
torque by considering the transmission, the mass 
moments of inertia, the moment of loss. The 
modeling of gear box can be referred to the 
paper[3-5]. 

2.6 Engines 

The component engine contains a model for a 
combustion engine. The engine was modeled by a 
structure of characteristic curves and maps. As the 
characteristic curves for the full load, the fuel 
consumption and others can be freely defined by the 
user. It is possible to define a gasoline engine as well 
as a diesel engine. Interpolation to the fuel map was 
used to get the fuel consumption. The emission can 
be calculated also if the emission map was defined. 

2.7 Wheels 

The wheels and tires link the vehicle to the road. 
In this paper, a block called IdealGearR2T in 
modelica standard library was used to model the 
wheel. It converts the rotational motion to 
translational motion. A force acted on the wheel to 
model the rolling resistance. 

2.8 Controls 

The vehicle is controlled to make the vehicle 
speed follow the driving cycle profiles. The controls 
include throttle control, brake control, gearbox 
control, clutch control and so on. 

The throttle and the brake are controlled by PI 
controllers. The input to the PI controller was the 
error of vehicle speed acquired by simulation and the 
speed requested by the driving cycle. If the vehicle 
speed exceeds the reference speed, the driver 
controls the brake to let the vehicle slow down. If the 
vehicle speed is lower than the reference speed, the 
driver controls the throttle to let the vehicle 
accelerate. The PI parameters were tuned to control 
the vehicle properly. 

The gearbox controller shifts the gears according 
to the vehicle speed. It is necessary to define the up- 
and downshifting velocities always only for one gear 
less than are available in the gear box (i.e. for a five 
step gear box, only for four gears the up- and 
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downshifting velocities have to be defined). As can 
be seen in figure 2, the upshifting velocity of the 2nd 
gear means that at this velocity the gear box control 
is upshifting from the 2nd into the 3rd gear. The 
downshifting velocity for the 2nd gear means that at 
this velocity the gear box control is downshifting 
from the 3rd into the 2nd gear.  

 
Fig. 2 Shift strategy by vehicle speed 

 
The clutch control determines whether the clutch 

should be fully engaged, fully disengaged in this 
paper. The state of the clutch depends on the 
requirements of the drivetrain. 

If the gear is changing, for an upshift or downshift, 
the clutch is disengaged. If no (positive) torque is 
required of the engine and or the speed required of 
the engine is less than its idle speed then the clutch is 
disengaged. Otherwise, the clutch is engaged. 

2.9 AirDrags 

This component models the air resistance force act 
on the vehicle. Usually, the aero dynamic resistance 
force is approximated by simplifying the vehicle to 
be a prismatic body with a frontal area fA . The 
force caused by stagnation pressure is multiplied by 
aerodynamic drag coefficient  that models the 
actual flow conditions. 

dc

2
a a f d

1F A c v
2
ρ=  

Here,  is the vehicle speed and v aρ  is the 
density of the air. The parameter  must be 
estimated using CFD programs or experiment in 
wind tunnels. 

dc

3 MWorks 

MWorks is a general modeling and simulation 
platform for complex engineering systems which 
supports visual modeling, automatically translating 
and solving, as well as convenient postprocessing. It 

is under constant developing by Huazhong 
University of Science and Technology. The current 
version is based on Modelica 2.1 and implements 
almost all the syntax and semantics of Modelica. 

MWorks has features as follows: 
a. With modern integrated development 

environment styles, it provides friendly user 
interfaces  such as syntax high-lighting, code 
assist etc.; 

b. Based on object-oriented compiler framework, it 
perfectly supports almost all the syntax and 
semantics of Modelica; 

Using self-adapting solving strategies, it can 
agilely solve differential equations, algebraic 
equations and discrete equations. 

MWorks Studio is a visual modeling environment 
which supports drag-drop modeling based on 
Modelica Standard Library. It is also an integrated 
development environment integrating with translator, 
optimizer, solver and postprocessor.  

As a developing tool, this studio provides many 
modern IDE styles to promote the users’ 
conveniences just as Eclipse or Microsoft Visual 
Studio does, such as real-time syntax highlighting, 
content assist, code formatting, outlining etc. 

The snapshot of MWorks Studio is shown as 
Figure 3. 

1 2 3 4 5 

Vehicle speed (m/s) 

Library
Viewer

Model
Viewer

Edit 
Area 

Property
Table 

Message 
Area 

Fig. 3 Snapshot of MWorks Studio 

 
The library viewer illustrates all predefined 

system libraries, all loaded user libraries and other 
top models in the memory. The model viewer shows 
all components of the current model. The edit area is 
visual modeling, text modeling, icon-editing or 
information area, and the status is chosen by tag. The 
property table displays all properties of selected 
element in the model, and the properties can be 
edited here. The message area displays all messages 
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in the checking, translating, or simulating, including 
status and error messages. The error can 
automatically be located by double clicking error 
message. 

The auxiliary functions of real-time syntax 
highlighting, content assist, code formatting and 
outlining are provided in the text modeling status. 

The solver of MWorks includes two primary 
modules: collection of algorithms and console of 
solving strategies. Solver provides different basic 
algorithm alternatives for users to select appropriate 
one. Now, a series of algorithms for different kinds 
of equations have been collected in the solver, such 
as SUNDIALS. 

More details about MWorks can be referred to 
paper [6]. 

4 Simulation 

 A complete conventional vehicle was built by drag 
components from InteDrive library. The vehicle model 
can be seen in figure 4. The vehicle was modeled by a 
forward-facing approach include the driver model, 
which controls the throttle, brake, clutch, gearbox to 
make the vehicle speed follow a given driving cycle. 
 

Fig. 4 Vehicle model 
The key parameters for the vehicle simulation are 

listed in Table 1. 
Table 1 Key parameters of the vehicle 
Components Key Parameters 
Engine Maximum power: 41kW@5700rpm 

Maximum torque: 81Nm@3477r/min
Final Drive 3.77 
Transmission 3.5676/2.008/1.3289/1.0/0.7525 
Vehicle Mass 1000Kg 
Wheel Radius 0.282m 
Rolling 
Resistance 

0.09 

Wheelbase 2.6m 
Frontal Area 2m2 

Coefficient of 
Air Drag 

0.335 

The other parameters can be referred to 
ADVISOR2002, with the vehicle config file called 
CONVENTIONAL_default_in. The simulation 
works was carried out with MWorks. 

The vehicle is driven with the UDDS driving 
cycle and the actual vehicle speed is given in figure 5. 
The total distance of the UDDS was 11.991 km. The 
difference between desired speed from the UDDS 
driving cycle and the actual speed is shown in figure 
6. It seems the vehicle has been controlled as desired. 
The signal from the gear box can be seen in figure 7. 
The fuel information was shown in figure 8. The fuel 
use was 0.69 liter at the end of the cycle. So if the 
vehicle drives a distance with 100 kilometers, the 
fuel consumption was 100/11.991*0.69=5.75 liter. 
The result of ADVISOR is 5.9 liter. It shows the 
correctness of our models.  

Fig. 5 Actual speed for the reference car during the UDDS 
driving cycle. X-axis shows time [s], y-axis vehicle 
velocity [m/s]. 
 

 
Fig.6 Difference between UDDS speed and actual vehicle 
speed during the simulation. X-axis shows time [s] and 
y-axis shows velocity [m/s]. 
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5 Conclusions 

In this paper, a library for modeling of simulation  
automotive fuel consumption is introduced. It uses 
the interfaces from the Modelica and 
ModelicaAddtions packages to be compatible with 
other libraries. The easy and fast modeling process 
shows the superiority of modelica language in 
modeling. 

InteDrive provides various vehicle component 
models to simplify for the user to build the vehicle 
model according to their needs. The modular 
structure of the model design allows to take 
advantage of the Modelica language. 

6 Future work 

The library is under constant development. The 
models in the library will be modified with more 
detailed description. Much more models such as 
viscous-clutch, torque converter, CVT, and so on will 
be developed. Much more components with 
electrical modules will be developed, and the library 
is aimed to model conventional vehicles and electric 
vehicle. 
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Abstract

This paper describes how a vehicle model from the
VehicleDynamics Library is configured, parameterised
and validated for predicting limit handling manoeu-
vres. Particular attention is paid to the selection of sub-
system models with suitable levels of detail, as well as
the selection of measurements performed and measur-
ing equipment. A strong principle running throughout
the presented work is component-based design where
parameterisation is performed on subsystem levels, no
tuning on the final vehicle models is done. As a final
test, the vehicle model is exposed to a sinusoidal steer-
ing input. It turns out that the model is able to repro-
duce the vehicle’s behaviour for the driving scenario
selected up to the limit of adhesion.
Keywords: Vehicle Dynamics, Component-Based
Modelling, Limit Handling, Validation

1 Introduction

Safety plays a prominent part in the development
of vehicles. A large portion of the development is
devoted to vehicle stability and the control task to
maintain stability even under severe driving situations.
Here, multi-body modelling becomes a powerful tool
to preserve competitiveness and keep the development
time within the given timescale. One reason for this
strength is the ability to offer an improved understand-
ing of the vehicle and also to support the ranking of
its’ design variables without any access to the physi-

cal vehicle [1]. Moreover, the development of vehicle
control is facilitated if the vehicle plant pose an ade-
quate response.
Driving conditions such as strong side motion of a ve-
hicle are often considered to be unsafe, since the driver
risks losing control of the vehicle. Such potentially
dangerous situations need to be identified, and accord-
ingly, there is a great deal of interest in reproducing
this class of scenarios. However, the combination of
fast transients and high accelerations triggers strong
non-linear vehicle characteristics, which in turn make
great demands on the model used. One example of
this manoeuvre is the single lane change [2]. An ex-
ample of such a limit-handling manoeuvre is given in
Figure 1.

Figure 1: Simulation of the vehicle model undertaking
a severe lane change maneuver. The arrows visualize
the forces generated in the tyre contact patch.

A fundamental requirement when considering simula-
tion as an alternative to real-life testing is validity. A
model must not just be valid in the sense that it cap-
tures the results of already tested scenarios and pa-
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Figure 2: Diagram view of the chassis model layout
with body, suspensions and wheels. The component
above the body keeps track of the vehicle motion and
handles initialisation.

rameterisations. It must especially be able to predict
the effects of new scenarios, parameters and configu-
rations, and therefore, the aim of this work is to show
that by having valid subsystem and component mod-
els, the resulting vehicle model shall also be valid.
This paper will demonstrate how a vehicle model
from the VehicleDynamics Library (VDL) [3] is put
together from parameterised subsystems and verified
against limit handling measurements. Special atten-
tion is given to choice and configuration of vehicle
model, and parameterisation of subsystems, especially
suspension characteristics.

2 Vehicle Model Configuration

The test vehicle is equipped with front McPherson
and rear multi-link suspensions. The chassis model
is implemented as a multi-body model in VDL with a
rigid body onto which the suspensions and wheels are
mounted as illustrated in Figure 2.
For the suspensions, there are two main approaches
to modelling the kinematics and compliance charac-
teristics, respectively. The kinematics can either be
specified by the hard point locations of the links or as
tabular characteristics depending on wheel travel (and
steering for the front suspension). Compliance is ei-
ther given by the individual characteristics of the elas-
tic elements or as a lumped characteristics of the whole
suspension. The required tabular characteristics and
lumped elasticities can be generated from kinematics
and compliance (K&C) analysis.

wheel travel

compliance

Figure 3: Animation view of the left front suspension
linkage with the 7 DOF indicated.

In this application, suspension is modelled as ideal
kinematic multi-body linkages with one degree-of-
freedom (DOF) for wheel travel. The compliances
that are caused by bushings and material deflection is
lumped in one element between the wheel carrier and
the hub. This approach is similar to what has been used
in e.g. [4] and is illustrated in Figure 3.
The compliance adds 6 DOF for each suspension link-
age, with wheel travel totally 7 DOF. Together with
the front steering compliance there is a total of 7x4+1
DOF with 2 states each for position and velocity, i.e.
58 states for the suspensions.
The wheel models use the Pajeka’02 tyre force model
in VDL, implemented according to [5]. This represen-
tation was chosen because it is considered to be state
of the art and because there were available tyre data in
this format. The tyre force model has two states for
lateral and longitudinal relaxation lengths (first order
dynamics). Together with the wheel’s spin DOF, there
are therefore 4 states per wheel and additionally, there
are 6 degrees of freedom (12 states) for the vehicle’s
body motion, giving in total 58+4x4+12=86 states for
the chassis model.

3 Suspension parameterisation and
verification

As already mentioned, the model used contains both
component parameters and lumped characteristics.
Most parameters are taken from construction data such
as geometries, masses and inertias, but some are cal-
culated from measurements on isolated subsystems.
Here, this is illustrated for the suspension compliance
characteristics.
The kinematics and the compliance of the front and
rear suspension have been measured in a dedicated rig
where the car body is fixed and a post is mounted on
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Figure 4: Virtual version of the test rig used for kine-
matics and compliance analysis. The chassis body is
kept fixed and one actuator at each hub applies forces
while the motion is registered using cameras. The
spheres indicate centre of gravity and payloads.

each wheel hub (Figure 4). Using this post, forces
and torques can be applied to replicate different driv-
ing scenarios. In this case, forces have been applied
in the lateral (êy), longitudinal (êx), and vertical (êz)
directions, both at the wheel’s centre (C) and at the es-
timated tyre-road contact point (W ). For every load
case, the rotations ( p̄) and translations (r̄) of the hub
are measured.
For a force applied anywhere other than at the hub,
there is both a resulting torque (t̄) and a force ( f̄ ) at
the hub so by comparing two equal forces applied at
different locations, the torque dependency can be cal-
culated, and thus

(
f̄
t̄

)

︸ ︷︷ ︸
F̄

→
(

r̄
p̄

)

︸ ︷︷ ︸
∆̄

. (1)

Assuming that the dependency is linear, equation 1
can be rewritten as ∆̄ = CF̄ where C is a 6x6 compli-
ance matrix and C−1 the corresponding stiffness ma-
trix, which is required for the compliance element.
As described in Section 2, there are 7 degrees of free-
dom for each suspension, 6 from lumped compliance
element and 1 from wheel travel. Unfortunately, from
a numerical point of view, it is hard to separate these
dependencies since springs in a car are a factor >100
more compliant than the contribution from the com-
pliance element. However, since the deflection in
the compliance element is small in comparison with
the total wheel travel, it is assumed that the accuracy
requirement of the z-deflection from the compliance
component is low. By keeping the vertical position
of the measured hub fixed while forcing the opposite
wheel hub to move, a force ( f ′z) is implied through the
stabiliser linkage. This affected the measured hub (∆̄′)
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Figure 5: Suspension characteristics showing left and
right side measurements (blue,green) and simulation
(red). Longitudinal, lateral, camber and toe motions
on the plot’s x-axes and wheel travel on the y-axes.

so that a new column could be calculated from ∆̄′/ f ′z .
This column is used as a replacement in C and the orig-
inal column is used to define the spring rates. Corre-
spondingly, the linear compliance of the steering sys-
tem is also extracted from these measurements.
With C calculated for each suspension linkage, the
wheel travel tests performed in the K&C rig are car-
ried out virtually with VDL to verify the behaviour of
the suspension models. Figure 5 shows a comparison
between the K&C measurement and the corresponding
simulation for different wheel travel from.
Since it is a well-known fact that hydraulic dampers
may deviate from the specification, all four dampers
were disassembled and measured in a damper rig.
The non-linear force-velocity characteristics retrieved
from the damper measurements were used for pur-
pose of modelling. This was carried out by linearising
the characteristics piecewise for the compression and
expansion phases respectively. One complicating as-
pect is the ability of the rear dampers to adapt to load
changes. In brief, this can be explained as a preload
in parallel with the damper that adapts slowly to the
vehicle’s load and the driving conditions.

4 Validation of the vehicle model

As already mentioned, limit handling involves both
fast transients and highly non-linear characteristics. To
create a validation in such circumstances, it is suf-
ficient to measure the state-trajectory of the vehicle
body. However, even if the response from the sim-
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ulations coincides with the measured trajectory, little
information can be retrieved about the correctness of
the subsystem models used.
In order to identify and improve the modelling and
parameterisation of these subsystems, it is advisable
to extend the handling measurements to include even
more mechanical phenomena. Obviously, since the
tyre forces contribute substantially to the vehicle mo-
tion, added to which they are well-known to be hard
to model, they become an important source to be mon-
itored. In addition, at limit handling the vehicle exe-
cutes large roll or/and pitch motions, and as a conse-
quence, the suspension deflections become large. For
large deflections, there is a significant alteration in
toe and camber as illustrated in Figure 5, which in
turn influences the tyre forces. Moreover, the compli-
ance characteristics changes during the deflection. The
most obvious situation is the entrance of the bump stop
for large suspension compressions. For these particu-
lar reasons, the supervision of the deflection of all four
corners becomes a viable option.

4.1 Instrumentation selection

Keeping the information discussed above in mind,
the vehicle was equipped with a gyro-platform, four
torque measuring wheels and sensors for deflection of
all four corners. The gyro-platform measures the rota-
tions (roll, pitch and yaw speeds) and accelerations (in
x, y and z axes) of the car body. As illustrated in Fig-
ure 6d, the gyro-platform was mounted between the
front seats. The standard wheels were replaced by the
torque measuring wheels, which are able to measure
tyre forces and wheel torques in and around x, y and z
axes. This is possible due to strain gauges positioned
at the rim. The suspension deflection instrumentation
comprises levelling sensors, which measure the dis-
tance between the wheel hubs and car body.
In addition, signals from Controller Area Network
(CAN) were logged in order to monitor wheel speeds
and the states of the engine, brakes, gears and Haldex
differential. All signals (approximately 90) were col-
lected and sampled at 50 ms in a computer. Finally,
a steering robot was mounted to support for steering
input at a high level of accuracy and repeatability. Fig-
ure 6 illustrates the measurement setup of the vehicle.
One important issue was to judge and assign a span
for the accuracy of these measurements. Another chal-
lenge related to the large amount of redundant data re-
trieved from the vehicle instrumentation. One example
of this redundant data relates to vehicle speed, which
can be taken from wheel speed sensors (from CAN)

and also via the gyro-platform. To select the best data,
information from sensors was compared, and later on,
consolidated or arbitrated. In addition to this, the ve-
hicle’s corner weight and ride height were measured
manually.

4.2 Driving scenarios

The driving scenarios were selected with two purposes
in mind; reference and validation. To meet the first
requirement, tests were carried out under conditions
that allowed the measuring equipment to be tested as
independently of the vehicle where possible. Typical
examples are to expose the vehicle to constant condi-
tions such as gradients in different directions.
Tests to measure the vehicle behaviour during steady-
state manoeuvres were performed with both purposes
in mind, and included, braking and acceleration to ver-
ify longitudinal load transfer and the resulting pitch of
the body. Also steady-state cornering was executed
by driving with a constant radius of 45 metres, while
gradually increasing the vehicle speed up to the max-
imum achievable lateral acceleration. Thus body roll
and tyre normal load distribution could be validated.
The handling manoeuvres used solely for validation,
were selected to cover as much of the dynamics of the
vehicle as possible up to its limits. This group of tests
were conducted to force the vehicle into transient mo-
tions:

• Step steer using the steering robot

• Single lane change, sinusoidal steering input
from the steering robot

• J-turn and simultaneous relief of the gas pedal
(oversteer situation)

• Double lane change with a driver

Finally, the test procedure above was repeated under
conditions where roll and yaw stability control were
deactivated, in the test data presented in this report.

4.3 Validation results

Validations was finally achived on the most extreme
manoeuvres which is illustrated here by a single lane
change test with all active safety systems turned off.
The vehicle response, both measured and simulated,
is shown in Figure 7. The amplitude and the vehicle
speed are set to reach the limit of available grip to trig-
ger most non-linear characteristics. From the slight
bouncing in the roll angle it can be seen that the bump

J. Andreasson, M. Jonasson

The Modelica Association 330 Modelica 2008, March 3rd − 4th, 2008



Figure 6: The tested vehicle equipped with a) wheel travel sensors, b) steering robot, c) measuring wheels and
d) gyro platform

stops in the suspensions are activated which also gives
the same effect on lateral acceleration. It can also bee
seen that the side slip angles follow each other closely
throughout just over half of the manoeuvre when they
start to diverge. During the first half, the two simula-
tions (red and green) are practically the same for all ve-
hicle states while later on, the red and green are closer.
At the time when the severe single-sine tests were car-
ried out, the proving ground was slightly moist, as ap-
pose to the rest of the testing period when the ground
was dry. A qualified guess is that µ was slightly lower
when these manoeuvres were performed, which is also
supported by the fact that the simulation with µ gives a
behaviour closer to that measured. Another interesting
aspect is the fundamentally different results for µ = 1
and µ = 0.95. While the first simulation shows a ve-
hicle that slowly recovers low side slip, the latter one
continues to spin out and never recovers. During this
type of severe maneuvers, even very slight changes to
the surrounding conditions can have a great impact on
handling behaviour.
Another effect that is of particular importance during
manoeuvres where a bump stop is involved is the ride
height. The sudden change in load transfer can give
completely different results, as illustrated in Figure 8,
showing the effect of a change in ride height. The
red curve shows the lateral acceleration for the setup
with the measured ride height and is the same as the
red curve in Figure 7. The green curve shows the
same setup, but with the default ride height taken from
construction parameters. The default ride height was
higher in the front and lower at the rear, compared to
the measured ride height. As a result, the default set-
tings gives a later bump stop activation and thereby
slower turn-in and more roll motion.
The influence on the suspension elasticity on the vehi-

Lateral acceleration
default ride height
measured ride height

delay

Figure 8: Lateral acceleration for two different ride
height settings, the phase delay is 0.18s.

cle characteristics is well-known and provides an im-
portant means to tune a vehicle’s characteristics. This
effect is also seen in many of the manoeuvres inves-
tigated. However, for the limit manoeuvre presented
in in Figure 7, changes in compliance have less effect
on the results. As an example, a change of the rear
compliance by a factor of 10 only gives very slight
changes to the trajectory. This is expected to be due to
the high amplitude which makes the front tyres reach
their saturation limit almost immediately, thereby the
load transfer has a significantly higher effect on the
generated lateral force compared to changes in wheel
angles [6].

5 Conclusions

This paper has presented a methodology for validation
of a vehicle model, which is to be used in a broad range
of driving scenarios. A suitable approach for the se-
lection of wheel suspension parameters has been pre-
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Lateral acceleration Yaw rate

Side - slip angle Roll angle

measurements
simulation, µ=1.0
simulation, µ=0.95

Figure 7: Response of open loop sine excitation (single lane change) at 80 km/h, measurements (blue) and
simulations with µ = 1 (green) and µ = 0.95 (red). Lateral acceleration (upper left), yaw rate (upper right),
side slip angle (lower left) and roll angle (lower right).

sented. In addition, the wheel suspension models have
been validated through measurement in a chassis rig.
A strong principle throughout the presented work is
component-based design where parameterisations are
done on sub-system levels and no tuning on the final
vehicle models is performed.
The final validation involves reproduction of a real
driving scenario, which has been represented here by
measurement of the state-space trajectory. The results
indicate that it is feasible to design a valid vehicle
model, at least up to limit handling, from valid sub-
systems without involving additional tuning. Finally,
it is demonstrated that a minor error in the estimation
of unknown environmental factors, such as road fric-
tion, risk to jeopardise the correspondence.
From these findings, it is evident that the methodology
presented is a viable tool for use in the vehicle devel-
opments. In addition, it has a great potential to support
for the development of safer vehicles and facilitate the
development of preventative safety functions.
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Abstract

In this paper the modelling of a double clutch trans-
mission with an appropriate controller is presented.
An accordant library for modelling different levels of
detail and the use of defined state signals are intro-
duced. Furthermore, the control of the transmission
with the simulation of shifting cycles is discussed.
By varying the driver models it is possible to drive
miscellaneous drive and shifting cycles. We present
simulation results of a drive cycle with an examina-
tion of the interaction between the transmission con-
trol and the engine control. Finally, the application of
the model and the simulation data are shown in view
to the parameterisation of an automated measurement
data analysis system.
Keywords: double clutch transmission, power train,
control, shifting processes, state signals, simulation

1 Introduction

Nowadays, more and more new cars are assembled
with double clutch transmission because of efficiency,
drive comfort, and uninterrupted power shifts. A dou-
ble clutch transmission contains two parallel transmis-
sion shafts with two parallel clutches. The clutches
can be either dry clutches or laminar multi-disc (wet)
clutches. The different gears are mounted alternately
on the two transmission shafts. The first shaft con-
tains the odd gears, and the second shaft contains the
even gears. Depending on the number of gears the re-
verse gear is mounted either on the first shaft or on
the second shaft. There are uninterrupted power shifts
possible by reason of the two different clutches with
the accordant shafts. The first clutch opens and the
second clutch closes simultaneously during the shift
process resulting in an uninterrupted power transmis-
sion. The correct control of the two clutches is very

import in view to the different shifting processes. At
this point it is necessary to distinguish between up-
shifts and downshifts as well as pulling power and
pushing power of the power train. Control and cali-
bration errors can result in bad shifting, e. g., in form
of revolution speed droppings, break outs, or oscilla-
tions. These errors should be detected by an automated
measurement data analysis system [1]. The software
is used for the evaluation of power train measurement
data in the vehicle development. The parameterisation
of this analysis system requires measurement data of
good and bad shifting processes. Accordingly, the aim
of the modelling and the simulation are to get data of
shifting processes of different quality.
In this paper we present the modelling, control, and
simulation of double clutch transmissions. First, a ba-
sic library and the use of state signals are introduced
in Section 2. In Section 3 we discuss the need for
models with different levels of detail. Section 4 shows
the control structure of the double clutch transmission
in view to different shifting processes, and Section 5
describes the simulation of drive and shifting cycles.
Finally, we discuss in Section 6 simulation results of
particular shifting cycles, and we present an outlook
to the parameterisation of an automated measurement
data analysis system [1] using the simulation results.

2 Library for modelling double
clutch transmissions

For the modelling of double clutch transmissions we
developed a library with basic components. On the one
hand there are auxiliaries, interfaces, and basic blocks,
which are reused in further blocks and models. These
blocks are often used and they normally have a simple
structure. On the other hand the library contains dif-
ferent components of the double clutch transmission.
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Figure 1: Library base structure

Here, it has to be differentiated between physical com-
ponents of the transmission and components for con-
trol. A couple of models exist with different levels of
detail or with a different implementation, e. g., gear-
box with or without losses, or different controls for
shifting. Furthermore, the library contains additional
components for modelling, control, and simulation of
the power train with a double clutch transmission. An
example is the engine control in connection with the
transmission control. Here, the engine torque has to be
influenced by the transmission control in some parts of
the shifting process for a smooth shifting.
The library is derived from the VehicleInterfaces li-
brary [2] and the PowerTrain library [3]. Conse-
quently, the suitable interfaces and bus structures are
used, so that new transmission models can be con-
nected with the models of these libraries. Furthermore,
we defined additional interfaces to get the advantage of
replaceable models and blocks. Doing this, it is possi-
ble to define some basic models and structures and it
is easy to build models with different levels of detail.
The overall structure of the library is arranged accord-
ing to the different components like controllers, en-
gines, transmissions, auxiliaries, interfaces, etc. The
library base structure is shown in Figure 1. Besides,
the VehicleInterfaces library, the PowerTrain library,
and the Modelica Standard Library [4] are used.

2.1 Introduction of state signals

State graphs [5] are used at important places for the
control of the double clutch transmission, because the
control process of the double clutch transmission de-
pends often on more than one state. The active states
of the particular state graphs have to be available
through the control from different points. Accord-
ing to this, it is necessary to get an access to the ac-
tive states. Here, we introduced so called state signals
which are accessible in our case by the Transmission-
ControlBus in the ControlBus of the VehicleInterfaces.
A state signal is defined by an Integer and the particu-

Figure 2: State signals relevant blocks

Figure 3: Generating a state signal in a state graph

lar states are represented by the present Modelica im-
plementation of the Enumerations. Inside a state graph
the particular states are combined to one state signal,
which represents always the active state by the asso-
ciated Integer value of the Enumeration. Additionally,
we created new blocks to access these state signals so
that the state signal can be compared with a desired
state and a specific control can be activated.
The different blocks for using state signals are shown
in Figure 2. The blocks in the first row and the block
SetState are used to generate the desired state sig-
nal. Figure 3 shows an example for generating a
state signal in a state graph. The input size of the
BooleanMultiplex depends here on the number of
states in the state graph. The block SetState deter-
mines the active state and assigns the accordant Enu-
meration value to the state signal. The code is shown
in Listing 1.
There are two types of blocks to access the state sig-
nals. First, a real signal can pass or is set to zero by
the blocks Activate and ActivateOr. These blocks
work like a switch. Listing 2 shows the code example
for the block Activate. Second, the blocks IsActive
and IsActiveOr generate a Boolean signal according
to the signal state. All four blocks are parameterised
by the chosen Enumeration value. They compare the
actual state signal and the Enumeration value and set
the output signal accordingly. The ’or’-variants use a
logical ’or’ comparison to different Enumeration val-
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Listing 1: Code example for SetState
model S e t S t a t e

ex tends
Model ica . B locks . I n t e r f a c e s . I n t e g e r S O ;

parameter Types . DCTTypes . Temp
s t a t e s [ : ] = { 1 , 2 } ;

Model ica . B locks . I n t e r f a c e s . B o o l e a n I n p u t
u [ s i z e ( s t a t e s , 1 ) ] ;

p r o t e c t e d
I n t e g e r sz = s i z e ( s t a t e s , 1 ) ;

a lgor i thm
f o r i in 0 : sz−1 loop

i f u [ sz−i ] then
y := s t a t e s [ sz−i ] ;

end i f ;
end f o r ;

end S e t S t a t e ;

Listing 2: Code example for Activate
block A c t i v a t e

ex tends
Model ica . B locks . I n t e r f a c e s . SO ;

parameter VehicleDCT . Types . DCTTypes . Temp
s t a t e ( s t a r t = 1 ) ;

Model ica . B locks . I n t e r f a c e s . R e a l I n p u t u ;
Model ica . B locks . I n t e r f a c e s . I n t e g e r I n p u t

s t a t e s i g n a l ;
equat ion

y = i f ( s t a t e s i g n a l == s t a t e )
then u e l s e 0 ;

end A c t i v a t e ;

ues, respectively.
Furthermore, an advantage is the possibility to plot the
state signals like other simulation variables. Thus, the
change of the states of each state graph can be ob-
served after the simulation. A possible disadvantage
is the increase of variables and equations.

3 Different models of a double clutch
transmission

The aim of the simulation process is to get data of shift
processes of different quality. According to this, it is
necessary to build models with different levels of de-
tail. A basic model of a double clutch transmission
is shown in Figure 4. It represents the base for fur-
ther models by containing replaceable elements in the
front and back layers using the interfaces and elements
of the described library.
Figure 4 shows the two shafts with the two clutches.
The first shaft contains the odd gears and the reverse
gear, and the second shaft contains the even gears. The

Figure 4: Basic double clutch transmission model

synchronisers of the particular gears are also modelled
as clutches. Here, the transmission control has to en-
sure the correct gear synchronisations. Only one gear
per shaft is allowed to be synchronised. The Trans-
missionControlBus contains the control signals for the
two parallel clutches and for the particular synchronis-
ers. All measured signals like revolution speeds and
torques are added to the TransmissionBus. In a real
vehicle torques are not measured, because of the diffi-
cult measurement of a dynamic torque. Normally, the
torque is calculated by characteristic curves.
The replaceable elements can be modelled with differ-
ent levels of detail. A clutch can be either a dry or a
laminar clutch. Many components can be chosen as
ideal or with losses. Furthermore, it is possible to use
different numbers of spring and damper elements and
different spring and damping constants.

4 Control of the transmission

The modelling of the control is just as important as
the physical modelling of the double clutch transmis-
sion. The outputs of the transmission control are the
control signals for the two clutches and for the syn-
chronisers of the particular gears. Additionally, the
transmission control calculates internal control signals
like the actual driving state, the current gear, or the
requested gear. The main focus is the control of the
different shifting processes. At this point, the correct
control is very important in view to smooth shiftings,
because both clutches are engaged. Control errors can
result in oscillations, jerks, or even in a damage of the
transmission.
Figure 5 shows the structure of the transmission con-
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Figure 5: Transmission control model

trol. All control components extend the Controllers
interface and use ControlBus sub buses of the Vehi-
cleInterfaces. The models GearCurrent and Gear-

Requested determine the current and the requested
gear using state graphs and assigning the states to state
signals. Additionally, DriveMode appoints the actual
driving state, e. g., creep, drive, upshift, etc., and as-
signs a corresponding state signal, too. The block
GearShift identifies the type of the shifting using
the drive mode and the power transmission direction
of the power train. ActiveShaft determines the ac-
tive transmission shaft and the active clutch, respec-
tively. This information is very important in view to
the control of the clutches, because the clutch control
values are calculated independent of the clutch num-
ber. There is only one differentiation between the ac-
tive and the inactive clutch, or during a shifting pro-
cess between the engaging and the disengaging clutch.
Doing this, each control value is calculated only once
using an individual control block.
Currently, the clutch control distinguishes between
creep, driveaway, drive, and shift. For all these drive
modes exists a replaceable control. The controls cal-
culate independent values for the active clutch. In
consideration of the drive mode and the active shaft
the block ClutchXControl assigns the control signal
for the particular clutch. As shown in Figure 6, the
clutch control signal is calculated using Activate and
ActivateOr blocks with the state signals. Doing this,
the independent control values of the different drive
modes are merged to one control signal for the partic-
ular clutch. Finally, the transmission control contains
the model Synchronisation, which controls the syn-
chronisers of the particular gears. The control has to
safeguard that only one gear per transmission shaft is
synchronised.
The aim of the modelling and the simulation of a dou-

Figure 6: Clutch control model merging the particular
clutch control values

ble clutch transmission are to get data of shifting pro-
cesses of different quality. According to this, the fo-
cus of this work is on the control of the shifting pro-
cess. The shifting process is controlled by the model
ControlShift. There exist four different shifting
types in consideration of downshift and upshift as well
as pulling and pushing power of the power train. Addi-
tionally, these types are separated in two phases. The
shifting types are: pull upshift, push downshift, pull
downshift, and push upshift.
The structure of the model ControlShift is shown in
Figure 7. For each shifting type and each phase exists a
replaceable control using the same interface. The three
output signals are clutch_shift_old, clutch_shift_new,
and engineEngagement. The input is an activation sig-
nal in form of a Boolean signal. If the activation signal
equals false, then the outputs have to be set to zero.
Only one shifting process can be activated, because
all blocks work in parallel. All types and phases are
replaceable elements to simulate shifting processes of
different quality.
The two frequently used shifting types are pull upshift
and push downshift. They are similar in their control
behaviour. In the first phase the torque is transmitted
from the old clutch to the new clutch, so both clutches
are engaged. Then in the second phase of the shifting
process the engine speed is passed to the speed of the
new shaft. The engine speed decreases while upshift-
ing and increases while downshifting. Two possibili-
ties exist for the adjustment of the engine speed. On
the one hand it can be managed by an increase of the
clutch capacity. Then the drive end impacts the engine
torque and the engine speed decreases or increases, re-
spectively. The clutch capacity is a function of the
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Figure 7: Shift control model with replaceable shift
modes and phases

clutch engagement and describes the clutch’s maxi-
mum possible transmission torque. The real transmit-
ted torque of the clutch is a function of the clutch ca-
pacity and the input torque. Therefore, the clutch is ei-
ther in slipping or locked mode. On the other hand it is
possible to do an engine engagement. This means that
the engine torque increases or decreases and to that ef-
fect the engine speed will be changed. In this work
we use an engine based on an engine map. Accord-
ing to this, an engine engagement changes the internal
throttle position as input of the engine map.
The other two shifting types are pull downshift and
push upshift. Here, the order of the two phases
changes. At first there is the adjustment of the en-
gine speed to the second transmission shaft speed. Fi-
nally, the torque is transmitted from the first to the sec-
ond clutch. The downshift with pulling power occurs
in consequence of a kick down. Then, it is possible
that both clutches are engaged during the speed adjust-
ment, because of the demand of high power transmis-
sion. An upshift with pushing power occurs normally
if the vehicle rolls downhill with increasing speed and
the engine speed exceeds the upshift threshold.
Now, it is possible to simulate shifting processes of
different quality. A good shifting results in an uninter-
rupted power transmission. In this case the driver does
not sense a changing of the acceleration. Then the sum
of both clutch torques equals the engine torque less the
dynamic torques at any time. A bad shifting in conse-
quence of control errors can result in revolution speed
droppings, break outs, or oscillations. This leads to a
changing of the acceleration and will be sensed by the

Figure 8: Vehicle model with replaceable elements

driver.

5 Simulation of shifting cycles

With the described models and controls, simulations
of different shifting cycles are executed. By varying
the driver models it is possible to drive miscellaneous
drive and shifting cycles, e. g., in form of a table with
acceleration and brake pedal positions, or following a
velocity profile in form of predefined drive cycles. An
example for a drive cycle is the New European Driving
Cycle NEDC [6].
The vehicle simulation structure is shown in Figure 8.
The components are replaceable or have internal re-
placeable elements. Furthermore, it is possible to use
existing models, e. g., of the PowerTrain library. Both
the redeclaration of physical components and the shift
control can be changed. Thus, the simulations gener-
ate data of different quality due to the choice of the
grade of the control.

6 Results and application

Based on the presented vehicle simulation structure
we can now simulate drive and shifting cycles. As
an example, the simulation results of a drive cycle are
shown in Figure 9. The drive cycle contains the fol-
lowing sections: engine start, creep, driveaway, up-
shifts, drive, downshifts, and stoppage. The upshifts
are realised with an engine engagement and the down-
shifts are realised with an increase of the clutch capac-
ity for the adjustment of the engine speed.
At the top the Figure 9 shows the speeds of the en-
gine and of the two transmission shafts. In the next
part the capacity of the two clutches and the engine
torque can be seen. The up- and downshifts can be
easily recognised by the crossing of the clutch capac-
ities and the change of the engine speed between the
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Figure 9: Simulation results of a simple drive cycle

transmission shaft speeds. During the downshifts the
clutch capacity increases for the adjustment of the en-
gine speed as described in Section 4. The third part
shows the engine engagement at the upshifts. At the
upshift the engine torque is decreased during the en-
gine speed adjustment to the new transmission shaft
speed. The engine control decreases the throttle posi-
tion on demand of the transmission control to decrease
the engine torque. The acceleration pedal, the brake
pedal, and the decreased throttle position can be seen
in the fourth plot of Figure 9. The throttle position
increases at the start and at the end of the simulation,
because of the engagement of the engine speed gov-
ernor. The bottom of Figure 9 shows the transmission
state according to the described sections. Furthermore,
the current and the requested gear can be seen. These
three signals are state signals and the Integer value rep-
resents a particular state.
In the past, we developed in cooperation with the IAV
GmbH an automated measurement data analysis sys-
tem [1]. The evaluation process of the software can be
parameterised efficiently by XML templates. The sys-
tem supports the common automotive measurement
file formats and it can handle huge data traces with a
sequential data processing. Moreover, there exist sev-
eral intelligent signal processing modules for the data
evaluation.
For complex analyses the system parametrisation is

difficult, because the measurement data is often un-
labelled . The data contains measurements of sev-
eral shifting processes, but there is normally no in-
formation about good or bad examples. Now, we
have the possibility to simulate shifting processes of
different quality. With the simulation results of this
work we can parameterise the automated measurement
data analysis system for the evaluation of shifting pro-
cesses. The aim of the measurement data analysis is
the detection and assessment of bad shifting in the ve-
hicle development.

7 Conclusion and outlook

In this paper, we presented the modelling, control, and
simulation of a double clutch transmission. The fo-
cus is the simulation of data of different quality par-
ticularly with regard to shifting processes. Accord-
ing to this, we developed model and control struc-
tures with replaceable elements. It is possible to use
the same vehicle model for the simulation of good and
bad shiftings. On the one hand the level of detail can
be changed. On the other hand it is possible to rede-
clare elements of the transmission control to change
the control behaviour.
We presented a library with basic transmission com-
ponents and introduced state signals to access sys-
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tem states from different points of the control process.
Furthermore, we described the developed transmission
control and discussed the different shifting types in
detail. The vehicle model can be used to simulate
a power train with a double clutch transmission. Fi-
nally, the simulation results of a simple drive cycle
were shown.
With the presented models we get the background for
future works. We developed a base model of a double
clutch transmission and a base control structure with
a working control for the four basic shifting types. At
the moment there exist basic controls for each phase
of the shifting. The next step will be the variation
of the control to get data of different quality. Addi-
tionally, we will simulate drive cycles using double
clutch transmission models of different levels of detail.
With these results we will parameterise the automated
measurement data analysis system for the evaluation
of shifting processes of double clutch transmissions in
real vehicle measurement data.
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Abstract

The  tight  interaction  among  an  ever  increasing 
amount  of  software  functions  and  hardware 
subsystems (mechanics, hydraulics, electronics, etc.) 
leads to a new kind of complexity that is difficult to 
manage  during  mechatronic  design.  System  tests 
have to consider huge amounts of relevant test cases. 
Validation with limited resources (time and costs) is 
a challenge for the development teams. We present a 
new instrument that should help engineers in dealing 
with  the  complexity  of  test  and  validation. 
TestWeaver is based on a novel approach that aims 
at maximizing test coverage with minimal work load 
for  the test  engineer  for  specifying  test  cases.  The 
method  integrates  simulation  (MiL/SiL)  with  auto-
matic test generation and evaluation, and has found 
successful  applications  in  the  automotive  industry. 
We illustrate the approach using a 6-speed automatic 
transmission for passenger cars. We present also the 
way TestWeaver and Modelica simulators can work 
together.
Keywords: test automation, mechatronic systems

1 Introduction

When  developing  complex  mechatronic  systems, 
like a hybrid drive train or an automatic transmission 
for  a  vehicle,  contributions  from  different 
engineering  disciplines,  design  teams,  departments, 
and organizations have to be integrated, resulting in 
a  complex  design  process.  Consequently,  during 
development,  design  flaws  and  coding  errors  are 
unavoidable.  For an OEM, it is then crucial that all 
those bugs and weak points are found and eliminated 
in time, i.e. before the system is produced and deliv-
ered to customers. Failing to do so may result in ex-
pensive  recalls,  high warranty costs,  and  customer 
dissatisfaction.  OEMs  have  long  realized  this  and 
spend up to 40% of their  development  budgets for 
test related activities. Software offers great flexibility 
to implement  new functions, but also many hidden 
opportunities  to  introduce  bugs  that  are  hard  to 

discover.  Moreover,  the  complex  behaviour  that 
results from the interaction of software and physical 
systems cannot be formally and completely analysed 
and validated. Most often, it can only be evaluated in 
a limited amount of points with physical  or virtual 
experiments. The development teams are often faced 
with  a  dilemma:  on  the  one  side,  the  system test 
should cover a huge space of relevant test cases, on 
the  other,  there  is  only  a  very  limited  amount  of 
available resources (time and costs) for this purpose. 
This paper presents a novel test method that has the 
potential  to  dramatically  increase  the  coverage  of 
testing without increasing the work load for test en-
gineers. We achieve this by generating and executing 
thousands of tests automatically, including an initial, 
automated assessment of test results. The test genera-
tion can be focused on certain state spaces using con-
straints and coverage goals.
This paper is structured as follows: In section 2, we 
take  a  bird's-eye  view on testing  mechatronic  sys-
tems. In section 3, we survey the main test methods 
used  in  the  automotive  industry  today.  Section  4 
presents the proposed test  method. Section 5 illus-
trates the proposed method using a 6-speed automat-
ic transmission for passenger cars. Section 6 discuss-
es  our  approach  to  automated  test  evaluation.  We 
conclude the paper with a summary of the benefits of 
our test method, and discuss its applicability to other 
engineering domains.

2 The challenge of testing

When testing a mechatronic system, it is usually not 
sufficient to test the system under laboratory condi-
tions for a couple of idealized use cases. Instead, to 
increase the chance to discover all hidden bugs and 
design flaws, the system should be tested in as many 
different relevant conditions as possible. Consider as 
an example an assembly such as an automatic trans-
mission used in a passenger car. 
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In this case, the space of working conditions extends 
at least along the following dimensions:

− weather: for  example,  temperatures  range 
from - 40°C to 40°C, with significant impact 
on oil properties of hydraulic subsystems

− street: different road profiles,  uphill,  down 
hill, curves, different friction laws for road-
wheel contact

− driver: variations of attitude and behavior of 
the  human  driver,  including  unforeseen 
(strange) ways of driving the car

− spontaneous component faults: during opera-
tion, components of the assembly may spon-
taneously fail  at  any time; the control soft-
ware of the assembly must detect and react 
appropriately to these situations, in order to 
guarantee  passenger  safety  and  to  avoid 
more serious damage

− production tolerances: mechanical, electrical 
and other physical properties of the involved 
components  vary  within  certain  ranges 
depending on the manufacturing process

− aging:  parameter  values  drift  for  certain 
components  during  the  life  time  of  the 
assembly

− interaction  with  other  assemblies: a  trans-
mission communicates with other assemblies 
(engine,  brake  system)  through  a  network 
that  implements  distributed  functions;  for 
example, during gear shifts, the transmission 
might ask the engine to reduce the torque in 
order to protect the switching components.

These dimensions span a huge space of possible op-
erational conditions for an assembly.  The possibili-
ties along each dimension multiply to form a huge 
cross-product. The ultimate goal of testing is to veri-
fy that the system performs adequately at every sin-
gle  point  of  that  space.  It  would be great  to  have 
techniques to  mathematically prove certain  proper-
ties of the system (such as the absence of unwanted 
behavior),  which  would  enable  a  test  engineer  to 
cover  infinitely  many  cases  within  a  single  work 
step.  However,  such  proof  techniques  (e.g.  model 
checking, cf. [1]) are by far too limited to deal with 
the  complexity of  the  system level  test  considered 
here. 
In practice, the goal of covering the entire state space 
is  approximated by considering a finite  number of 
test cases of that space.

3 A critical view on some test meth-
ods in use

Testing at different functional integration levels (e.g. 
component, module, system, vehicle) and in different 
setups (e.g.  MiL,  SiL,  HiL, physical  prototypes)  is 
nowadays an important, integral part of the develop-
ment  process.  The  earlier  problems are  discovered 
and eliminated, the better. Very often, however:

(a) relevant  tests  can  only  be  formulated,  or 
have to be repeated, at higher levels of func-
tional integration (e.g. at system level) - con-
sider,  for  instance,  the  system  reaction  in 
case of component faults

(b) system-level  tests  are  only performed in  a 
HiL or physical prototype setup1.

Let us briefly review some of the limitations of the 
HiL- / physical prototype based testing:

− time,  costs,  safety: physical  prototypes  and 
HiL setups are quite expensive and busy re-
sources; testing takes place late in the devel-
opment cycle; not too many tests can be con-
ducted;  the  reaction  to  certain  component 
faults cannot be tested with physical proto-
types due to safety hazards

− lack of agility: it usually takes a long time 
between the change of a software  function 
and the test of its effects

− limited  precision  or  visibility: due  to  real-
time requirements the physical system mod-
els  used in HiL setups are often extremely 
simplified  and  therefore  extremely  impre-
cise;  debugging  and  inspection  of  hidden 
system properties is difficult if not impossi-
ble for these setups.

Note, the above limitations are not present in MiL / 
SiL setups.  While  the importance of  the HiL tests 
and of the tests based on physical prototypes should 
not be underestimated, our argument here is that they 
must be complemented by a more significant role of 
MiL and SiL tests at system level. See also [4], [5].
Irrespective of the setup used, the main limitation of 
common system-level test practices is the limited test 
coverage that can be achieved with reasonable effort. 
For example, test automation in a MiL / HiL setup is 
typically based on hand-coded test scripts for stimu-

1 There are several reasons why this  is  very often the 
case. An important one stems from the complexity of 
the mechatronic development processes: several disci-
plines, several teams, several tools, several suppliers – 
together with lacking standards and practices for ex-
changing and integrating executable  functional  mod-
els.
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lating  the  partially  simulated  assembly  with  a  se-
quence of test inputs, including code for validating 
the measured response. Coding and debugging such 
test  scripts  is  a  labor intensive  task.  Given typical 
time  frames  and  man  power  available  for  testing, 
only  few  (say  a  few  dozen)  cases  from the  huge 
space  of  possible  use  cases  can  be  effectively ad-
dressed by such a script-based approach. For testing 
using a test rig or by driving a car on the road, this 
figure is even worse.  For example, it  is practically 
impossible to systematically explore the assembly's 
response in the case of single component faults in a 
setup that involves dozens of physical (not simulat-
ed) components.
When testing for the presence (or absence) of a cer-
tain system property, script-based tests verify such a 
condition  only during  a  few,  specifically  designed 
scenarios and not throughout all tests.
In practice this means that many scenarios are never 
explored during system test and that for those sce-
narios explored, usually only a few of the relevant 
system properties are tested. Consequently, bugs and 
design flaws may survive all  tests.  These are risks 
the method presented here can help to reduce, adding 
additional robustness to the design process.

4 Exploring  system  behavior  with 
TestWeaver

TestWeaver is a tool supporting the systematic test 
of complex systems in an autonomous, exploratory 
manner. Although the method could, in principle, be 
applied to HiL setups as well, it is primarily geared 
towards  supporting  the  MiL  and  SiL  setups.  The 
overall design objectives of TestWeaver were to:

(a) dramatically increase the test coverage, with 
respect to system behavior, while

(b) keeping  the  workload for  the  test  engineer 
low.

To achieve this, we wanted to remove the necessity 
of  exclusively  relying  on  hand-coded  test  scripts, 
since we had identified script production as the main 
hindrance on the way towards broad test coverage. 

4.1 The “chess” principle

The key idea was: Testing a system under test (SUT) 
is like playing chess against the SUT and trying to 
drive it into a state where it violates its specification. 
If  the  tester  has  found  a  sequence  of  moves  that 
drives  the SUT in such an unwanted state,  he  has 

won a game, and the sequence of moves represents a 
failed test. 
There are more analogies: To decide for a next best 
move,  chess  computers  just  explore  recursively all 
legal  moves  possible  in  the  current  state  and  test 
whether these lead to a goal state. This search pro-
cess generates a huge tree of alternative (branching) 
games.  In  TestWeaver,  the  automated  search  for 
bugs and design flaws is organized quite similarly. 
Our method assumes that the SUT is available as an 
executable simulation (MiL) or as a co-simulation of 
several modules (SiL). As usually done, the SUT is 
augmented with a few components that communicate 
with  the  test  driver.  These  communication  compo-
nents, called  instruments, implicitly carry the “rules 
of the game” that TestWeaver is “playing” with the 
instrumented SUT. Namely, they carry information 
about: the control actions that are legal in a certain 
situation, the interesting qualitative states reached by 
the  SUT,  and,  eventually,  the  violation  of  certain 
system  requirements.  Each  instrument  specifies  a 
(relevant)  dimension  of  the  SUT  state  space.  The 
value domain along each dimension has to be split 
into  a  finite  set  of  partitions.  Each SUT, or  SUT-
module, has to be configured individually by placing 
and parameterizing the instruments inside the SUT. 
The “game” is played in this multi-dimensional par-
titioned system space.

Figure 1: The chess principle

4.2 Instruments

An  instrument  is  basically  a  small  piece  of  code 
added to the un-instrumented version of the SUT us-
ing the native language of the executable, e.g. Mod-
elica, Matlab/Simulink, or C. The instruments com-
municate  with  TestWeaver  during  test  execution, 
which enables TestWeaver to drive the test, to keep 
track of reached states, and to decide during test exe-
cution whether an undesired state (failure) has been 
reached. TestWeaver supports basically two kinds of 
instruments, action choosers and state reporters, that 
can come in several flavors:

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs

The Modelica Association 343 Modelica 2008, March 3rd − 4th, 2008



1. state reporter: this instrument monitors a discrete 
or a continuous variable (e.g. a double) of the SUT, 
and maps its value onto a small set of partitions or 
discrete values (e.g. low, medium, high). During test, 
this instrument reports each partition change of the 
monitored  variable to TestWeaver.  This is used by 
TestWeaver  to keep track of reached states  and to 
maximize the coverage of the partitioned / discrete 
state space.
2. alarm reporter: this is actually a state change re-
porter. In addition the partitions are associated with 
severity  levels,  such  as  nominal,  warning, 
alarm,  and  error.  The  reachability  of  a  “bad” 
state corresponds to a failure of the test currently ex-
ecuted.  Note:  these  failure  conditions  are  verified 
throughout all the tests run by TestWeaver.
3. action chooser: this instrument is associated with 
an input variable of the SUT. In an automotive appli-
cation, an input variable may represent the accelera-
tion pedal or the brake pedal of a car. Depending on 
the  details  of  the  instrumentation,  this  instrument 
asks TestWeaver either periodically or when a trig-
ger condition becomes true to choose a discrete input 
value for its input variable from the partitioned value 
domain of the variable.
4.  fault  chooser:  this  is  a  special  case  of  action 
chooser. The value domain is partitioned into nomi-
nal and fault partitions and can can be used to repre-
sent alternative fault  modes of a component of the 
SUT. For example, a shift valve model may have be-
havior  modes  such  as:  ok,  stuckClosed,  and 
stuckOpen.  Instruments  like  these  are  used  by 
TestWeaver to inject (activate) a component fault oc-
curring spontaneously during test execution. 

Figure 2: Instruments connect SUT to TestWeaver
Engineers like to work with their favorite modeling 
environment.  Therefore  we have implemented  ver-
sions of the above instruments for alternative model-
ing environments, including Matlab/Simulink, Mod-
elica, and C. The idea is to allow the test engineers to 

instrument  a  SUT  in  their  favorite  modeling  lan-
guage, i.e. using the native implementation language 
of  the  SUT,  or  of  the  SUT-module  that  they  are 
working on.
In addition to the explicit  instruments, TestWeaver 
monitors  the  process  of  executing  the  SUT  and 
records problems, such as divisions by zero, memory 
access violations, or timeouts in the communication.

4.3 Experiments, scenarios and reports

In  TestWeaver,  an  experiment is  the  process  of 
exploring and documenting the states reached by the 
SUT during a certain period of time, possibly taking 
into consideration additional  search constraints  and 
coverage  goals.  An  experiment  usually  runs 
completely autonomously for a long time, typically 
several  hours,  and  without  requiring  any  user 
interaction. 

When running an experiment, TestWeaver generates 
many  differing  scenarios,  by  generating  differing 
sequences  of  answers  for  the  action  choosers.  A 
scenario is the trace (or protocol) of a simulation run 
of  the  given  SUT  in  the  partitioned  state  space. 
TestWeaver combines several strategies in order to 
maximize the coverage of the reached system states 
and  to  increase  the  probability  of  finding  failures. 
The results are stored in a scenario data base of the 
experiment,  i.e.  a  tree  of  scenarios  (actually  a 
directed graph), as shown in Fig. 3.

Figure 3: Scenarios generated by an experiment

The  user  can  investigate  the  states  reached  in  an 
experiment using a high level query language similar 
to SQL. Results are displayed in reports. A report is 
basically a table that displays selected properties of 
the scenarios stored in the scenario data base.  The 
user specifies the structure and layout of a table by 
templates, while the content  of  a table depends on 
the content  of the scenario data base – see Fig.  9. 
There are two kinds of reports: overview reports, that 
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document  state  reachability,  and  scenario  reports, 
that document details of individual scenarios.

A user may specify,  start,  and stop an experiment, 
reset the experiment's data base and investigate the 
reports  generated  by the  experiment,  the  last  even 
while the experiment is running. Individual scenarios 
can be replayed: i.e. the SUT is restarted and is fed 
with the same sequence of inputs as the one recorded 
in order to allow detailed debugging of a problem, 
e.g. by plotting signals and other means.

4.4 The experiment focus

The dimensions and the partitions of the state space 
are configured by the instruments of the SUT. Apart 
of these there are also other means that can constrain 
the  exploration,  either  as  part  of  the  instrumented 
SUT, or as explicitely defined in the specification of 
the experiment focus in TestWeaver. The focus of an 
experiment specifies which region of the state space 
should be investigated when running the experiment. 
During an experiment, TestWeaver tries to drive the 
SUT into  those  states  that  are  in  the  experiment's 
focus.  The  experiment  focus  is  currently  specified 
using two means:

– constraints: the constraints limit the size of 
the considered state space of an experiment. 
They can limit, for instance, the duration of a 
scenario,  or  the  allowed  combinations  of 
inputs  and  states.  A  high  level  constraint 
language is provided for this purpose. In an 
automotive  application,  a  user  could,  for 
example,  exlude  all  scenarios  where  brake 
pedal  and  acceleration  pedal  are  engaged 
simultaneously.  For  a  fault  analysis,  a 
constraint  could be used to exclude certain 
fault  modes  from investigation,  or  to  limit 
the number of faults inserted in a scenario: 
typical  values  are  0,  1  and  2.  Higher 
numbers  are  reasonable  when investigating 
fault-tolerant  systems,  e.g.  systems  with 
complex fault detection and reconfiguration 
mechanisms

– coverage: the  user  can  tell  TestWeaver  to 
use some of the reports of the experiment as 
defining  the  coverage  goals  of  the 
experiment.  A  report  used  in  this  way  is 
called coverage report.

Experiments  with  different  SUT versions  and with 
different focus specifications can be created, run and 
compared with each other.

4.5 Analyzing and debugging problems

The alarm and error states of the SUT are reported in 
the overview reports. For each problem one or more 
scenarios that reach that state can be recalled from 
the  scenario  database.  The  scenarios  can  be  once 
again  replayed and  additional  investigation  means 
can be connected. Depending on the SUT simulation 
environment these can be, for instance: plotting addi-
tional  signals,  connecting  additional  visualization 
means  such  as  animation,  setting  breakpoints,  and 
even  connecting  to  step-by-step  evaluation  with 
source code debuggers – for instance for SUT mod-
ules developed in C.

4.6 The Modelica instrumentation library

In this  section we briefly present  the Modelica  in-
strumentation library of TestWeaver, cf. Fig. 4.

Figure 4: The Modelica Instruments library
The  package  Instruments contains  ready  to  use 
components  for  instrumenting  Modelica  models. 
Each  instrument  is  a  Modelica  component  that 
communicates  with  TestWeaver  through  an  outer 
WeaverConnection.  Instruments  extend  the  partial 
base  class  Instruments.Interfaces.Instrument, which 
is a model with the following parameters:

− variable: the name of the SUT variable de-
fined by the instrument

− comment: a description of the instrument 
− unit: of  the  classified  real  value,  e.g. 

"km/h", "kg", or "%"
− intervals: an  array of number pairs defining 

the numeric partitions of the real value, e.g. 
[0,100; 100,150; 150,1e10]

− labels: an array with the partition names, e.g. 
{"ok", "hot", "damaged"}

− weaverConnection: outer reference.
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Furthermore,  the  Instruments package  provides  the 
following instruments as Modelica components:

− Reporter: an instrument that adds a severity 
rating to each interval and reports the value 
of a SUT variable when triggered; whether 
the reported value represents an alarm or a 
nominal  state  depends  on  the  associated 
severity

− Chooser: an  instrument  that  adds  an 
occurence rating to each interval and allows 
TestWeaver to control a variable of the SUT, 
when  triggered;  whether  the  control  value 
represents a fault to be injected or a nominal 
value  depends  on  the  corresponding 
occurence rating

− Parameter: a  Chooser whose  control 
variable  is  a  model  parameter  to  be 
initialized by TestWeaver at simulation start; 
this is  used to model  parameter deviations, 
for  instance,  due  to  aging,  or  due  to 
production tolerances.

Fig. 5 shows how to use a Reporter in a model. 

Figure 5: Reporting a temperature
The  reporter  is  connected  to  the  output  of  a  heat 
model, and to a boolean trigger signal. Whenever the 
trigger  signal  becomes  true,  the  reporter  classifies 
the  temperature  w.r.t  the  partition  margins and re-
ports  the  result  through  the  WeaverConnection to 
TestWeaver.

Figure 6: Controlling two pedals in a car

Likewise,  Fig.  6  shows  two  Choosers called 
chooseBrakePedal,  chooseAccelPedal. 
Both accept a default value at the left side, output the 
signal chosen by TestWeaver and accept a boolean 
trigger signal as input, which defines the time points 
when new values can be changed by TestWeaver.

5 Example: automatic transmission

As an application example for TestWeaver, consider 
the development of the control software for an auto-
matic transmission. An instrumented Modelica mod-
el of an entire car, including the transmission and a 
WeaverConnection is shown in Fig. 7.

Figure 7: An instrumented car model
The control software is developed using a SiL devel-
opment environment. The executable SUT is hence 
co-simulating  two  modules:  the  compiled  control 
software,  and the compiled Modelica model  of the 
car. Since the Modelica model has been instrument-
ed, the SUT also contains functions to communicate 
with TestWeaver. When TestWeaver starts the SUT 
to perform a system test,  all  contained instruments 
register themselves at TestWeaver with all their de-
clared  static  properties  (intervals,  labels,  severities 
etc.). TestWeaver then displays a list of these instru-
ments, see tree in Fig. 9. Selecting an instrument in 
the tree displays all its properties. Fig. 8. shows how 
TestWeaver displays the heat reporter of Fig. 5.

Figure 8: Reporter (Fig. 5) displayed by TestWeaver
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The tree shown in Fig. 9 also contains an item for 
each report  of the experiment.  Selecting such a re-
port displays the report as table. Fig. 9. shows a re-
port that shows which gear shifts have already been 
reached during the experiment, and whether critical 
temperatures at the clutches A and B have been re-
ported. For each state, up to two scenarios are refer-
enced in the right most column. Clicking on such a 
reference displays that scenario as a sequence of dis-
crete states. It is possible to reproduce the entire sce-
nario with an identical simulation such that the test 
engineer can access all its details. For example, run-
time exceptions of the control software (such as divi-
sion  by zero)  can  be  reproduced  this  way and  in-
spected using the usual software debugging tools.

Figure 9: TestWeaver displaying a coverage report

6 The  instrumentation  process  and 
quality watchers

If  an executable SUT exists it  is  relatively easy to 
add the instrumentation for the action choosers and 
the pure state reporters – those reporters that do not 
attempt to classify the states as “good” or “bad”. A 
good understanding of the system functionality is re-
quired, in order to select the relevant system features 
and the relevant qualitative partitions. This activity 
in  not  completely  new  for  the  test  engineers:  the 
commonly  used  “Classification  Tree  Method”  for 

specifying tests relies exactly on this kind of system 
analysis [2].
For  the  automatic  test  evaluation  TestWeaver  uses 
alarm reporters. The alarm reporters monitor correct-
ness or quality conditions of the SUT. Some of these 
conditions  are  easy to  define,  others  might  require 
quite sophisticated watchers.  Let us begin with the 
easier cases:

(a)  often physical components have well known 
functional or safety ranges of operation that 
should not be exceeded; examples: maximal 
power dissipated by a component, maximal 
temperature, maximal pressure in a contain-
er,  maximal  allowed rotational  speed of an 
engine or gear, etc.

(b)  similar “local” correctness conditions exist 
for software functions; in the software indus-
try such assertions are widely used today for 
detecting,  diagnosing  and  classifying  pro-
gramming errors during test; examples here: 
maximum  number  of  allowed  objects  in  a 
buffer,  access  indices  within  array bounds, 
assumed domains  for  input  parameters,  as-
sertions about function pre-conditions, post-
conditions  and other  invariants  that  can be 
easily declared and monitored – see also [3].

The above quality conditions can be locally imple-
mented, e.g. in a component type library. In such a 
case, each component instantiation will also instanti-
ate the check of the quality condition and the instru-
mentation required.
In addition, the run time exceptions of the SUT pro-
cess  (e.g.  divisions  by zero,  memory access  viola-
tions, etc.) and the communication timeouts (possi-
bly produced by infinite loops, non-converging nu-
merical solvers, etc.) are anyway monitored and re-
ported by TestWeaver.
An important class of quality conditions can be rela-
tively easily defined when the SUT includes a con-
troller and a model of the controlled system. Often 
controllers have in some form (at least a simplified) 
inverse model of the controlled system. This makes 
it  easier  to  formulate  system invariants  or  quality 
conditions. For instance: when not shifting, the con-
troller gear should match the gear from the transmis-
sion model; if no fault is set in the hardware model, 
the on-board diagnosis should not detect any fault; if 
a fault code is generated, then the fault should coin-
cide with a fault set in the hardware model. In gener-
al, the assumptions made by the control system about 
the  state  of  the  controlled  system  should  match 
(within certain acceptable delays and tolerances) the 
state of the model.
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The more we migrate from checking correctness to 
checking quality,  the more  complex and subtle the 
watchers  can  become.  For  TestWeaver  arbitrarily 
complex quality watchers can be implemented with 
Modelica,  Matlab/Simulink or  C.  In  principle,  any 
conventional  test  case can be turned into a quality 
watcher, although it might be sometimes difficult to 
generalize the specific conditions checked in a test 
case. The effort will be rewarded because:

(a) the  quality  condition  will  be  checked  not 
only for  one input  sequence,  but  for  many 
differing scenarios, and

(b) a more general formulated condition is likely 
to  survive  unchanged,  or  with  only  small 
changes,  when new SUT versions are pro-
duced later on, during development.

The tuning of some complex quality watchers can be 
quite laborious. In practice, there will always be cas-
es when false alarms are generated. Therefore, after 
each experiment, also a detailed manual analysis and 
diagnosis of the problems found is prescribed by our 
test method.

7 Summary and conclusions

The increasing pressure to shorten and cheapen de-
velopment for more and more complex products re-
quires new test strategies. Today we see early mod-
ule  tests  and  late  system-level  tests,  like  HiL  and 
test-rigs, as state of the art. The importance of early 
system-level  testing  increases  with  the  increasing 
complexity of  module  interaction because  bugs on 
system-level are more likely, more costly to fix and 
harder to find. Testing before physical prototypes ex-
ist, for both controllers and hardware, is one neces-
sary step towards early system-level testing.
As long as the behavior of a system can be described 
easily using stimuli-response sets, script-based test-
ing  is  a  feasible  strategy.  With  increasing  system 
complexity,  this method fails to provide the neces-
sary coverage at reasonable cost. On the other side, 
our test method allows to:

(a) systematically investigate large state spaces 
with low specification costs:  only the rules 
of the “game” have to be specified, not the 
individual scenarios

(b) discover new problems that do not show up 
when using only the predefined test scenar-
ios  prescribed  by  traditional  test  methods; 
TestWeaver can generate thousands of new, 
qualitatively  differing  tests,  depending  on 
the time allocated to an experiment

(c) increase  the  confidence  that  no hidden de-
sign flaws exist.

In  chapter  5,  we  have  sketched  the  application  of 
TestWeaver to a SiL-based system test of an auto-
matic transmission. We have several years of experi-
ence with this kind of applications. However, the ap-
plication  of  TestWeaver  to  other  domains  seems 
promising as well, especially for those cases where a 
complex  interaction  between  the  software  and  the 
physical world exists. For instance:

− driver  assistance  systems: in  car  systems 
such as ABS, ESP, etc. we meet a complex 
interaction among the control software,  the 
vehicle dynamics and the human driver; this 
leads  to  myriads  of  relevant  scenarios  that 
should be investigated during design

− plant control systems: in plants for chemical 
processes, power plants etc. we meet the in-
teraction  of  the  control  software,  plant 
physics  and  the  actions  of  the  operators; 
again, the same kind of complexity that calls 
for a systematic investigation during design.

TestWeaver runs on Windows platforms. It is a pow-
erful, yet easy to use tool: users can use their native 
specification  or  modeling  environment  and  don't 
have to learn yet another test-specification language.
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Abstract

In this paper a physical model of a squirrel cage induc-
tion machine with rotor topology model is presented.
The parameters of the induction machine are discussed
and the issue of rotor fault detection is addressed. For
a machine with one broken rotor bar a Modelica sim-
ulation model is compared with measurement results.
Keywords: Electric machines, squirrel cage, rotor
asymmetries

1 Introduction

The squirrel cage of an induction machine consists of
Nr bars and two end rings, connecting the bars on both
ends, as depicted in Fig. 1. The fins located on the end
rings are required to force the circulation of the air in
the inner region of the machine.
In the manufacturing process it is intended to fabricate
a fully symmetrical squirrel cage. Due to manufactur-
ing problems or certain operating conditions, electrical
rotor asymmetries can occur. The causes for such rotor
electrical asymmetries are:

• shrink holes and voids in the aluminum of the
bars or end rings,

• improper junctions of the bars and end rings,

• heavy duty start-ups that the machine is not de-
signed for,

• thermal overloading of the machine,

• high temperature gradients, causing cracks.

Electric rotor asymmetry can be classified as rotor bar
or a rotor end ring segment fault. These cases can be
modeled by a ohmic resistance increase of either a ro-
tor bar or an end ring segment.

Figure 1: Rotor cage of an induction machine

In the Modelica Standard Library (MSL) the induction
machines are based on the assumption, that the num-
ber of phases is limited to three and that stator and
rotor windings are fully symmetrical. Electrical rotor
asymmetries can therefore not be modeled using the
MSL. For modeling electrical rotor asymmetries of the
squirrel cage induction machines the full topology of
the rotor cage has to be taken into account. Appro-
priate models are provided by the ExtendedMachines
Library [1].

2 Stator Winding Model

For the investigated fault cases it can be assumed that
the stator winding is fully symmetrical. Additionally,
it will be assumed, that number of stator phases is lim-
ited to three. In this case the stator voltage equation
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can be written as

Vs[i] = RsIs[i] +Lsσ
dIs[i]
dt

+
3

∑
j=1

Lsm[i, j]
dIs[ j]
dt

+
Nr

∑
j=1

dLsr[i, j]Ir [ j]
dt

. (1)

In this equationVs[i] and Is[i] and Ir [i] are the stator
voltage and current and the rotor current, respectively.
Due to the symmetry of the stator winding the stator
resistanceRs and the stator stray inductanceLsσ are
symmetrical, too. The matrix of the main field induc-
tances of the stator winding,

Lsm[i, j] = L0w2
sξ2

s cos

[
(i− j)2π

3

]
, (2)

and the matrix of the mutual coupling inductances be-
tween the stator and rotor,

Lsr[i, j] = L0wξsξr cos

[
(i−1)2π

3
− ( j −1)2π

Nr
− γm

]
,

(3)
are fully symmetrical, since it is assumed that the cou-
pling over the magnetic main field is not influenced by
the rotor asymmetries. In this equation,L0 indicates
the base inductance of a coil without chording, i.e., the
coil width is equal to the pole pitch. The parameters
ws andξs are the number of series connected turns and
the winding factor of the stator winding. The prod-
uct wsξs is theeffective number of turns.The winding
factor of the rotor winding

ξr = sin

(
pπ
Nr

)
(4)

is a pure geometric factor, which is derived in [2]. In
this equation, however, it is assumed that no skewing
occurs [3]. The rotor angleγm represents the relative
movement of the rotor with respect to the stator.
The effective number of turns,wsξs, may be deter-
mined from a winding topology, which is indicated
by the begin and end location and the number of
turns of the stator winding coils – as depicted in
Fig. 2. Alternatively, a symmetric stator winding can
be parametrized by entering the effective number of
turns.

3 Rotor Winding Model

The squirrel cage rotor withNr rotor bars can be seen
as a winding topology with an effective number of

Ieb

Rb[i]

Lb[i]

Reb[i] Leb[i] Reb[i+1]Leb[i−1]

Lea[i−1] Rea[i] Lea[i]

Lb[i+1]

Rb[i+1]

Rea[i+1]

∂A Ai

Ir [i]

Ψr [i]

Ib[i+1]Ib[i]
DE

NDE

Figure 3: Topology of the rotor cage (DE = drive end,
NDE = non drive end)

turns equal to one. Using the winding factor of a ro-
tor mesh (4), the matrix of the main rotor field can be
expressed as

Lrr [i, j] = L0ξ2
r cos

[
(i− j)2π

Nr

]
. (5)

The rotor voltage equation can be derived from the
topology of the squirrel which is depicted in Fig. 3.
Considering constant leakage inductancesLb[i] and
Lea[i] andLeb[i] of the bars and the end rings on both
sides (indexa = drive end side, DE; indexb = non
drive end, NDE), the rotor voltage equations yields:

0 = (Rea[i] +Reb[i] +Rb[i] +Rb[i+1])Ir [i]
−Rb[i]Ir [i−1]−Rb[i+1]Ir [i] +Reb[i]Ieb

+(Lea[i] +Leb[i] +Lb[i] +Lb[i+1])
dIr [i]
dt

− d
dt

(Lb[i]Ir [i−1] +Lb[i+1]Ir [i]−Leb[i]Ieb)

+
3

∑
j=1

dLsr[ j,i]Is[ j]
dt

+∑Lrr [i, j]
dIr [ j]
dt

(6)

Additional parameters of this equation are the bar re-
sistancesRb[i] and the resistances of the end ring seg-
mentsRea[i] andReb[i]. The topology of the rotor cage
(Fig. 4) leads toNr + 1 linearly independent meshes.
Therefore, the mesh currentIeb is introduced and the
additional voltage equation

0 =
Nr

∑
i=1

Reb[i](Ir [i] + Ieb)+
d
dt

Nr

∑
i=1

Leb[i](Ir [i] + Ieb) (7)

has to be taken into account.
It should be noted that the main field inductances
Lss[i, j] andLrr [i, j] of a squirrel cage induction machine
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Figure 2: Stator winding parameters of a squirrel cage induction machine

are constant and the mutual inductances (3) are depen-
dent on the rotor angleγm.

In the ExtendedMachines library, the rotor cage can
be parametrized in two different ways. First, the re-
sistances and leakage inductances of the rotor bars
and the end ring segments of both sides can be
parametrized (Fig. 4). This is how a squirrel cage is
internally modeled. Second, a symmetric rotor cage
can be indicated by the rotor resistanceR′

r and the ro-
tor leakage inductanceL′

rσ, equivalently transformed
to the stator side. The same parameters are used for
the Machines package of the MSL. The relationship
between the symmetric rotor bar and end ring resis-
tance and the rotor resistance with respect to the stator
side is determined by

R′
r = 2

3ws
2ξs

2

Nrξr
2 {Re,sym+Rb,sym[1−cos(

2πp
Nr

)]}. (8)

A similar equation can be obtained for the rotor leak-
age inductance with respect to the stator side,

L′
rσ = 2

3ws
2ξs

2

Nrξr
2 {Leσ,sym+Lbσ,sym[1−cos(

2πp
Nr

)]}.
(9)

Additionally, the ratios of the resistances
(ratioCageR) and leakage inductances
(ratioCageR), each with respect to the rotor
bars over the end ring segments, can be specified

(Fig. 5),

ratioCageR =
Rb,sym

Re,sym
, (10)

ratioCageL =
Lbσ,sym

Leσ,sym
. (11)

This way, the symmetric cage resistance and leak-
age inductance parameters can be determined fromR′

r ,
L′

rσ, ratioCageR andratioCageL.

4 Torque

The electromagnetic (inner) torque of the machine is
computed by

Tel =
3

∑
i=1

Nr

∑
j=1

dLsr[i, j]

dγm
Is[i]Ir [ j]. (12)

In the presented investigation neither friction nor ven-
tilation losses nor stray load losses are taken into ac-
count.

5 Theoretical Background of Rotor
Faults

The distorted rotor bar currents have an impact on the
fundamental wave of the rotor magneto motive force
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Figure 4: Parameters of the resistances and the leakage inductances of the rotor bars and end ring segments

Figure 5: Parameters of the squirrel cage
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Figure 6: 18.5 kW four pole induction machine

(MMF). The fundamental rotor MMF can be consid-
ered to be composed of a forward and backward trav-
eling wave. The backward traveling wave is caused
by the electrical rotor asymmetry and induces a stator
voltage harmonic component at the frequency

fl = (1−2s) fs (13)

for infinite inertia drives. In this equationfs is the sta-
tor supply frequency and

s=
fs− pn

fs
(14)

is slip, expressed in terms of rotor speedn and the
number of pole pairsp. Due to the impedance of the
machine (and the supply) the stator voltage harmonic
gives rise to a stator current harmonic with the same
frequency. To this stator current harmonic component
literature refers aslower side bandharmonic. A finite
inertia of the drives gives rise to additional upper side
band harmonics at the frequency

fu = (1+2s) fs, (15)

the upper side band harmonic[4]. Between no load
and rated operating conditions slip varies between zero
and some per cent.
Electrical rotor asymmetries give also rise to a distor-
tion of the magnetic field of the air gap [5] and the
stray flux [6]. Additional effects are caused by the in-
teraction of the current side band harmonics with the
fundamental wave of the voltage, which gives rise to
double slip frequency oscillations

ft = 2s fs (16)

of the electrical power and torque [7], [8]. The mag-
nitudes of these fault specific oscillations are much
smaller the average values of the electrical power and
torque, respectively.

Figure 7: For broken one rotor bar a hole is drilled into
the aluminum part of the squirrel cage rotor

6 Investigated Machine

Simulation and measurement results refer to a
18.5 kW, four pole induction machine with 40 rotor
bars (Fig. 6). In this paper simulation and measure-
ment results are obtained for nominal load torque,
nominal line-to-line voltage (400 V) and nominal fre-
quency (50 Hz). The investigations refer to a squirrel
cage with one fully broken rotor bar. For the experi-
ment, the faulty bar was broken by drilling a hole into
the aluminum part as shown in Fig. 7.

For the investigated machineratioCageR=9 was
estimated from the geometry, and in the same way,
without getting into details, it was assumed that
ratioCageL=9, too. With these parameters the
rotor bar and end ring segment parametersRb,sym,
Lbσ,sym, Re,sym andLeσ,sym are computed according to
(8)–(11) for a given rotor resistanceR′

r and a leakage
inductanceL′

rσ. In the Modelica simulation the broken
bar was considered by setting the faulty bar resistance
with index 1

Rb[1] = 100Rb,sym. (17)

This resistance increase causes the current through this
bar to sufficiently vanish.
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Figure 8: Peak values of the rotor bar currents; broken
rotor bar with index 1; simulation results

7 Simulation Results

An electrical rotor asymmetry gives rise to a distortion
of the current distribution of the rotor bars and end
ring segments. The rotor bar currents can be computed
from the rotor currents according to Fig. 3,

Ib[i] = Ir [i]− Ir [i−1]. (18)

For nominal load and steady state operating conditions
the peak values of the the sinusoidal currents of the ro-
tor bars are depicted in Fig. 8. A time domain plot of
some these currents (index 40, 1, 2 and 3) are shown in
Fig. 9. The current of the broken rotor bar (index 1) is
almost zero. Additionally, an interesting phenomenon
can be observed. The currents of the directly adjacent
rotor bars (e.g. index 40 and 2) are significantly larger
than the currents of the remaining rotor bars. Due to
this effect and the associated heat losses, the thermal
stress of the directly adjacent rotor bars increases. This
may also cause a damage of the adjacent bars which
gives rise to an avalanche-like increase of the extend
of the damage. Nevertheless, electrical rotor asymme-
tries spread relatively slow compared to other machine
faults. A significant rise of the fault extend may thus
happen within weeks, months or even years.
Due to the distortion of the current distribution in the
rotor bars, the end ring current distribution changes,
too. The rotor end ring currents of the A- and B-side
can be defined by

Iea[i] = Ir [i], (19)

Ieb[i] = Ir [i] + Ieb. (20)

Without any asymmetry of either of the end rings,
Ieb= 0 applies and therefore the currents of the A- and
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Figure 9: Rotor bar currents; broken rotor bar with
index 1; simulation results
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Figure 10: Peak values of the currents of the end ring
segments; broken rotor bar with index 1; simulation
results

B-side are equal. The peak values of the currents of
the rotor end ring segments are depicted in Fig. 10.
The lower and upper side band harmonics of the cur-
rent arise a few Hertz differing from the fundamental
wave according to (13) and (15). For the investigated
machine 50 Hz machine the Fourier spectrum of a sta-
tor current (phase 1) is depicted in Fig. 11. The lower
and upper side band harmonics clearly arise at 48.6 Hz
and 51.4 Hz. The magnitudes of these side band com-
ponents are, however, much smaller than the magni-
tude of the fundamental. Therefore, electrical rotor
asymmetries can usually not be determined from the
time domain waveforms.

8 Measurement Results

The measured Fourier spectrum of on stator phase cur-
rent is depicted in Fig. 12. Comparing this plot with
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Figure 11: Fourier spectrum of the stator currentIs[1];
simulation results

40 45 50 55 6010−2

100

102

frequency [Hz]

st
at

or
cu

rr
en

tI s
[1

]
[A

]

Figure 12: Fourier spectrum of the stator currentIs[1];
measurement results

the simulation results of Fig. 11 reveals, that the fre-
quencies of the side band harmonics are the same, but
the magnitudes show small deviations. The different
magnitude of the side band harmonics is mainly re-
lated with the inertia of the drive which is not perfectly
tuned such way that the magnitudes match. Addition-
ally, due to the deviation of the modeled rotor bar and
end ring resistance ratio from the real machine cage,
some deviations in the simulation results may arise.
With respect to the comparison of measurement and
simulation results it should also be noted that in a real
motor interbar currents can arise [9], which are not
modeled in the ExtendedMachines library. These in-
terbar currents lead to a current flow through the ro-
tor teeth, first, in general, and, second, adjacent to the
broken bar. Therefore, interbar currents may have an
impact on the magnitudes of the side band currents.

9 Rotor Fault Detection Methods

Only severe rotor asymmetries can be detected
through significant fluctuations of the amperemeters
or wattmeters connected in the feeders of the ma-
chine. Upcoming electric rotor asymmetries require
some more sophisticated detection methods. The most
usual rotor fault detection methods are solely based
on the measurement of one stator current. This class
of methods is calledcurrent signature analysis(CSA)
methods [10], [11], [12]. The measured current is then
processed by either a fast Fourier transform [13] or a
wavelet transform [14], [15] or some other signal pro-
cessing techniques.

A second class of methods is based onpower signature
analysis(PSA), evaluating either total or phase power
[7]. Additionally to CSA or PSA techniques, neural
networks [16], [17] or Fuzzy based methods [18] may
be applied.

A third class uses model based techniques for detect-
ing a rotor fault. One model based technique is the
Vienna Monitoring Method (VMM) which was intro-
duced in 1997 [19]. This method evaluates two mathe-
matical machine models and calculates torque for each
model. In case of a fully symmetrical machine both
models calculate the same torque and torque differ-
ence is zero. An electrical rotor asymmetry gives rise
to side band currents and double slip frequency torque
oscillations. These torque oscillations are differently
sensed by the two mathematical models due to the dif-
ferent model structure. This leads to different mag-
nitudes and phase shifts of the double slip frequency
torque oscillation derived by the two models. There-
fore, torque difference shows a double slip frequency
oscillation which indicates an electrical rotor fault.

The torque difference, divided by the average load
torque, serves as quantity to determine the fault indi-
cator through a certain data clustering technique. The
fault indicator is basically the magnitude of the dou-
ble slip frequency oscillation of the torque difference,
divided by the average load torque. The particular ad-
vantage of the VMM is that it provides a reliable fault
indicator independent of load torque, speed, supply
and inertia of the drive [20], [21], [22].

The VMM has been applied to both the simulation and
measurement results. For the simulation results the de-
termined fault indicator is 0.0093 and the VMM ap-
plied to the measured data leads to a fault indicator of
0.0105. This is a deviation of about 11%. Considering
no parameter tuning of the simulation model this is a
satisfactory result.
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10 Conclusions

For squirrel cage induction machines the background
of electrical rotor asymmetries is discussed. A rotor
topology models for handling cage asymmetries is in-
troduced and the implementation in the ExtendedMa-
chines library is presented.
A 18.5 kW induction machine with one broken ro-
tor bar out of 40 bars is investigated. The simu-
lated and measured stator current Fourier spectrum are
compared and shown good coherence. Additionally,
the simulation and measurement data are applied to
a model based rotor fault detection method – the Vi-
enna Monitoring Method. The comparison of the two
fault indicators determined by the Vienna Monitoring
Method reveals a deviation of about 11%. Considering
that no parameter tuning of the simulation model has
been performed, this is a satisfactory matching result.
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Abstract 

This paper presents a simulation model for a large 
chipper drive used in a paper mill. If the chipper 
drive is a slip ring induction motor, several advan-
tages arise from using a rheostat in the rotor circuit. 
This paper will investigate the impact of a rotor cir-
cuit rheostat with respect to starting behavior and 
heavy duty load impulses. Furthermore an alternative 
chipper drive with a speed controlled squirrel cage 
induction machine will be presented. Both drives are 
modeled in Modelica. Simulation results are com-
pared and discussed. 
Keywords: Chipper drive; slip ring induction motor; 
squirrel cage induction machine; speed control; load 
impulses; simulation model 

1 Introduction 

Chipper drives are used in paper mills for crushing 
trunks and making wood chips. The nominal power 
of a motor used for such applications ranges from 
several 100 kW up to 2 MW and even more. A chip-
per drive is usually not operated continuously, be-
cause load impulse-arise only if a trunk is shredded. 
After that, the motor is not loaded until the next 
trunk is processed. The heavy duty load impulses 
(double the nominal torque) give rise to large motor 
currents which cause large voltage drops across the 
mains impedance. To the regulations of the stan-
dards, and the actual configuration and structure of 
the voltage supply, certain voltage drops (flicker ef-
fects) may not be exceeded during impulse load or 
starting operation. Under some circumstances, the 
chipper drive even has to start with some remaining 
parts of a trunk loaded which is a heavy duty condi-
tion for the motor. 
In the following, two possible chipper drive applica-
tions are presented. First, a slip ring motor with 
rheostat in the rotor circuit and, second, a speed con-
trolled squirrel cage motor is investigated. 

1.1 Slip Ring Motor with Additional Resis-
tances 

Both, starting the chipper drive and heavy duty oper-
ating, cause large currents if no measures are taken. 
For a motor not being supplied by an inverter, high 
starting currents arise from the low locked rotor im-
pedance of the induction motor [1]. It is therefore 
often useful to use a slip ring motor instead of squir-
rel cage motor. With a slip ring motor an additional 
rheostat in the rotor circuit can be used to increase 
the impedance. This gives rise to reduced starting 
currents and improves the torque speed characteristic 
with the effect, that reactions of the load impulses on 
the motor currents and voltage sags are diminished, 
too. 
The significant disadvantages of a slip ring motor 
with additional resistances in the rotor circuit is the 
deterioration of efficiency due to additional losses in 
the external rotor resistances and the high abrasion of 
the brushes, which gives rise to an increased deposit 
of brush dust in the motor. This brush dust subse-
quently increases the risk of isolation breakdown and 
causes higher costs of maintenance. 

1.2 Low Voltage Inverter Supplied Squirrel 
Cage Motor with Speed Control 

An alternative approach which gives rise to reduced 
starting and load peak currents is a speed controlled 
inverter drive with squirrel cage motor (Fig. 1). 
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Figure 1: General diagram of a speed controlled drive 
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The basic topology of a speed controlled drive con-
sists of the electric machine, the power converter, the 
power supply, cascaded current and speed controller, 
the mechanical load, the current sensor and the posi-
tion transducer respectively [2]. The speed controller 
controls the reference stator current of the machine 
according to the deviation of the actual speed from 
the reference speed. The current controller has a 
build in limitation of the current to avoid overloading 
the machine. This leads to efficiency savings over a 
wide operating range and indicates an advantage 
compared to the realization with a slip ring motor. 
The higher investment costs due to the additional 
equipment – the entire speed control implementation 
with all necessary sensors – are disadvantageous, 
however. 

1.3 Technical Data 

Grid 
Frequency 50 Hz
RMS voltage, line-to-line 6000 V
Short-circuit apparent power 50 MVA
Short-circuit power factor 0.05
Transformer's nominal apparent power 1.8 MVA
Transformer's short-circuit p.u. voltage 0.06
Transformer's copper losses 17.5 kW

Table 1: Grid data 

Chipper drive with slip ring motor 
Frequency 50 Hz
Number of pole pairs 2
RMS stator voltage, line-to-line 6000 V
RMS stator current 161.1 A
RMS rotor voltage, line-to-line 1500 V
RMS rotor current 595.3 A
Warm stator resistance per phase 129.0E-3 Ω
Stray stator inductance per phase 6.845E-3 H
Main inductance per phase 273.8E-3 H
Stray rotor inductance per phase 0.4631E-3 H
Warm rotor resistance per phase 8.729E-3 Ω
Motor rated power 1.5 MW
Motor rated rpm 1490.8 min-1

Motor inertia 120 kg.m2

Load inertia 20000 kg.m2

Gear unit 1500:300 min-1

Table 2: Data of the investigated chipper drive with slip 
ring motor 

Chipper drive with squirrel cage motor 
Frequency 50 Hz
Number of pole pairs 2
RMS stator voltage, line-to-line 690 V
RMS stator current 1404.5 A
Warm stator resistance per phase 1.702E-3 Ω
Stray stator inductance per phase 0.10835E-3 H
Main inductance per phase 4.063E-3 H
Stray rotor inductance per phase 0.10835E-3 H
Warm rotor resistance per phase 1.135E-3 Ω
Motor rated power 1.5 MW
Motor rated rpm 1493.9 min-1

Motor inertia 80 kg.m2

Load inertia 20000 kg.m2

Gear unit 1500:300 min-1

Table 3: Data of the investigated chipper drive with low 
voltage inverter supplied squirrel cage motor 

2 Simulation Models 

For performing the Modelica simulations [3] the 
simulation tool Dymola is used. The behavior of the 
chipper drive – except for the inverter and control – 
can be modeled using the comprehensive Modelica 
Standard Library (MSL). 
The free MSL provides a collection of standard com-
ponents and component interfaces for many engi-
neering domains. In the current version of the MSL 
all components for modeling the proposed chipper 
drive are offered. For the proposed simulation mod-
els mainly the MultiPhase, the Machines (includes, 
e.g., direct current, asynchronous induction and per-
manent magnet synchronous induction machines) 
and the Rotational packages of the MSL are used. 
Since the drive controllers are not modeled in the 
MSL, controlled drives cannot be simulated with 
components of the MSL, only. Based on the Ma-
chines library [4] the SmartElectricDrives (SED) 
library [5] facilitates simulations of any electric drive 
application using different control structures and 
strategies. 
The SED library contains models for the components 
used in a state-of-the-art electric drive. Sources (bat-
teries and a PEM fuel cell), converters (ideal and 
power balanced), loads, process controllers, sensors, 
etc. are provided in this library. In the SED library, 
two classes of drives simulations are provided. The 
first class models quasi stationary drives, the second 
class uses the transient models of the MSL. For fast 
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simulations regarding energy consumption or the 
efficiency of a drive, the models of the QuasiSta-
tionaryDrives can be used. They have been modeled 
with the aim to neglect all electrical transients in the 
machines. Mechanical transients due to the rotor in-
ertia are considered, however. A great benefit of the 
QuasyStationaryDrives is the remarkable shorter 
simulation time and the reduced number of input 
parameters due to simpler controller configuration 
and the neglect of switching effects. For the analysis 
of current spikes due to converter switching the 
TransientDrives have to be used. By choosing this 
lower level of abstraction the user pays the price of 
more computing time due to a high number of 
switching events caused by the inverter. 
Besides all elementary components that give the user 
the freedom of building up an entire controlled ma-
chine, ‘ready to use’ models of drives are provided. 
These models can be used to conveniently and 
quickly arrange simulations [5]. The ‘ready to use’ 
models contain converters, measurement devices and 
a field oriented control (FOC). 

2.1 Slip Ring Motor with Additional Resis-
tances 

A slip ring motor with an additional rheostat and an 
external constant resistance in the rotor circuit can be 
used to increase the impedance (Fig. 2). This gives 
rise to reduced starting currents and improves the 
torque speed characteristic (Fig. 3). 

 
Figure 2: Three phase rheostat of a slip ring induction 
motor 

The total rotor circuit resistance ∗
rR  consists of the 

actual rotor (winding) resistance Rr and the external 
resistance, which in turn consists of the variable re-
sistance of the rheostat Rv and an external constant 
resistance Rc: 

 cνrr RRRR ++=∗ . (1) 

During the start-up, the resistance of the rheostat Rv 
is reduced along a linear ramp. The duration of the 
ramp has to be chosen according to the actual inertia 
and starting conditions of the entire chipper drive. 
After reaching nominal speed, the variable resis-
tance, Rv, is short circuited. 

If the motor is not loaded, the resistance Rc does not 
have a significant influence on the motor current and 
speed. If the motor is loaded with a constant load 
torque the stationary speed depends on the actual 
resistance Rc according to 

 
c

crr

s
RR

s
R +

= , (2) 

where s denotes the slip for the case without external 
rotor circuit resistance, and sc is the slip for the case 
with the external rotor circuit resistance Rc [6]. 
The total rotor circuit resistance leads to a scaled 
torque-slip characteristic. Therefore, load impulses 
can be covered partially by the stored energy of all 
rotating masses. The stationary torque speed charac-
teristic of an induction motor is shown in Fig. 3, the 
stator current versus speed is shown in Fig. 4. For a 
short circuited slip ring rotor ( rr RR =∗ ) the torque 
speed characteristic shows a very low starting torque 
and a starting current of approximately 5 times the 
nominal current. For rr RR 21=∗  the stationary char-
acteristics show a significant improvement. In this 
case the locked rotor torque is close to the break-
down torque and the locked rotor current is less than 
4.5 times the nominal current. 

 
Figure 3: Stationary torque versus speed of a slip ring mo-
tor with external rotor resistance 
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Figure 4: Stationary current versus speed characteristic of 
a slip ring motor with external rotor resistance 
 

 

Figure 5: Chipper drive with slip ring motor 

Figure 5 depicts the Modelica model of the chipper 
drive realized with a slip ring motor. The 
6 kV / 50 Hz voltage supply is modeled by three si-
nusoidal supply voltages (sineVoltage) which 
are star (starG) connected. The overall mains im-
pedance including all transmission lines and trans-
formers, is modeled by a series connection of a three 
phase resistor (resistorG) and a three phase in-
ductor (inductorG). For having the root mean 
square (RMS) values of the voltages and currents in 
the simulation results available, an RMS voltmeter 
and amperemeter are connected into the circuit. In 
addition to these instruments, a power sensor is used 
to measure the characteristic power terms of the cir-
cuit. The stator winding of the slip ring induction 

motor (AIM) is star connected, the stator terminals 
are connected with the mains impedances, incorpo-
rating the instruments for voltage, current and power 
measurement. The rotor circuit of the slip ring rotor 
is also star connected. The slip ring terminals are 
series connected to a constant resistor (Rc) and a 
variable resistor (Rv). In the simulation model de-
picted in Fig. 5 the variable resistor is controlled by a 
ramp during the start-up of the motor. The signal 
inputs of the variable resistor, however, can be con-
trolled by any other strategy as well. The mechanical 
shaft of the induction motor is connected with a 
torque and speed sensor. The power is transmitted 
through a gear (idealGear) to the load torque 
(loadTorque) model. The signal input of the load 
torque model is supplied by a time table (loadTa-
ble) modeling impulse loads. 

2.2 Low Voltage Inverter Supplied Squirrel 
Cage Motor with Speed Control 

In Fig. 6 a speed controlled chipper drive with a 
squirrel cage induction motor is presented. This drive 
uses components of the SED library. The voltage 
supply and measurement is the same as in the previ-
ous model, except that a transformer is used to pro-
vide 690 V to the low voltage drive. 

 

Figure 6: Modelica model of a speed controlled chipper 
drive with a squirrel cage motor 

The transformed supply voltage (transformer) is 
rectified (diodeBridge) and provides the inter-
mediate circuit voltage for the inverter. The idealized 
rectifier does not take into consideration the typical 
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non-sinusoidal waveform of a diode bridge. There-
fore the supply current is rather comparable to that of 
an IGBT rectifier. The squirrel cage induction motor 
is supplied by a DC/AC-inverter which is imple-
mented in the field oriented controlled QuasySta-
tionaryDrive model (AIMfoc). The mechanical load 
model of the slip ring motor and the inverter drive 
are the same, however. 
The components of the cascade control system an-
ticipated in Fig. 1 can be parameterized separately 
[7]. Starting from the innermost to the outermost 
closed loop, various parameterization methods can 
be applied to achieve the desired dynamic behavior 
[8]. 

 

Figure 7: Full transient Modelica model of a speed con-
trolled chipper drive with a squirrel cage motor 

In Fig. 7 the full transient Modelica model of a speed 
controlled chipper drive with a squirrel cage induc-
tion motor is presented. This drive uses components 
of the SED library, again. The voltage supply and 
measurement is the same as in the quasi stationary 
model, but using an ideal switching diode rectifier. 
Additionally, the machine inverter is modeled in de-
tail, not being integrated in the drive model. The de-
tailed model of the ideal switching inverter leads to 
high number of events during simulation, and gives 
rise to significantly longer simulation time. 
The dominant mechanical time constants are signifi-
cantly greater than the electrical time constants. Pro-
vided that current peaks due to inverter switching 
may be neglected for this investigation, it is reason-
able to use the QuasiStationaryDrive model which 
saves a significant amount of simulation time. 

3 Simulation Results 

In the presented results each load impulse has the 
same duration (2 s), equal rise and fall times (0.1 s) 
and the torque amplitude is twice the nominal torque. 
The first load impulse starts at t = 30 s, the second 
impulse starts at t = 40 s (cp. Fig. 8 and Fig. 12).  

3.1 Slip Ring Motor 

Simulation results for the chipper drive with slip ring 
motor are depicted in Fig. 8–11, where Rc = 0 Ω and 
Rc = 10Rr were set consecutively. The duration of the 
linear ramp for decreasing the variable resistor 
(Rv,max = 40Rr) is 10 s. From Fig. 8 and 9 it can be 
deduced that the torque and current, respectively, get 
reduced due to the additional resistances in the rotor 
circuit. The supply current of the slip ring motor 
drive equals the stator phase current. 

 
Figure 8: Load response of the slip ring motor (Rc = 0 Ω 
versus Rc = 10Rr and Rv,max = 40Rr) and wave form of the 
modeled load impulses 

 
Figure 9: Stator phase current during start-up and during 
periodic loading of the chipper drive with slip ring motor 
(Rc = 0 Ω versus Rc = 10Rr and Rv,max = 40Rr) 
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From Fig. 10 it is evident, that the additional resis-
tance in the rotor circuit decreases the maximum 
voltage sag at the motor terminals. Figure 11 shows 
that higher external rotor resistance leads to larger 
speed drop during the load impulses. 

 
Figure 10: Stator phase voltage during start-up and during 
periodic loading of the chipper drive with slip ring motor 
(Rc = 0 Ω versus Rc = 10Rr and Rv,max = 40Rr) 

 
Figure 11: Speed during start-up and during periodic load-
ing of the chipper drive with slip ring motor (Rc = 0 Ω 
versus Rc = 10Rr and Rv,max = 40Rr) 

3.2 Squirrel Cage Motor 

Simulation results for the chipper drive with squirrel 
cage motor are depicted in Fig. 12–15. From Fig. 12 
and 13 it can be seen, that the overloading of the ma-
chine is limited effectively by the current controller. 
The diminishing of the supply current peaks shows a 
significant improvement and the voltage drops are 
less than 2 % (cp. Fig. 14). Figure 15 illustrates, that 
the speed drop during the load impulses shows a 
similar dynamic characteristic as the chipper drive 
with slip ring motor (Rc = 10Rr and Rv,max = 40Rr). 

 
Figure 12: Load response of the speed controlled squirrel 
cage motor and wave form of the modeled load impulses 

 

 
Figure 13: Supply current and stator phase current during 
start-up and during periodic loading of the chipper drive 
with speed controlled squirrel cage motor 
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Figure 14: Supply voltage during start-up and during peri-
odic loading of the chipper drive with speed controlled 
squirrel cage motor 

 

 
Figure 15: Speed during start-up and during periodic load-
ing of the chipper drive with speed controlled squirrel 
cage motor 

4 Conclusions 

In this paper two large chipper drives are modeled in 
Modelica. The first drive is a slip ring motor with an 
external resistance in the rotor circuit; the second 
drive is a speed controlled squirrel cage motor. Both 
drives lead to a satisfactory reduction of voltage dips 
and current peaks during the start-up and the pulse 
load operation. 
Using a chipper drive with a slip ring induction mo-
tor, the investment costs for the motor are higher 
than for an induction motor with squirrel cage. In 
case of the slip ring motor the rather simple addi-
tional equipment – the rheostat and its control – 
leads to low total investment costs.  

Disadvantages of the slip ring motor are the deterio-
ration of efficiency due to additional losses in the 
external rotor circuit and the high abrasion of the 
brushes, which gives rise to an increased deposit of 
brush dust in the motor. This brush dust subse-
quently increases the risk of isolation breakdown and 
causes higher costs of maintenance. 
Contrarily, the inverter drive has lower costs of 
maintenance but higher investment costs. Although 
the squirrel cage induction motor is cheaper, more 
expensive additional equipment is needed: a trans-
former as well as a frequency inverter and the entire 
speed control unit with all necessary sensors. 
However, the efficiency savings over a wide operat-
ing range and the absence of brushes indicates the 
main advantages compared to the slip ring motor. 
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1 Abstract 

In this work a buck converter model included in the 
simulation software tool - the SmartElectricDrives 
library - is verified. The main focus is put on the 
converter losses. For these purposes a buck converter 
test bench was designed and set up. The power losses 
where measured according a defined series of 
measurements. Conduction and switching losses are 
investigated in this paper and their impact on the 
converter behavior is analyzed. As a result of the 
implemented losses concept the user should be able 
to parameterize the converter without comprehensive 
knowledge about transient transistor effects and data 
sheet availability.  

2 Introduction 

DC-DC converters are used to convert the 
unregulated DC input into a controlled DC output at 
a desired voltage level. The input voltage can be 
provided by a DC voltage source (e.g. a battery) or 
the DC-bus of an AC-DC-converter. The DC-DC 
converters are widely used in regulated switched 
mode DC power supplies and in DC motor drive 
applications.  
In this paper one DC-DC-converter, like those 
utilized in electric vehicles, is investigated. The 
measurements on an electric vehicle emphasize the 
role of the dc-dc converter on the automotive market. 
In the investigated vehicle there are utilized three 
DC-DC converters in total. Two of them are used for 
feeding the electrically excited DC motor and one of 
them for charging the board system battery. 
For shortening the period of development and 
reducing costs, simulation is a crucial step in the 
continuous design process. For the simulation of the 
energy flow of an entire hybrid vehicle [5] [6], the 
losses of each component have to be taken into 
account. So the modeling of the power losses in DC-

DC converter are relevant regarding the power 
balance of the whole system. Special software tools 
are necessary for this development process because 
the conventional simulation and calculation 
programs do not meet interdisciplinary and dynamic 
demands. In this contribution the Modelica [1] model 
of a DC-DC converter, taking the power dissipation 
into account, will be presented. Moreover the 
simulation results will be validated through 
measurements. 

3 The Buck-Converter Model 

3.1 The SmartElectricDrives Library 

The SmartElectricDrives (SED) library [2] is written 
in Modelica and developed by arsenal research, with 
the focus on automotive applications. The SED 
library contains all basic machine types like 
asynchronous induction machines, permanent 
magnet synchronous machines, and direct current 
machines combined with various components needed 
for modern closed loop controlled drive systems like 
controllers and power electronic converters. 
The most common DC-DC converters such as the 
chopper, the buck (step-down) converter, the boost 
(step-up) converter, the buck-boost converter and the 
full bridge are already included in the current version 
of the SED. The consideration of losses is planned to 
be implemented in the next release of the SED. 
An important feature of the SED is that some 
components e.g. all the converter models are 
implemented at two different level of abstraction. 
The user can choose between power balance 
converters and ideal switching converters. In power 
balance converters the current flow is adjusted 
automatically due to the energy balance between the 
supply side and the load side considering switching 
and conduction losses. In switching converters the 
output voltage and the current flow is given by 
transistors switching states which are controlled by 
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pulse width modulation. Power balance converters 
are designed for simulations in which switching 
effects do not have to be considered. Their big 
advantage is that simulations work much faster with 
these models since the calculation effort for the 
power balance equation is much smaller compared to 
processing a large number of switching events.  

3.2 The Buck-Converter 

The basic structure of a buck converter is shown in 
Figure 1. A buck converter produces an average 
output voltage vLoad less than the DC input voltage 
vSupply. By varying the duty ratio  

S

on

T
t

D =   (1)

of the switch, vLoad can be controlled. 

ont …switch on duration 

offt …switch off duration 

ST …switching time period 

L…inductance 
C…capacitance 

Figure 1: Basic structure of the buck-converter 
The ideal output voltage vLoad of the buck converter 
without considering the conduction losses is: 

DvSupplyvLoad ⋅=  (2)
 
Normally, the switch is either an IGBT (Insulated-
Gate Bipolar Transistor) or a MOSFET (Metal Oxide 
Semiconductor Field Effect Transistor). 

3.3 The Losses in the Buck-Converter Model 

The losses of the buck converter [3] [4] are mainly 
conduction losses and switching losses. Conduction 
losses occur when the converter current flows 
through the internal power electronic components 
and involves a voltage drop, reducing the output 
voltage. Switching losses arise during the switching 
of the transistor or diode. During ‘switching on’ the 
voltage drop decreases whereas the current rises, 
causing high losses. Contrarily, during ‘switching 
off’ the losses are causes by a rising voltage drop and 
a decrease of the current. 

The conduction and switching losses are considered 
in both the power balance and the ideal switching 
converter model.  
• Conduction losses of the ideal switching model 

are affected by forward state-on resistance and 
the forward threshold voltage of the transistor 
and the diode, respectively. The power balanced 
converter model uses a controlled voltage drop 
to take the conduction losses into account. The 
losses of the inductor are considered too, 
whereas the losses in the capacitor are neglected. 
A parameter estimation function supports the 
user in determining consistent parameters. 

• Both the power balance and the switching 
converter model use a controlled current sink at 
the input terminal to take the switching losses 
into account. For calculating the actual switching 
losses, the nominal switching power dissipation 
with respect to the rated operation point has to be 
known.  

4 Calculation of Converter Losses  

4.1 Conduction Losses 

For the calculation of conduction losses it is assumed 
that the inductor current flows continuously. In this 
case one converter switching period consists of two 
converter circuit states (Figure 2 and Figure 3). 

 
Figure 2: Buck-Converter circuit state: switch on 

 
Figure 3 Buck-Converter circuit state: switch off 

In steady state operation the waveform of voltages 
and currents repeat periodically. Therefore the 
integral of the inductor voltage vl over one period, 
Ts, is zero:  
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According to the Kirchhoff's voltage laws applied to 
both converter circuit states (Figure 2 and Figure 3), 
(3) leads to: 
 
[ ]
[ ] )1())(
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DVRRivLoad

DRRiVvLoadvSupply
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(4)

 
From (3) we obtain the average voltage drop 
between ideal (2) and real output voltage: 

[ ]
[ ] )1())(
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DRRiV

DRRiV
vLoadDvSupplyv
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+⋅+⋅+
=−⋅=∆

 
(5)

 
The conduction losses of the power transistor  

[ ] DiVRRiP KneeTLonTTC ⋅⋅++⋅= )(2
_  (6)

 
and the diode 

[ ] )1()(2
_ DiVRRiP KneeDLonDDC −⋅⋅++⋅=  (7)

 
sum up to the total conduction losses: 

DCTCC PPP __ +=  (8)

 
Equation (6) and (7) prove that the model of the ideal 
switching power semiconductors inherently model 
the conduction losses. The voltage drop of the power 
balance model is based on (5). 

lv …inductor voltage 

vSupply , vLoad .…average supply voltage, average load 
voltage 

onTR , onDR …state-on resistance of transistor/ diode 

LR …inductor resistance 

kneeTV , kneeDV …forward threshold voltage of 
transistor/diode 
i …average inductor current (equals average load current) 
iLoad …average load current 

4.2 Switching Losses 

Detailed modeling of the switching losses through 
switching events leads to a high numeric effort. 
Therefore the average of these losses according to 

(9)-(15) is taken into account in the SED buck-
converter. 
 

DSTSS PPP __ +=  (9)
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(11) 

 
The blocking voltages of the transistor and the diode 
are: 

kneeDonDDTblocking VRivSupplyv +⋅+=_  (12)

 
kneeTonTTDblocking VRivSupplyv −⋅−=_  (13)

 
The nominal blocking voltages of the transistor and 
the diode are: 

kneeDonDNomTTblocking VRiVDCv
Nom

+⋅+= __  (14)

 
kneeTonTNomDDblocking VRiVDCv

Nom
−⋅−= __  (15)

 

TSP _ , DSP _ …switching losses in transistor/ diode 

SP …sum of switching losses 

DSr _ …ratio of switching losses in the diode 

Ti , NomTi _ …transistor current/ nominal transistor current 

Di , NomDi _ …diode current, nominal diode current 

Treversev _ / Dreversev _ …blocking voltage of 
transistor/diode 

NomTreversev _ / 
NomDreversev _ …nominal blocking voltage of 

transistor/ diode  
VDC…nominal DC supply voltage 
f , Nomf …switching frequency/ nominal switching 

frequency  

5 Measurement Setup 

The measurement setup is shown in Figure 4. 
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Figure 4 Measurement setup  

Two power MOSFETs are used. One of them 
(MOSFET_1) is used as switch. The freewheeling 
diode of the other one (MOSFET_2) is used as buck 
diode. The converter is fed by a constant DC-
voltage. A constant current source is used as the 
converter load. The switching MOSFET_1 is 
controlled by a waveform generator. The pulsewidth 
of the waveform generator is variable from 0 to 1 (0 
means an open switch, whereas at duty cycle 1 the 
switch is closed all the period).  
The parameters in Table 1 are obtained from the data 
sheet [7] of the used MOSFETs and measurements, 
respectively. 
 
MOSFETs mΩRonT 7=  (data sheet) 
 mΩRonD 3= (data sheet) 
 VVkneeT 0= (data sheet) 
 VVkneeD 8.0= (data sheet) 
Inductor mΩRL 9.2= (measured) 
 HL µ57.4= (measured) 
Capacitor FC µ0001=  (measured) 

Table 1 

The conducted measurements are summarized in the 
Table 2.  
ID VDC iLoad 

 
f duty cycle 

 
M1 30 V 5 A 100kHz 0.2,..0.8 (step 0.1) 
M2 30 V 10 A 100kHz 0.2,..0.8 (step 0.1) 
M3 30 V 15 A 100kHz 0.2,..0.8 (step 0.1) 
M4 30 V 20 A 100kHz 0.2,..0.8 (step 0.1) 
M5 30 V 25 A 100kHz 0.2,..0.8 (step 0.1) 
M6 30 V 30 A 100kHz 0.2,..0.8 (step 0.1) 
M7 30 V 35 A 100kHz 0.2,..0.8 (step 0.1) 
M8 30 V 40 A 100kHz 0.2,..0.8 (step 0.1) 

Table 2  

Figure 5 illustrates the obtained power losses versus 
duty cycle for measurement M5.  

 
Figure 5: Power losses @25A 

6 Simulation and Comparison with 
Measurement Results 

6.1 Simulation 

Figure 6 shows the simulation model of the buck 
converter. The operation conditions summarized in 
Table 1 are also applied to the simulations.  

 
Figure 6: Simulation model of the buck converter 

The measurement result of the total power losses at 
the nominal operating point (load current of 25 A; 
duty cycle of 0.5; switching frequency 100 kHz) is 

WPl 85.48= . The conduction losses at the nominal 
operating point are calculated according to (6)-(8) 

WPC 93.14= . The switching losses are calculated as 
the difference between total losses and conduction 
losses: WPS 92.33= . The simulation reference values 
of switching losses in the nominal operating are 
defined by this calculated value. The simulation is 
fed by this value of switching losses. By changing 
the nominal operating point the value of the power 
dissipation is calculated by equations (9)-(15). 
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In Figure 7 the measured and the simulated power 
losses versus the duty cycle for measurements M2, 
M5 and M8 are compared. 

 
Figure 7: Comparison of measured and simulated 

power losses at different load currents 

The output voltage is strongly dependent on the duty 
cycle, and almost independent of the load current. 
Figure 8 presents the load voltage versus duty cycle 
at three different load currents. 

 
Figure 8: Measured output voltage at different load 

currents 

The deviation of the simulated output voltage from 
the measurements results is less than 4 % (Figure 9).  

 
Figure 9: Simulated voltage error at different duty 

cycles and load currents  

6.2 Parameter Optimization 

Temperature dependency and other physical effects 
lead to simulation results deviating from 
measurements. The measured losses in Figure 10 
were linearly approximated, leading to the fitted 
parameters shown in Table 3. 
MOSFETs mΩRonT 8.13=  
 mΩRonD 3=  
 VVkneeT 0=  
 VVkneeD 0.5245=  

Table 3 

 
Figure 10: Power losses curve fitment 

 
The change of the operation condition summarized 
in Table 1 is applied to the simulations. 
Figure 11 illustrates the average errors (average error 
using parameter set from Table 1 and average error 
using parameter set from Table 3) of the simulated 
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losses from the measurement results at different load 
currents. Average error means the averaged error 
value over the duty cycle at a specific load current. 

 
Figure 11: Average errors 

It is obvious that the simulation with the new 
parameter set delivers better results in a large range. 

7 Conclusion 

In many applications DC-DC power converters are 
employed in a variety of applications, including 
power supplies for computers, power systems and 
telecommunications equipment, as well as dc motor 
drives.  
For the simulation of the energy flow of an entire 
hybrid vehicle, the losses of each component have to 
be taken into account. The consideration of losses in 
DC-DC converter simulations should be organized 
user-friendly. This means that without big 
knowledge of all converter elements parameter it 
should be possible to carry out significant simulation 
results for a large operating range. As the measuring 
and simulating results have already shown, this 
target is fulfilled by the in the SED implemented 
DC-DC buck converter. The conduction losses are 
defined by forward resistances and threshold 
voltages. These parameters can get by data sheets or 
by measurements. To consider the switching losses, 
the nominal switching power dissipation with respect 
to the rated operation point has to be known. An 
optimization in a sub-operating range is easy done by 
calculating new parameters from the linear 
approximated measured power losses curve and 
using this improved set of parameters in the 
simulation.  
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Abstract 

This paper presents a real-time simulation system for 
a Suse Linux Enterprise Real-Time (SLERT) operat-
ing system workstation. With this system can be 
executed Hardware-in-the-loop (HIL) simulation. 
HIL is the integration of real components and system 
models in a common simulation environment. The 
main focuses of this simulation system presented in 
this paper are the development and the validation of 
simulation models of electric components (e.g. bat-
tery systems, electric drives etc.) for Hybrid (HEV) 
and Electric Vehicles. 
The system is based on a Linux real-time computer 
with numerous analoge/digital input and output 
channels and all simulation models are implemented 
in Modelica using the for example the SmartPower-
trains and SmartElectricDrives libraries. The models 
are simulated with the Dymola simulation environ-
ment for Linux. 
Keywords: Real-time simulation, hardware-in-the-
loop simulation, hybrid electric vehicle 

1 Intoduction 

Hardware-in-the loop (HIL) is a useful method for 
the testing hybrid and electric vehicles components 
and is important for the validation and the verifica-
tion of implemented simulation models. The integra-
tion of real components and virtual models in a 
common simulation environment highly supports the 
development processes of hybrid and electric vehicle 
components like electric drive systems or energy 
storage systems. 
At Arsenal Research vehicle models are imple-
mented in Modelica using the powerful SmartPow-
erTrains and SmartElectricDrives libraries. These 
vehicle models can be simulated with the Dymola 
simulation environment. The proposed hardware-in-
the-loop simulation workstation is based on a Dual 

CPU Xeon system with a SUSE Linux Enterprise 
Real-Time (SLERT) operating system. This operat-
ing system allows CPUs to be shielded from other 
processes and guarantees a highly deterministic exe-
cution environment. This system guarantee short re-
sponse times and fast cycle times which are essential 
to meet the requirements of HIL simulations of for 
example electric drive trains. On this computer sys-
tem can be executed standard Linux application such 
as the Dymola simulation tool. With the Modelica 
Real-Time Interface software, which was developed 
by Arsenal Research an interconnection between the 
simulation tool and I/O processes was realized. On 
this system sampling times up to 400 microseconds 
can be achieved depending on the complexity of the 
simulation model and the number of input and output 
channels. The I/O functionality of the HIL work-
station is realized by data acquisition cards on which 
can be connected the high-power energy storage test 
bench and the high dynamic dynamometer. The en-
ergy storage test bench has a maximum charge 
power of 48kW and a maximum discharge power of 
44kW at a maximum voltage of 600V. With the 
drive train test bed (dynamometer) can be tested 
electric drives with a maximum power of 110kW and 
up to a speed of 8000rpm. To connect Electronic 
Control Units (ECU) to the HIL simulator there ex-
ists also a CAN interface to the simulation environ-
ment. In that way the simulation can for example 
generate reference values which will be transmitted 
by CAN to the testing system or for example the 
simulation receives signals from the ECU and can 
evaluate these signals. 
Detailed information about the implemented hybrid 
and electric vehicle models and especially about 
their real-time capability will be given in the paper. 
Also the connection between the Dymola simulation 
tool and the I/O functionalities will be described. 
Finally as an application example for the test facility 
a HIL simulation of a real electric drive system 
(electric drive, power electronics and battery) for a 
two wheels vehicle will be shown.  
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Figure 1: System overview of a HIL configuration for testing the electric components of a hybrid electric 
vehicle 
 

2 System Overview 

2.1 Real Time Computer 

The main part of the proposed system is a 3.2 GHz 
Dual CPU Workstation with a SUSE Linux Enter-
prise Real-Time (SLERT) operating system. On this 
system operates a normal Dymola simulation envi-
ronment for Linux on which can be implemented and 
simulated Modelica models. The effort of this system 
is that the simulation models can be executed in real-
time directly from the simulation environment.  
The proposed simulation computer with the SLERT 
operating system guarantees short response times 
and fast cycle times; such fast sampling time is for 
example required for HIL simulations of drive trains. 
A sampling frequency of over 2 kHz can be achieved 
depending on the complexity of the simulation 
model and the number of input and output channels. 
The input and output functionality to the test benches 
is provided by an analoge/digital data acquisition 
card connected and for the digital communication 
with Electronic Control Units (ECU) by an external 
CAN interface.  

2.2 Testing Infrastructure  

The simulation environment on the Linux computer 
generates reference values for the drive train test 

bench on which is connected the testing drive and for 
the energy storage test bench on which is for exam-
ple connected a real battery. As feedback the simula-
tion tool receives measured values from the real 
components. In figure 1 is given a possible sche-
matic overview of the HIL system for testing the 
electric components for a hybrid or an electric vehi-
cle. In this case the motor control unit (MCU), the 
power electronics (inverter), the electric drive, the 
battery management system (BMS) and the battery 
stack are the systems under test. The behavior of the 
vehicle for example the internal combusting engine, 
the driving dynamics, the ambient conditions, the 
drive cycle and the driver will be simulated on the 
real-time simulation workstation. 
 
Table 1: Technical data of drive-train test-bench 
(dynamometer) 
 
Peak Power 110 kW 
Peak Torque 500 Nm 
Peak Speed 8000 rpm 
Control Modes Torque or Speed 
Ext. Data I/O Freq.  500 Hz 
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Table 2: Technical data of electric energy storage 
test-bench 
 
Charge mode  
Peak Voltage 480 V 
Peak Current 100 A @ 480 V or 

500 A @ 60 V  
Discharge mode  
Peak Voltage 600 V 
Peak Current 540 A @ 600 V or  

750 A @ 60 V 
Control Modes Voltage, Current, Power, 

Resistance 

3 Modelica Real-Time Interface 

The Modelica Real-Time Interface provides an inter-
connection between the Dymola simulation tool and 
the input and output functionalities of the system. 
The interface guarantees the synchronisation be-
tween the simulation time and the real time. Simula-
tion time means the virtual time inside of the simula-
tion time which will be matched with the time in the 
real world by the Real-Time Interface. The interface 
provides also the signal conditioning of the simula-
tion variables to input and output values of the DAC 
channels, in that way the test benches can be con-
nected directly to the simulation workstation.  
 

 
Figure 3: The two main processes for the real-time 
simulation  
 
For a running real-time simulation two main proc-
esses the so-called Dymosim process and the RTmod 
process works together. The model and solver are 
executed in the Dymosim process, this is the left-
handed process in figure 3 . The model can be build 
with the RTInterface blocks for example for Trigger 
functions and data I/O. Data I/O is implemented by a 
Shred Memory and synchronized by semaphores. All 
functionality in Modelica is implemented using ex-
ternal c-functions and Modelica standard blocks. The 
RTmod process (right-handed process in figure 3) is 
completely c-written it includes the Frequency Based 
Scheduler synchronization the Data I/O over shared 

memory and the DAQ functions for analoge and 
digital In- and Output.  
 

 
 
Figure 2: Functional overview of the Modelica real-
time interface 

4 Application Examples  

4.1 Hybrid Electric Vehicle HIL Simulation 

A hardware-in-the-loop simulation of a HEV system 
will be shown as an application example. The behav-
ior of a Mild HEV is simulated on the Linux real-
time computer on which is connected a real electric 
drive with a peak power of 12 kW and the motor 
control unit for this electric drive. The whole HEV is 
modeled in Modelica using the SmartPowertrains 
library and the SmartElectricDrives library. Based on 
suited power requirements pointed out by a drive 
cycle, the simulation model generates the reference 
values for the testing drive, (e.g. a reference torque) 
which are communicated to the Motor Control Unit 
(MCU) via the CAN bus and the power inverter gen-
erates the electric signals for the drive. The measured 
torque in the load cell of the test bench corresponds 
to the torque of the power train, this feedback value 
goes back the simulation model and new reference 
values can be calculated. 
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Figure 4: HEV hardware-in-the-loop simulation 
 

4.2 Electric Two-Wheeler HIL Simulation 

The capabilities of electric two-wheelers are inten-
sively investigated due to their high potential for im-
proved urban mobility as well as tourist or sport ap-
plication. Nevertheless existing products are in many 
cases lacking of appropriate range or power to 
achieve a broad (satisfactory) customer acceptance. 
To evaluate the technological potential of electric 
two-wheelers different e-scooter concepts have been 
analyzed by simulation. Based on the simulation en-
vironment available at arsenal research an electric 
scooter model was set up and simulations using dif-
ferent electric drive configurations have been per-
formed. The results allow for determination of high 
power scooter concepts. For validation and demon-
stration of a high power two-wheeler an e-scooter 
prototype has been realized and tested. The simula-
tion and test results in e.g. performance and range 
will be given as well as the further improvement po-
tential will be discussed. 

 
Figure 5: Electric two-wheeler hardware-in-the-loop 
simulation 

5 Conclusion 

In the provided paper is presented a HIL simulation 
solution for development and for testing of compo-
nents for HEV`s. The powerful hardware of the 
simulation computer and the real-time operating sys-
tem allows the simulation of complex models with a 
fast data exchange with the real components which 
are connected to test benches. With the described 
Modelica Real-Time Interface it is possible to exe-
cute the HIL simulation direct from the Dymola 
simulation tool with which was implemented the 
model.  
The benefit of this system is that a simulation engi-
neer can for example validate an implemented model 
directly, matching the simulation results with the 
measured values at the connected real component. Or 
in the advanced development an engineer can test a 
developed component also when the entire system is 
not available; the prototype of the system exists only 
as a virtual model in the simulation. 
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