MOoDELICA

Proceedings
of the 4th International Modelica Conference,
Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

G. Ferretti, M. Gritti, G. Magnani, G. Rizzi, P. Rocco

Politecnico di Milano, Italy

Real-Time Simulation of Modelica Models under Linux / RTAI
pp. 359-365

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,

organized by The Modelica Association and the Department of Thermodynamics, Hamburg University

of Technology

All papers of this conference can be downloaded from
http://www. Modelica.org/events/Conference2005/

Program Committee

Local Organization: Gerhard Schmitz, Katrin Prol, Wilson Casas, Henning Knigge, Jens Vasel,

Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).
Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

Dr. Francesco Casella, Politecnico di Milano, Italy.

Dr. Hilding Elmqvist, Dynasim AB, Sweden.

Prof. Peter Fritzson, University of Linkping, Sweden

Prof. Martin Otter, DLR, Germany

Dr. Michael Tiller, Ford Motor Company, USA

Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Stefan Wischhusen, TuTech Innovation GmbH

Real-Time Simulation of Modelica Models under Linux / RTAI

Real-Time Simulation of Modelica Models under Linux / RTAI

Gianni Ferretti Marco Gritti

Gianantonio Magnani

Gianpaolo Rizzi Paolo Rocco

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano

Abstract

The paper presents a concept and its implementation
software modules to obtain ready to run real-time sim-
ulation code directly from Modelica models. Basi-
cally, a Modelica special model building block has
been developed supporting the definition of the real-
time input /output variables, their communication with
external tasks or systems (e.g. a real hardware and
software controller), and the scheduling of the periodic
execution of the simulation task. The special module
links to the real-time operating system (Linux with ex-
tension RTAI) through a special purpose C library. The
real-time simulation of a 7-DOF space robotic arm is
presented as a test case.

1 Introduction

Real-time simulation systems are mainly used for test-
ing and check out of control electronics and other com-
ponents of complex systems (“hardware-in-the-loop”
simulation), like power plants, aircraft, vehicles, as
well as for training of plant operators, aircraft pilots,
and astronauts.

In real-time simulators model inputs must be acquired
from external devices each sample time and model
equations must be solved within fixed time intervals,
so that a selected subset of computed variables can be
output the next sampling time. To implement real-time
communication with external world and to schedule
model execution exactly each sampling time, the simu-
lation software relies on system primitives whose calls
are added to the model solution code. Usually, an ef-
fort is also necessary to simplify model equations most
demanding from the point of view of computational
burden.

Commercial tools exist that allow to adapt off-line
models to real-time simulations on dedicated hard-
ware. A typical situation consists in porting Simulink
models to dedicated hardware using the Matlab Real
Time Workshop [2] or the dSPACE TargetLink [6].

Simulink and also Dymola [1] models can be inter-
faced with dSPACE hardware to allow hardware in the
loop simulations. Tools [6] exist also to assist the pro-
duction of special Simulink models whose simulation
can be run on multi-processor hardware.

On the other side, research efforts are spent to port
the simulators obtained with open-source modeling
tools like MBDyn [3] on real-time [5] possibly dis-
tributed platforms, like RTnet [4]. And also, efforts are
spent to generate parallel code from Modelica mod-
els [10][11], to be eventually executed on supercom-
puter platforms [12].

This paper deals with the problem of obtaining ready
to run real-time simulation code directly from Mod-
elica models, so that already available models can be
executed in real-time, and all the powerful Modelica
libraries and the features and tools of a Modelica ed-
itor / compiler, such as Dymola, can be exploited for
the development of new models.

The way this goal has been achieved is illustrated in
this paper. In Section 2 the simulation platform re-
quirements and main features are discussed. In Sec-
tion 3 the proposed real time extension to Modelica
is described. In Section 4 a test case of the real-time
software modules is presented. A detailed open loop
model of the Spider arm, a seven degrees of freedom
Italian space manipulator, is exploited. The real-time
simulated robot arm can also be controlled through
a real-time software controller running on a second
workstation. A short description of this software con-
troller is given in Section 5.

2 The simulation platform

2.1 Requirements
The real-time dynamic simulation software should:

e satisfy the constraints of periodic real-time exe-
cution;

e be able to interface itself with external processes,
possibly with hardware;

The Modelica Association

359

Modelica 2005, March 7-8, 2005

G. Ferretti, M. Gritti, G. Magnani, G. Rizzi, P. Rocco

e be easily derived from models developed for the
off-line simulation.

2.2 Real-time execution platform

The purpose of obtaining a real-time application im-
poses the choice of an operating system capable of
supporting the execution of real-time processes.

The Linux operating system extended with the Real
Time Application Interface (RTAI) [7] has been cho-
sen. This operating system supports the execution of
real-time processes, it is open-source, and it is widely
used among the scientific community and in the Euro-
pean research centers.

2.3 Interoperability issues

Many custom libraries are available for Linux / RTAL
For the purposes of this project, the COMEDI (COn-
trol and MEasurement Device Interface) [8] library,
developed by the open-source community, is particu-
larly interesting. By means of a set of standard inter-
faces, COMEDI allows to manage the communication
with hardware boards, and so provides a valid support
for the data exchange on hardware channels. Actually,
a device driver equipped with the COMEDI interface
(see Section 5.2) has been exploited. This driver al-
lows the access to an Ethernet board masking it as an
acquisition board for analog and digital signals.

2.4 Real-time model generation

The dynamic models for the off-line simulation were
developed in Dymola [1], a Modelica editor and com-
piler. In order to make as easy as possible the produc-
tion of real-time models, it has been investigated the
possibility of deriving the real-time models directly
from the off-line models developed in Dymola. After
having analyzed the features of Dymola, it has been
found possible to use it also for the development and
the compilation of real-time models. So, it is possible
to both reuse the off line models by rapidly adapting
them to the real-time simulation, and to build up some
new model from scratch, with the advantage to use all
the model libraries and the graphical instruments of
such application.

2.5 Numerical integration issues

The features and the performances of the real-time nu-
merical solvers available in Dymola have been ana-
lyzed in order to determine the most appropriate al-
gorithm for the case study. It has been found that in

order to obtain the maximum processing speed and to
avoid the risk of a non convergent solution it is advis-
able to select the Inline Integration method applied to
the Implicit Euler algorithm.

3 Real-time Modelica extension

3.1 Real-time components

A Modelica component has been developed that al-
lows to transform any Modelica model into a model
suitable for real-time simulation. This Modelica com-
ponent, is a Modelica block that is called ModRTAI,
and it can be used in the graphical user interface of Dy-
mola as a normal building block of simulation models.
ModRTALI uses a library of functions, called LibRTAI,
which has been also developed within this project. Li-
bRTALI has been entirely developed in the C language
and contains the functions which allow the simulation
code to access the RTAI and COMEDI libraries.
More precisely, by adding to the model development
environment both a ModRTAI component and the Li-
bRTALI library it is possible to perform the activities
mentioned in the project requirements:

e Periodic execution at precise clock ticks of the
simulation task, through access to the RTAI ap-
plication programming interface;

e Management of the communication with the ex-
ternal world, through access to the interface of a
COMEDI driver.

3.2 Porting a model to real-time

By means of the two modules which have been devel-
oped it is possible to obtain a Modelica model suitable
for real-time simulation under Linux / RTAI Given an
off-line Modelica model, the ModRTAI block allows
to select the signals which are input to the model (to
be acquired from the external world), and the signals
which are the output of the model (to be sent to the ex-
ternal world). The ModRTAI block also allows to set a
parameter that states the frequency of the periodic task
running the simulation. This parameter indicates how
much time is left to the numerical solver to evaluate the
transient related to one sampling interval. Only if such
parameter is equal to the sampling interval, the simula-
tion time should match the physical time elapsed since
the instant in which the simulation itself was started;
otherwise the simulation time develops slower than the
physical time of a factor equal to the ratio between the

The Modelica Association

360

Modelica 2005, March 7-8, 2005

Real-Time Simulation of Modelica Models under Linux / RTAI

task scheduling period and the sampling step of the
transient.

The Modelica model has to be compiled with Dy-
mola under Linux, having selected the Inline Integra-
tion option and the Implicit Euler as integration algo-
rithm. The functions library LibRTAI should be in-
stalled on the workstation onto which the model is
compiled. The simulator which is generated in such
way is called Dymosim, as a normal simulation binary
file obtained by means of compiling with Dymola a
Modelica model. The only difference is that the Dy-
mosim binary obtained in such way is runnable in soft!
real-time under Linux / RTAI Figure 1 resumes the
steps for porting a Dymola model into real-time.

Development Environment

Dymola Mocdel
+
ModRTAI (modelica)
LibRTAI (standard C)

Compilation:;

inline integration
optimized code + implicit Euler
integration algorithm

Simulation Environment

Dvmosim Executable |~rs @tidam L Bl

+ - aritn i g
Linux/RTAI

(realtime scheduler) ==

Comedi Library [=
Comedi Driver L=

Figure 1: Development of a real-time Modelica model
using Dymola

In order to allow the data exchange with external pro-
cesses, the Dymosim simulator should be run on a
workstation on which the COMEDI library is installed,
and the drivers of the peripheral board onto which
should flow the data signals in input and output to
the simulator are installed too. By now, the simula-
tor has been tested using an Ethernet communication
board, which directs the signals to another worksta-

'In Linux / RTAI a hard real-time process runs in the Linux
kernel space and has more strict timing constraints, while a soft
real-time process runs in the Linux user space and has more loose
timing constraints. In Section 4 it is explained why the soft real-
time solution has been preferred.

tion. The Ethernet board, equipped with drivers with a
COMEDI interface, emulates a data acquisition board,
as described in Section 5.2.

The entire procedure has been tested using a model
of the Spider robotic arm with detailed descriptions
of motors and transmissions (see Section 4), which
was developed in a former research [14][13]. In this
model the outputs are the seven motor positions, while
in input the model receives the seven motor current set-
points, and a digital signal controlling the brakes that
in the home position block the motors axes. Experi-
mental results about the performance of the Dymosim
real-time simulator obtained with this model will be
illustrated in Section 4.

[nitial State 2
(Evaluation)T_D

v

positions Systemn Qutput T=lssl
Writing

System Input
Reading

set-points

process
scheduling

Simulation End

Figure 2: The simulation process execution cycle.

3.3 The simulator process

The real-time execution of the simulation code has the
purpose of computing, at the chosen frequency, the so-
lution that represents the evolution of the model state.
The output of the model should be passed to an exter-
nal control unit, which could be another workstation
running the control procedure, or a dedicated hard-
ware controller. The control system, on the basis of
the received data, computes a control action that is sent
to the workstation on which the real-time simulator is
running. The simulator evaluates the new model state
on the basis of the received input. This elementary cy-
cle, illustrated in Figure 2, is executed till the end of
the simulation.

The Modelica Association

361

Modelica 2005, March 7-8, 2005

G. Ferretti, M. Gritti, G. Magnani, G. Rizzi, P. Rocco

2

[>| -HJ iIr'|ertiaL
= s
fangea o B o] g

elastobacklash

IdealGear=r_rid
GGearEfficiency .
efa=eta

flange_b

Figure 3: Modelica scheme of the transmission of the real-time Spider robot model.

At every wakeup of the periodic process, the simulator
has to evaluate within a maximum time span® the next
model status, and the corresponding outputs. This time
span is equal to the scheduling period of the simulator
process. Since the control loop should be closed on
a digital (either hardware or software) regulator, it is
mandatory that at any wakeup the simulator process is
fed with inputs sampled at a constant frequency, and in
the same way it yields as output some signal sampled
at a constant frequency. This leads to the necessity to
use a fixed step algorithm for the numerical integra-
tion, just as the Implicit Euler algorithm is.

As it has been said in Section 3, in order to synchro-
nize with real-time a standard Dymosim process, and
in order to exchange the model inputs and outputs with
the external world, some calls to the external C func-
tions implemented in the LibRTAI have been added in
the ModRTAI block. These functions are:

e RTAIGetInputSample(...)
e RTAIGetData(...)

e RTATPutOutputSample(...)

At every step, when the numerical solver tries to solve
all the equations of the model, these three C func-
tions are called in this order. The first and the third
ones assign the external input variables to the vector
of model inputs, and the vector of model outputs to
the external output variables. By means of these two
functions, the data are only put in some internal buffer
of the LibRTAI module. Instead, the real data ex-
change with the external process / hardware is done
by RTAIGetData(...).

There is no way to set a constraint on a Dymola numerical
integrator forcing it to yield a result at every step within a physical
maximum time. The missed deadline is checked by comparing the
theoretical time in which the result should have been yield with
the time in which the Dymosim process has actually released the
control.

Ifinitial () orterminal () are true in the Mod-
elica code, RTAIGetData (...) respectively per-
forms the initialization or the finalization of the the
real-time process associated with Dymosim; otherwise
such function performs the real data exchange and then
it suspends the process.

During the initialization, the RTAI
rt_task_init (...) function is called
to initialize a new RTAI task, and the RTAI
rt_task_make_periodic(...) function
is called to make this task a periodic one. Other
RTAI APIs are called to set the real-time sched-
uler, and to initialize and start the RTAI timer at
the chosen frequency. During the finalization, the
rt_task_delete(...) function is called, and
the RTAI timer is stop. During a normal periodic call,
the RTAI rt_task_wait_period() is called at
the end of RTAIGetData (. ..) inorder to suspend
the periodic task.

4 Experimental results

As it has been said in Section 3.2, the proposed sys-
tem has been tested on a detailed model of the Spi-
der robotic arm [13][14] consisting of a total of more
than 12,000 equations listed at compile time. The
robot model includes a seven degrees of freedom me-
chanical chain, built with the old Modelica MultiBody
library, and an array of seven servomechanisms, each
of which featuring the dynamics of a brushless two-
phase motor, an analog current controller, an elastic
transmission with backlash and a brake on the motor
axis. A detailed scheme of the elastic transmission
used in the servomechanisms is shown in Figure 3.

The tests have been done running the simulation on a
workstation, and a control action playback on another
workstation. More precisely, the control action was
not computed during the simulation, but it was a record
of the control action of a simulated control system dur-

The Modelica Association

362

Modelica 2005, March 7-8, 2005

Real-Time Simulation of Modelica Models under Linux / RTAI

ing an off-line simulation of the same command given
to the robot. The real-time model has been tested on a
3GHz Pentium IV workstation with 512Kb of 2™ level
cache. This processor ensures enough computational
power to simulate the model with an integration step
of 1ms® and a wakeup period of 1.5ms for the corre-
sponding scheduled process.

It has been experienced an average of 1% of faults,
i.e. periods in which the simulator has not been able
to evaluate the corresponding model transient. The
graph in Figure 4 shows the CPU time not used by
the simulator at each period, during the first 2 seconds
of a simulation. A move command was simulated,
and the command execution was started at 1.1s, which
explains why at this instant the free CPU time dramat-
ically decreases.

g

w

——_—_—_

6L

B

5

Figure 4: CPU idle time during simulation. Simulation
time (in seconds) on x-axis; CPU idle time (in seconds)
on y-axis.

This result proves that the model is still not ready to
be simulated in a time equal to the physical time on
the testing workstation, since the transient computa-
tion occupies half of the CPU time if the robot is still,
but practically all the CPU time if the robot is mov-
ing. In order to reach the purpose to simulate with a
scheduling period of 1ms, it is mandatory to simplify
the model, or to use a more powerful workstation.

The graph in Figure 5 shows the physical time span
between two subsequent process wakeups in the same
simulation as before. Figure 6 shows a detail of the
graph in Figure 5. The maximum variation of the
wakeup period is of 40%, while the average variation
is of 1.34%. The picks of variation in the schedul-

3This is equal to the sampling frequency of a typical axis con-
trol cycle of an industrial robot controller.

ing period are a consequence of the beginning of large
transients, due to the motion start, but the continuous
period variation during the movement and also before
the beginning of the movement, are due to the soft real-
time nature of the chosen scheduler.

=
%10
22

Figure 5: Dymosim task scheduling interval. Simu-
lation time (in seconds) on x-axis; scheduling interval
(in seconds) on y-axis.

¥ 10
22

|

|l
o
A

i | | il| b 1 |
It A A |l .F.(‘.\.,." A A] '-‘.-'l[al
] f ||L.1 |||.|l [} i' !|;{. !A' \\. ¥ f'llii“ VY l|||| I,$ i |I|II,

Figure 6: Dymosim task scheduling interval: detail.
Simulation time (in seconds) on x-axis; scheduling in-
terval (in seconds) on y-axis.

The choice of a soft real-time scheduler has been im-
posed by the nature of the executable binary code gen-
erated by Dymola. In fact, the Dymosim native code
executes some operating system calls that do not ex-
ploit the RTAT API*. The OS calls of Dymosim impose
a continual switch from a real-time context to a non-

4For example, all mathematical functions in the numerical in-
tegrator do not call the RTAI API.

The Modelica Association

363

Modelica 2005, March 7-8, 2005

G. Ferretti, M. Gritti, G. Magnani, G. Rizzi, P. Rocco

realtime context. If the simulator is declared hard real-
time at process startup, the continual context switch is
from hard real-time to non-realtime, while if the sim-
ulator is declared soft real-time at process startup, the
continual context switch is from soft real-time to non-
realtime. The first kind of switch is much more time
consuming than the second kind, and leads to worse
performances.

5 Real-time control

5.1 The software control application

Within the same project framework, a real-time soft-
ware control system [16] has been developed which
emulates several functionalities of robot controllers.
This control application can be easily adapted to in-
teract with simulations of robotic arms driven at joint
level. Thanks to the adoption of COMEDI drivers
(which have standard interfaces, as stated in section
Section 5.2), the control system can control without
distinction a physical system, or a model based simula-
tion of the system itself, provided that the two systems
have the same number of input and output channels,
disposed in the same order.

The software control system can be coupled with the
real-time simulator, and each one of these two appli-
cations can be used as test bench when adding new
features to the other one. So, the software control sys-
tem can be used to test new and more refined robot
models, and to analyze their behavior, if compared to
the behavior of the corresponding real robot, while the
real-time simulator can be used to test some innovating
control solutions, without taking the risk of damaging
the robot hardware.

The Linux / RTAI operating system has been chosen
for the control application too, for the same reasons
explained in Section 2.2. To support the design of
the control application, the OROCOS (Open RObot
COntrol Software) [9] framework has been chosen.
The control application is by now capable of execut-
ing the position control in joint space for a six> de-
grees of freedom robot. The OROCOS control ap-
plication can execute a standard control cycle, with
signals exchanged in Real-Time with the controlled
system; moreover, it can publish the variables inter-
nal to the controller and the signals received from the
controlled process. Internal variables are published to
non-realtime applications external to the controller, for

SDue to this limitation, the cross tests with the Spider model
have been done blocking the seventh joint of the robot.

reporting purposes. Also, the OROCOS control ap-
plication can accept the robot motion commands from
a program script, or from some external non-realtime
application.

5.2 The closed-loop data acquisition

Both the control and the simulation applications
should be able to transmit and to acquire signals on
a hardware communication channel. In order to make
any application unaware of the presence of hardware
or software on the other side of the control loop it
has been decided to implement COMEDI drivers for
the communication boards. The COMEDI package
has been chosen because it is an open-source prod-
uct widely used in the field of automation. Indeed
COMEDI provides a standard for drivers of DAQ
(Digital AcQuisition boards) under Linux.

A COMEDI driver for 3COM 3C90x(B) [15] Ethernet
boards and a COMEDI driver for COMAU BIT3 AT
CARD [15] boards of the COMAU C3G-9000 con-
troller have been developed. Both boards are accessi-
ble from real-time processes: the first one is used by
now for the data exchange between the OROCOS con-
trol system and the Dymosim simulated process, while
the second one (whose driver is still in a test phase)
will be used for the data exchange with all robots sup-
ported by the COMAU C3G-9000 controller.

6 Conclusions and future work

A design concept and the related implementation soft-
ware for obtaining real time simulation code from
standard Modelica / Dymola models and related soft-
ware has been presented. They permit to develop
ready to run real time simulation code by fully exploit-
ing the powerful libraries and tools that Modelica / Dy-
mola make available for the model development phase.
The real time simulation of a detailed model of a 7-
DOF space arm has been afforded as a test bench for
the software, and has proved its versatility and correct-
ness.

With reference to the class of mechatronic systems
models, additional work has to be spent to speed up
model execution by refining or simplifying models of
those phenomena that most affect the computational
burden, like, for instance, non linear friction at low
speed. Indeed, while the model exploited for the ac-
tual tests can be simulated in a time which is of the
same order of magnitude of physical time on a high-
end mono-processor system, models including friction

The Modelica Association

364

Modelica 2005, March 7-8, 2005

Real-Time Simulation of Modelica Models under Linux / RTAI

equations are much slower and cannot be proposed for
the purposes of real-time simulations. An alternative
approach would be to move on a multi-processor plat-
form, provided that a Modelica compiler tool for par-
allel code generation is adopted.

Acknowledgments

The authors would like to thank the Italian Space
Agency and the Ministry of Instruction, University,
and Research for the support to this research, in re-
lation to the I/R/217/02 ASI contract and the OASYS
project.

References

[1] Dymola Multi-Engineering Modeling and Sim-
ulation [Online]. Available: http://www.
dynasim.se/

[2] Real-Time Workshop: Generate optimized,
portable, and customizable code from Simulink
models [Online]. Available: http://www.
mathworks.com/products/rtw/

[3] MBDyn - MultiBody Dynamics Software
[Online]. Available: http://www.aero.
polimi.it/ “mbdyn/

[4] RTnet - Hard Real-Time Networking for Linux /
RTAI [Online]. Available: http://www.
rts.uni-hannover.de/rtnet/

[5] Attolico M, Masarati P. A Multibody User-Space
Hard Real-Time Environment for the Simulation
of Space Robots. In Proceedings of the 5/ Real-
Time Linux Workshop 2003, Valencia, Spain,
Real-Time Linux Foundation, November 9-11,
2003.

[6] dSPACE - Solutions for Control [Online]. Avail-
able: http://www.dspaceinc.com/

[7] Cloutier P, Mantegazza P, Papacharalambous S,
Soanes I, Hughes S, Yaghmour K: DIAPM-
RTAI Position Paper. In Proceedings of the
21d Real-Time Linux Workshop 2000, Orlando,
Florida, USA, Real-Time Linux Foundation, 27-
30 November, 2000.

[8] COMEDI - The Linux Control and Measurment
Device Interface [Online]. Available: http://
www.comedi.org/

[9] OROCOS - Open Robot Control Software
[Online]. Available: http://www.orocos.
org/

Aronsson P, Fritzson P. Parallel Code Generation
in MathModelica / An Object Oriented Compo-
nent Based Simulation Environment (Conference
paper). In Proceedings of the Parallel / High Per-
formance Object-Oriented Scientific Computing
Workshop, POOSCO01 at OOPSLAOI1, Tampa
Bay, Florida, USA, 14-18 October, 2001.

Aronsson P, Fritzson P. Multiprocessor Schedul-
ing of Simulation Code from Modelica Mod-
els (Conference paper) in Proceedings of the
27d Tnternational Modelica Conference, DLR,
Oberpfaffenhofen, Germany, Modelica Associa-
tion, 18-19 March 2002.

Nystrom K, Aronsson P, Fritzson P. GridMod-
elica - A Modeling and Simulation Framework
for the Grid (Conference paper). In Proceed-
ings of the 45" Conference on Simulation and
Modelling, Copenhagen, Danemark, Scandina-
vian Simulation Society, 23-24 September 2004.

Ferretti G, Gritti M, Magnani G, Rocco P, Vigano
L. Object-Oriented Modeling of a Space Robotic
Manipulator. In Proceedings of the 8" ESA
Workshop on Advanced Space Technologies for
Robotics and Automation 2004, Noordwijk, The
Netherlands, ESTEC, 2-4 November 2004.

[14] Vigano L. Modellistica del Braccio Robotico Eu-
ropa con Analisi del Controllo nello Spazio Op-
erativo [in Italian]. Milano, Italy: Master’s The-

sis, Politecnico di Milano, 2003.

[15] Minazzi P. Sviluppo di Driver COMEDI in Am-
biente Linux / RTAI [in Italian]. Milano, Italy:

Master’s Thesis, Politecnico di Milano, 2004.

Cappellini S, Consonni A. Progetto e Realiz-
zazione di un’ Applicazione Real-Time a Compo-
nenti per il Controllo di Robot Manipolatori [in
Italian]. Milano, Italy: Master’s Thesis, Politec-
nico di Milano, 2004.

The Modelica Association

365

Modelica 2005, March 7-8, 2005

