
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter
Dynasim AB, Sweden; DLR, Oberpfaffenhofen, Germany
Optimization for Design and Parameter Estimation
pp. 255-266

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Optimization for Design and Parameter Estimation

Hilding Elmqvist
1
, Hans Olsson

1
, Sven Erik Mattsson

1
, Dag Brück

1
,

Christian Schweiger2, Dieter Joos2, Martin Otter2

1Dynasim AB, Lund, Sweden ({Elmqvist, Hans.Olsson, SvenErik, Dag}@Dynasim.se)
2DLR Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany

(Christian.Schweiger@DLR.de, Dieter.Joos@DLR.de, Martin.Otter@DLR.de)

Abstract

This paper describes new features of the Modelica
environment Dymola to perform integrated computer
experiments with Modelica models, in particular for
model calibration, design optimization and
robustness or sensitivity assessment based on
multiple criteria and multiple simulation runs. The
environment and especially the problem setup are
demonstrated by several application examples.

1 Introduction

Recently, new features have been added to the
Modelica simulation environment Dymola [2] to
simplify experimentation with Modelica models sig-
nificantly. Some basic ideas are from the optimiza-
tion environment MOPS [3]. The central part is a
Modelica model of a physical system with Modelica
parameters that are not yet fixed. Several problem
classes can now be conveniently solved:

• Model Calibration (Parameter Estimation):
Some Modelica parameters of the model are not
known. Several simulation runs are performed
and compared with measurement data that is
available from equivalent dynamic behavior of
the real device. Via optimization, the selected
unknown parameters and initial conditions are
determined such that the simulations and the
measurement data are in good agreement. Also
standard tasks such as fitting of functions to
measurement data is supported.

• Design Optimization

(Parameter Optimization):
Selected Modelica parameters of the model are
tuned to improve the system dynamics, e.g., by
changing the parameters of a controller or some
parameters of the physical device. This is per-
formed by multi-criteria parameter optimization
using one or several simulation runs to compute

the desired criteria.

• Assessment (Parameter Variation):
Selected Modelica parameters of the model are
systematically changed within a given grid and
for every fixed set of parameters, simulations are
performed. This might be used, e.g., to evaluate
a finished design by varying the operating
points. For Monte Carlo simulations, the pa-
rameter values are chosen statistically. Simula-
tions with small variations to the parameters can
be used to determine how sensitive a design is.

All these experiment tasks utilize the same basic
functionality that is defined once:

• Tuner Parameters:
Modelica parameters that remain constant for a
particular simulation but are varied by the ex-
perimentation environment to search for satis-
factory solutions are called “tuners”. E.g. via pa-
rameter estimation or optimization the tuners
shall be determined such that criteria are mini-

mized.

• Criteria:
Criteria are used to compute quantitative values
of achieved performance of a simulation run.
Criteria are assumed to be positive and smaller
values reflect better performance. Usually, sev-
eral criteria are needed to express the desired be-
havior. For example, typical criteria of a system
step response are over-shoot or settling time. By
weighting each criterion individually by a fixed
demand value (criterion_i/demand_i), where the
demand value expresses the designer’s notion of
expected system performance, a clear preference
list of the criteria is defined. For example, the
demand value for the settling time might be 0.1
s, indicating that a value of 0.1 s is satisfactory
from a users point of view.

To solve the multi-criteria problem by means of
standard numerical optimization an overall crite-
rion to be minimized has to be formulated. This
so called aggregation function is by default the
maximum function, yielding a min-max optimi-
zation problem over the weighted criteria (= the

Optimization for Design and Parameter Estimation

The Modelica Association 255 Modelica 2005, March 7-8, 2005

largest weighted criterion is minimized). Of
course the maximum weighted criterion may
change during optimization depending on the
tuner values found. Note that an aggregation
function value less than 1 implies that all criteria
satisfy the demands.

There is an option to choose other aggregation
function types like weighted sum. In any case the
weights are formed by the reciprocal demand
values.

• Constraints:
Design specifications are often given as con-
straints such as actuator limits. If a certain level
of compliance is achieved for a criterion, this
level must be kept, and smaller (better) criterion
values are not necessary. Constraints are formu-
lated as criteria, which are requested to be
smaller than the demand value. Optimization
procedures account for constraints in their opti-
mization strategy explicitly.

• Indicator plots:
A criteria value results in one number to express
the performance. This is necessary in order that
an optimizer can be used. A human would like to
evaluate a design by visual comparison of result
plots of different designs, e.g., by viewing a
whole step response curve and not only the over-
shoot value. Indicator plots for a model can be
defined once and then reused, e.g., for online
visualization of the optimization or parameter
estimation process.

• Model Cases:
In many applications, several simulation runs are
necessary to evaluate a design or to estimate pa-
rameters. In the Dymola environment, several
simulation runs are collected together to model
cases: Exactly the same tuners, criteria and indi-
cator plots are used for each model case. The
model cases are distinguished only by a set of
fixed Modelica parameters that define the differ-
ent simulation runs. Often, these case parameters
describe different operating conditions, e.g., dif-
ferent road or load conditions of a vehicle.

The paper shows for two application examples how
to define the problem setup of tuners, criteria, cases
and indicator plots by means of the graphical user
interface. The defined problem setups are used to
solve the calibration task of an under-actuated two
joint Furuta Pendulum and then the parameter opti-
mization for robot control laws. The solution of the
multi-criteria optimization problem is discussed
briefly in Section 4.

2 Application Examples

In this section, details of the experimentation envi-
ronment are described elaborately by several exam-
ples.

2.1 Parameter Estimation of an under-actuated

two joint Furuta Pendulum

Consider the Furuta pendulum demonstration of the
Department of Automatic Control, Lund Institute of

Technology, Lund, Sweden. The
pendulum, consisting of 2 revo-
lute joints and 2 moving bodies,
is shown in the figure. Only the
first joint (vertical axis) is driven
by a DC motor. Experiments and
controller have been designed
and evaluated in [1].

Within Dymola, a model of the Furuta pendulum is
easily constructed by dragging, dropping and con-
necting body and joint components from the Multi-
Body library. However, it is also necessary to set
physical parameters in the model. Some of these pa-
rameters such as the length of the arm or the length
of the pendulum are easily measured on the system.
Direct measurements of the weights of the parts
would require the system to be dismounted (in other
cases it is easy to measure the mass or determine it
from a CAD system). Moreover, it is not simple to
measure the inertia of the parts or the friction char-

acteristics of the two joints.

The new Dymola experimentation environment has
been used for parameter identification. For this, the
movement of the 2 body pendulum has been re-
corded by sensors in the joints. The same movements
are performed with a simulation model and the fric-
tion parameters are optimized such that the measured
and the simulated movements closely agree.

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 256 Modelica 2005, March 7-8, 2005

Selection of parameters to be tuned

When estimating parameters from measurements, a
basic question is “Which parameters can be esti-
mated from the measurements?” Changing a pa-
rameter to be estimated must of course influence the
output. However, this is not enough if several pa-
rameters are to be estimated. Consider the arm of the
Furuta pendulum. It rotates around a vertical axis.
The model of the arm uses

Modelica.MultiBody.Parts.BodyShape

It has the following parameters: mass, position of
center of mass and inertia tensor with respect to
center of mass. Since the arm is rotating around a fix
axis, it is only the inertia with respect to this axis that
influences the behavior of the system. Inertia with
respect to an axis being orthogonal to the vertical
axis does not influence the motion at all. The crite-
rion is independent of its value. We will discuss a
more general case. Let Jc denote the inertia with re-
spect to a vertical axis through the center of mass.
Let m denote the mass of the arm and rc denote the
distance between the point of rotation and the center
of mass. The inertia of the arm with respect to the
point of rotation, Ja, is then

2

cca
rmJJ ⋅+=

It is this inertia that is of importance for the rotation
of the arm. It is this parameter that can be estimated
from measurements. It is not possible to estimate m,
Jc or rc uniquely from measurements of positions or

velocities.

What will happen if we try to estimate Jc and m? In
the best case we will get a good estimate of Ja, but Jc
and m may be really different from the their real
physical values. One approach to investigate if we
are about to estimate too many parameters is to make
estimation experiments on the model. First one could
use the model with its nominal parameter values to
produce simulated “measurement data”. Then one
would set the model parameters that are going to be
estimated to other values, and run the calibration
procedure using the previously produced “measure-
ment data”. If the estimated parameters give the
same simulation results but are significantly different
from the “true” nominal ones, then this indicates
overparametrization, because the nominal behavior
can be reproduced by other parameter values than the
nominal ones used to produce the “measurement
data”.

Assume rc = 0.1225 and being known. Assume the
nominal values Jc= 0.0014 and m = 0.165. Assume
the criterion to be the integrated squared error of the
pendulum angle and arm angle. Let the pendulum
start in horizontal position and use the simulation

time 5 s. It is illustrative to plot the criterion versus Jc
and m as shown below.

We see a valley where the criterion is unchanged.
Along the valley the effective inertia, Ja, is un-
changed with peaks on either side where it has been
changed. The error is not symmetric with respect to
large variations in Ja and the error increases more
when Ja decreases.

To compute this map we used a gridding function
that takes the calibration task (as described below)
and additionally the gridding parameters as inputs,
i.e. we do not have to define the calibration task
twice.

A further possibility is to investigate the sensitivity
of the criterion with respect to the parameters esti-
mated. In particular we can calculate the sensitivity
matrix (the Hessian of the minimization problem).
Dymola calculates the sensitivity matrix by simulat-
ing for disturbed parameters and taking differences
of the resulting criterion values obtained. The sensi-
tivity matrix was found to be

[431064, 6456.3;

 6456.3, 97.0671],

The eigenvalues being 431161 and 0.37 are very dif-
ferent in magnitudes. Considering the numerical ac-
curacy, the small eigenvalue may be considered as
being zero. The eigenvector having the large eigen-
value is {0.99989, 0.01498}. It means a large sensi-

tivity in the direction

{0.99989, 0.01498}*{Jc, m}

Recall Ja = Jc + 0.01501*m which shows that the
criterion is sensitive for variations in Ja. The second
eigenvector {-0.01498, 0.99989} is orthogonal. (For
a symmetric matrix, all eigenvalues are real and ei-
genvectors are orthogonal.) The small eigenvalue,
being very close to zero, indicates that the measured
behavior is insensitive to variations in the direction
of the second eigenvector as is also shown in plot

above.

Since the optimization problem is a non-linear least-

squares problem, ∑)(
2 pf
i

, we can alternative com-

Optimization for Design and Parameter Estimation

The Modelica Association 257 Modelica 2005, March 7-8, 2005

pute the insensitive direction (in a more numerically
robust way) as the approximate null-space of

∑ ∂∂ ppf
i

/)(.

It may be remarked that for the case where the crite-
rion is independent of a parameter, there will be a
valley parallel to the axis representing the parameter
and the sensitivity matrix the vector in the direction
of the parameter will be an eigenvector with zero
eigenvalue.

Thus for the arm we set rc = 0 and interpret the esti-
mated inertia as being Ja. It means that we introduce
a top-level parameter I_arm and set arm.r_CM to

{0,0,0}, and arm.I_22 to I_arm.

The pendulum consists of a cylinder having a small
mass at the end. It is natural to assume its inertia
with respect to all axes perpendicular to its length
axis to be equal, call it I_pendulum. Set pendu-
lum.I_11 = I_pendulum and set pendulum.I_33 =
I_pendulum. The inertia sensed by the rotating arm
depends on the angle of the pendulum, which means
that for the pendulum, we can estimate also mass
(pendulum.m) and position of the center of mass,
r_CM_pendulum. We set pendulum.r_CM to {0,
r_CM_pendulum, 0}.

Parameters in the friction model for the joints can
also be estimated. We assume Coulomb friction with
a linear dependence on velocity. For the arm joint we
introduce tau11 and tau12 and set frictionR1.tau_pos
to [0, tau11; 1, tau12] and similarly for the pendulum

joint.

Setting up the calibration task

To set up the calibration task, select CalibrateModel
from optimization package. Click the right mouse
button. Select Call Function. A dialog is shown:

It shows that the calibrate function has one
argument, setup. Clicking on the “+” opens it and
shows that it is a record with five elements, which
describes various aspects of the calibartion task
including which parameters to tune, criterion and
which measurement data to use. We will discuss the
specification of these elements in turn. The calibrate
function assumes the current model (last translated

model). This allows easy reference to parameters
when selecting tuners as described below.

To specify which parameters to tune, click on the
tunerParameters and the right pane of the dialog
shows

Clicking on Select gives a browser for simple
selection where we tick the parameters as decided.

Clicking OK fills the tunerParameter dialog as
shown in the following image.

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 258 Modelica 2005, March 7-8, 2005

Estimating initial conditions

The initial conditions will be different for different
experiments, for example, if we let the pendulum
start at different angles. To get good fits it is advis-
able to estimate the initial conditions. We can give
reasonable guesses, because we try to start the sys-
tem in a well-defined state. For some experiments
the initial conditions are known accurately and they
should then be given as part of the setup of the cali-
bration cases, but this is not the case here.

The joint models allow specification of initial condi-
tions in terms of parameters. These parameters can
be tuned. For each of the parameter discussed previ-
ously we would like to have a common tuned value
for all cases.

However, for the initial conditions we need individ-
ual estimation for each case. Moreover, we would
also need them to be tuned for the evaluation where
the parameters tuned are kept fixed. The initial con-
ditions to be estimated for each measurement case
are specified by the element freeStartValues. Select
the element freeStartValues in the tree browser. It is
specified in the same way as done for tunerParame-
ters. In the select dialog we tick the start values for
the angle and velocity of the two joints.

Clicking OK fills in the variable names in the first
column and start values in the “Value” column.

To specify the criterion, select calibrationCriteria.

Clicking on Select displays a Select browser where
we check pendulumAngle.phi and armAngle.phi.
This fills the “name” column.

The criterion is a weighted sum of the integrated
square difference with respect to measured value for
each variable.

The measurement files to be used are specified by
the element calibrationCases. It also specifies
whether a file is to be used for calibration or valida-
tion.

The elements optimizer and integrator allows ad-
vanced setting of optimization and simulation pa-
rameters. We use their default settings, except for

simulation time that we need to specify.

Running the calibration

When all the input data have been entered, the cali-
bration is started by clicking “Execute” on the dia-
log. The two next plots compare the simulation result
with the obtained tuned parameters and measured
data where the pendulum starts in a horizontal

Optimization for Design and Parameter Estimation

The Modelica Association 259 Modelica 2005, March 7-8, 2005

position. The result shows a good agreement. The
tuned parameters were validated against another ex-
periment where the pendulum starts in a more up-
right position. The system is nonlinear and it is of
interest to validate the model for cases where the
amplitudes of the pendulum are large.

The jump in the pendulum angle in the validation
case between –100° and –80° is due to problems of
handling wrap-around in the measurement device.
The agreement is good, in particular for the pendu-
lum motions. The modeling of the arm may be im-
proved by a more elaborate modeling of the arm
friction. However, that is out of the scope of this pa-
per.

2.2 Robot optimization

In this section it is demonstrated how to optimize the
controller parameters of a robot for a set of cases
consisting of different loads and reference motions.

Description of the robot

The model is chosen as the r3-robot from the Mode-
lica standard library. As described in its documenta-

tion this was originally a Manutec r3-robot. It was
then updated with incorporating CAD-data from a
KUKA-robot, and the geometry was modified to fit
the CAD-data.

Figure 1 Animation of the robot

The robot consists of a 6 degree-of-freedom me-
chanical structure modelled as the multibody system
“mechanics” (= bodies connected together by revo-
lute joints). The calculation of the animation can be
optionally switched off to increase simulation speed,
which is especially important during an optimization
run. Every joint is driven by a drive train called
“axis1”, “axis2”, ..., in the next figure:

Figure 2 Composition diagram of robot

The desired reference motion is generated in compo-
nent “path” and as input it has the start and end angle
of each axis. All signal data is communicated via a
“data bus”.

Figure 3 Drive train of one axis

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 260 Modelica 2005, March 7-8, 2005

One drive train consists of a controller, an electrical
motor, a gearbox (which includes the bearing fric-
tion). The controller of one axis is a P-PI cascade
controller, i.e., has the simplest form useful for a
servo drive (in most industrial robots, more sophisti-
cated controllers are used). The goal of the optimiza-
tion is to tune the values of the 3 controller parame-

ters of every axis:

• kp – gain of position controller

• ks – gain of speed controller

• Ts – integrator time constant of speed controller

The difficulty is that this controller should work well
with a fixed set of values for all paths and operating
conditions encountered by the robot. This makes it
impossible to use standard, linear control design
methods.

Optimization setup

The structure of the optimization setup is similar to
the calibration setup:

The tuner parameters are the 3 controller parameters
of each axis as discussed above. They are easily en-
tered in the tunerParameter dialog by using the Sel-
lect dialog. The snapshot below shows the dialog
when the controller parameters of axis 2 have been
selected. Numeric values have also been entered for
“Value” to be used as the start of the optimization
and minimum and maximum values that are used as
box constraints during optimization and optionally

also for scaling:

In order to specify the different cases of the optimi-
zation, the case parameters are first selected by using

the Select dialog to browse the model parameters.
The parameter values for the different cases used to
optimize the design of the controller are then given
by filling out the cases form as below (the selected
parameter names appear as column headings):

Simulation cases are defined by specific settings of
model parameters that are given as labels “startAn-
gle2”, “startAngle3” etc. in the figure above. Note
that in the reference trajectory axis 2 goes through
different movements in the different cases, whereas
axis 3 is fixed in different positions (all other axes
are fixed to the default reference angle in all cases).
In practice, robots are optimized for a larger number
of cases.

Optimization criteria

If we compare the actual axis speed with the refer-
ence speed we normally get the following:

For design optimization the goal is in general not to
simply minimize these errors, as it would be for a

calibration, but something more advanced.

For the design optimization we thus have to intro-
duce additional blocks to measure the performance
of the axis, these are introduced by extending the
robot-model with an additional performance compo-
nent for the reference signals (containing different
performance indicator blocks).

Optimization for Design and Parameter Estimation

The Modelica Association 261 Modelica 2005, March 7-8, 2005

In the performance Modelica model, the following
performance indicator blocks are present (these
blocks are from a criteria library that contains several
predefined useful criteria blocks):

• Block “Overshoot” computes the overshoot
(here: the maximum deviation from the reference
angle) after the referenced motion has come to a
rest. This is performed very precisely by trig-
gering an event whenever the derivative of the
input signal is zero (here: whenever the speed is
zero), i.e., a minimum or maximum of the signal
is reached and storing the corresponding signal,
if its absolute value is larger than the previously
stored value. The last stored value is the over-

shoot which shall be minimized.

• Block “SettlingTime” computes the time until a
signal stays completely within a tolerance band
around zero, after the reference motion is in rest.
This is performed by triggering an event when-
ever the input signal passes through this band
and storing the corresponding time instants. The
last stored value is the settling time which shall

be minimized.

The usage of these two blocks is shown above. As
can be seen the angle error is used as input to the
“overshoot” block whereas the speed error is used as
input in to the “settlingTime” block.

This is connected to the bus to get the reference sig-
nals and the actual values for the specific axis. We
then select two reference indicators, the overshoot
and the settling time, in the optimizer:

As an alternative to using criteria blocks in the
model one can compute the criteria in a post-
processing function that operates on the simulation
results and which is selected in the drop down menu
shown below. In this case we select the final value
for these two criteria:

We also have to set the demand values. Based on
first simulations and specifications we set the over-
shoot demand to 3/1000 [rad/s] and the settling time
to 0.3 [s]:

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 262 Modelica 2005, March 7-8, 2005

Applying these values as demand values results in
the following weighted criteria:

case overshoot settling time

High 1 0.6854 0.7588

Low 1 1.5106 0.9855

High 2 0.8332 0.5579

Low 2 1.7887 1.0468

The values indicate satisfactory behavior in cases
with load (cases “High 1” and “High 2”), but bad
overshoot performance in unloaded cases (cases
“Low 1” and “Low 2”).

After finalizing the optimization setup, a click on
“Execute” starts the design optimization. As a result
of the first optimization run, which converges after
30 function evaluations, we obtain the following
tuner and corresponding weighted criteria values:

kp2 3.0776

ks2 2.5089

Ts2 0.08896

overshoot settling time

High 1 0.5929 0.8998

Low 1 1.0315 1.0902

High 2 0.6510 0.7157

Low 2 1.1956 1.1955

Overshoot has been improved but settling time is
slower. The equal and largest criteria values in case
“Low 2” indicate a conflict between the 2 criteria
which usually can only be solved when one criterion
is eased off.

We decide to force the overshoot criteria that they
reach their demand values and to put lower emphasis
on settling time. This is accomplished by applying
all overshoot criteria as inequality constraints during
the next optimization run forcing the optimizer to
perform improvements in these criteria until the de-
mand value is reached. Criteria to be minimized
(here settling time) may increase. The next run re-
sults in:

kp2 4.0722

ks2 4.8897

Ts2 0.070565

overshoot settling time

High 1 0.7623 0.8965

Low 1 0.8845 1.1855

High 2 0.6175 0.7161

Low 2 0.9985 1.2027

The overshoot demand is satisfied, The settling time
slightly increases to 1.2027 for the worst case “Low
2”. We might stop the design optimization here. In
other cases, one might change demands, select other
simulations cases and criteria. In the next figure, re-
sults for the 3 runs (initial, first and second optimi-

zation run) are shown for case “Low 2”:

3 Customizable user interfaces

Experimentation includes operations that require rich
interfaces to supply all the information needed to

perform the task.

For model components, parameters have been visu-
ally split into groups and tabbed pages, representing
logical grouping of primary and secondary parame-
ters. However, the individual data items comprise a

relatively “flat” structure.

For calibration and optimization the interface con-
tains a much deeper hierarchical structure, and the
complexity at each level is also greater. For example,
it is common that subitems contain variable amount

of data, typically represented by arrays of records.

To handle the increased complexity, the graphical
user interface of Dymola has been extended in two
dimensions:

• The nested structure is visualized by a tree,
which makes relationships easier to understand
and allows easy navigation between data items.

• Specialized GUI elements, for example, for file
and color selection, can be enabled by annota-
tions, which facilitate common input operations.

Several of these improvements are useful also for
simpler data structures, and the specialized GUI ele-
ments can also be used for parameters of models. In

Optimization for Design and Parameter Estimation

The Modelica Association 263 Modelica 2005, March 7-8, 2005

other words, all the features discussed below can be
easily utilized by every user. It is even possible to
make a copy of the calibration and/or optimization
setup and adapt the user interface to the specific
needs of an end-user with more specialized menus.

3.1 Nested structures

Model calibration will be used as an example. The
function CalibrateModel takes a record (setup) as its
input parameter. The structure of the record contains
among other elements an array of type Tuner-
Parameter, which in turn contains several attributes.

function CalibrateModel

 "Calibrate model to measured data"

 input ModelCalibrationSetup setup;

 ...

end CalibrateModel;

record ModelCalibrationSetup

 String Model;

 TunerParameter tunerParameters[:];

 ...

 Optimizer optimizer;

 Integrator integrator;

end ModelCalibrationSetup;

record TunerParameter

 "Model parameter to be optimized ..."

 String name="" "Full name of ...";

 Boolean active=true "true, if ...";

 ...

end TunerParameter;

The GUI is automatically built from the data struc-
ture declarations. The nested structure of the input to
CalibrateModel is evident in the tree view at the left.

The tree serves two puposes. First it shows the
structure and makes it easier to understand what
information must be provided. The tree view corre-
sponds exactly to the data structure. Second, it is
used to navigate between multiple “pages” (input

forms) that are swapped into the space at the right.

The component tunerParameters is an array of
records, each containing several variables. The user
can choose a combined tabular view of the array (as

shown above), which offers maximum overview in a
compact format.

Alternatively it is possible to inspect and edit
individual array elements, which has the advantage
of displaying descriptions for each input field and
that data can be grouped and put under different tabs.
Each page corresponds to one row in the combined
view.

The implementation of the tree view also ensures
that data filled out by the user is propagated. For
example, changes to an individual tuner parameter
must be visible when the user switches to the tabular
view of all tuner parameters. Changes in a modifier
at a high level is propagated down to more detailed
views.

3.2 New GUI elements

The graphical user interface can greatly simplify
certain input tasks with some additional support.
Although it is always difficult to strike a balance
between features and complexity, the following op-
erations have been found useful in the experimenta-

tion environment.

The deployment of these GUI elements is controlled
by model annotations, either at the class level or on
individual variables.

Predefined choices. A list of values suitable to a
particular type or application are presented. A simple
example is “true” and “false” for Boolean. Selection
of a criteria function is specified by this annotation:

CriterionSpecification criteria

 "Criteria specification"

 annotation (choices(

 choice=FinalValue(),

 choice=SettlingTime(),

 choice=Overshoot()));

To the user the choices are presented in a drop-down
combobox:

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 264 Modelica 2005, March 7-8, 2005

Because parameters which depend on the selected
function must also be specified, pressing the “edit”
button will display a dialog for the parameters to the
chosen function.

Color selection. Colors can typically be represented
by RGB (red, green, blue) or HSV (hue, saturation,
value) tuples. Although they could be specified nu-
merically by the user, a colorful dialog makes selec-
tion much easier.

File selection. Standard dialogs for selecting files
either for reading or writing data. The filename is
stored in the corresponding variable.

Variable selection. Several operations in the ex-
perimentation environment involves the selection of
variables from the model, for example, parameters to
optimize. A specialized selection dialog simplifies
the task considerably. Furthermore, additional data,
such as, start/min/max values can be extracted.

In this case a detailed specification (in the form of an
annotation) is needed to move data into the right

elements of a table, and if needed resize the table.

User-defined labels. The default labels used in the
tree view or in the combined tabular view are con-
structed from variable names found in the data
structure. By use of annotations, other labels can be
specified or even extracted from actual data in the
structure.

4 Solving the Multi-Criteria

Optimization problem

In a multi-criteria optimisation problem setup all

weighted criteria / ,
ij ij ij min
q c d ij S= ∈ can be com-

bined to a vector q , where
min

S denotes the set of

all criteria (i) to be minimised defined in all simula-
tion cases (j). In order to decide whether a solution

I
q is better than a solution

II
q , these vectors should

be completely comparable. However, comparing
each vector component individually, some compo-
nents can be better, others can be worse. To make
criteria vectors completely comparable a vector norm
has to be introduced.

We prefer to use the max-norm, because weighted
criteria with positive ‘the smaller the better’ values
and quality limiting demands as upper bounds yield a
most visible comparative satisfaction assessment of
design alternatives in case of the max-norm. Define

for all weighted criteria

: max{ }, ,
ij min

ij
q ij Sα = ∈

then requirements' satisfaction of a design alternative
(II) is said to be better than of a design alternative (I)

if
)()(III

αα < . If 1≤α , the design alternative is

called a satisfactory solution, because in that case
each criterion is less than the respective demand
value. In particular, a best possible design alternative

is characterised by }{min* αα = , yielding the over-

all constraint optimization problem which can be
solved by standard optimization methods:

, ,

minmax{ () / }

() ,

() ,

min

ij ij
T ij S

ij ij inequality

ij ij equality

min k k max k

c T d

c T d ij S

c T d ij S

T T T

∈

≤ ∈

= ∈

≤ ≤

(1)

The disadvantage of this approach is the lack of dif-
ferentiability of the aggregation function. Thus,
methods relying on gradients (like SQP methods)
can encounter difficulties in this case.

To overcome the problem of differentiability we
provide two mechanisms: an exponential approxi-
mation of the max-function yielding a smooth over-
all criteria and a reformulation by ‘equivalent con-
straints’. In the latter case the min-max problem can
be reformulated by an equivalent constrained prob-

lem. Let γ be a new variable for which we impose

that max{ (), }
ij min
q T ij Sγ ≥ ∈ . Instead of (1), we

can solve an equivalent optimization problem with
the extended parameter vector],[γTx = . The aggre-

gation function to be minimized is simply γα =)(x .

Defined inequality and equality constraints are ap-
plied as in (1) while the components to be minimized
are added as additional constraints as

() ,
ij min
q x ij Sγ≤ ∈

The main advantage of this formulation is that the
functions are differentiable provided the defined
problem criteria are differentiable. The disadvantage
is that a problem of higher dimension is solved and
additional constraints are added. However, the appli-
cation of this formulation of the min-max problem is
recommended whenever a gradient based optimiza-
tion method is used. There is an option to choose

other aggregation functions like weighted sum:

: | |,
ij min

ij

q ij Sα = ∈∑

Optimization for Design and Parameter Estimation

The Modelica Association 265 Modelica 2005, March 7-8, 2005

Optimization Methods

At the moment 5 different methods to solve the op-
timization problem (1) are implemented for use with
Modelica:

1. Sequential quadratic programming (SQP)
2. Quasi Newton (Bounds)
3. Pattern search (Pattern)
4. Simplex method (Simplex)
5. Genetic algorithm (GA)

The Sequential Quadratic Programming (SQP) ap-
proach can be used to solve the general optimization
problem and has usually a super-linear convergence
(= faster than linear, and slower than quadratic con-
vergence). Bounds on tuners and linear equality and
inequality constraints are met exactly during the it-
erations. The SQP approach needs gradients of func-
tions and constraints. SQP in combination with the
reformulation of the min-max optimization problem
as an equivalent constraint problem is the method of
choice for general optimization or calibration prob-
lems.

The Quasi Newton method (Bounds) is an algorithm
intended to solve large optimization problems but
can only handle simple bounds constraints on the
tuners. “Bounds” needs also gradient information of
the aggregation function.

The Pattern Search approach is a derivative free
search method. It is numerically more robust in
tackling with non-smooth criteria than other meth-
ods.

The Simplex approach is also a derivative-free algo-
rithm and employs linear approximations to the ob-
jective and constraint functions. The main advantage
of SIMPLEX over many of its competitors is that it
treats each constraint individually when calculating a
change to the variables, instead of lumping the con-
straints together into a single penalty function. A
drawback of this method is that even bound con-

straints can be violated during computation.

The genetic algorithm (GA) is a global optimization
technique. The basic algorithm allows only simple
bounds on the variables. Thus, to address more gen-
eral constraints, penalty function techniques are em-
ployed. The genetic algorithm search method is
based on evolution principles which guarantee the
survival of the fittest individual. The use of GA for
optimization is normally quite costly in terms of
function evaluations.

5 Conclusions

An environment was presented to optimize Modelica
models in Dymola, especially with regards to design
optimizations and calibration of unknown model pa-
rameters.

It is possible to prepare a customized GUI in Dymola
for specific tasks such as optimization. This makes it
possible to customize the optimization menus. Since
the customization is performed in Modelica (annota-
tions) it is possible for an end-user to also adapt this

to his/her particular needs.

Acknowledgements

Measurements and calibration of the Furuta pendu-
lum was performed by Marco Bracci as a part of his
master-thesis project at the Department of Automatic
Control, Lund Institute of Technology, Lund, Swe-
den.

References

[1] Åkesson J. (2000): Safe Manual Control of

Unstable Systems. Master Thesis, ISRN
LUTFD2/TFRT--5646—SE, Department of
Automatic Control, Lund Institute of Technology,
Lund, Sweden.

[2] Dynasim (2005): Dymola - Users’ Manual

[3] Joos H.-D., Bals J., Looye G., Schnepper K., Varga
A. (2002): A multi-objective optimisation based

software environment for control system design.
Proc. IEEE International Conference on Control
Applications, Glasgow, Scotland, Sept. 18-20, pp. 7-
14.

H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos, M. Otter

The Modelica Association 266 Modelica 2005, March 7-8, 2005

