
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

K. Nyström, P. Aronsson, P. Fritzson
Linköping University, Sweden
Parallelization in Modelica
pp. 169-172

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Parallelization in Modelica

Kaj Nyström Peter Aronsson Peter Fritzson
Linköping University, Sweden
{kajny,petar,petfr}@ida.liu.se

Abstract

The better the computer, the larger and more precise
simulations can be carried out, and the more benef-
icent modeling can be. It is well known that faster
computers enable more precise and computationally
expensive simulations to be carried out, which allow
more pre-cise mathematical models. This paper gives
an overview of certain methods for expanding the lim-
its of what can be done in the area of simulation by
parallelizing simulations based on Modelica [18, 16]
models. This is an efficient and less expensive way of
achieving better simula-tion performance.
In the following, we will restrict ourselves to de-
scribing various ways of parallelizing a simulation in
Modelica, ranging from coarse grained high level par-
allelization to fine grained task merging at a very low
level. It is very difficult to say which approach is
the most successful or promising since little research
has been done in most of the subareas of parallelizing
Mode-lica models. Task merging seems to be the most
developed approach and does give significant perfor-
mance increases [1] but the other areas are largely
unexplored. We can therefore only guess that based
on parallelization research in other areas, there is lit-
tle to gain for a normal user in parallelizing a small
simulation. Larger, more complex simulations on the
other hand can benefit greatly from parallelization, es-
pecially if it can be done automatically.
Keywords: Modelica, parallelization, task merging,
transmission line modeling, weak connectors

1 Introduction

Since the advent of computers, there has always ex-
isted a need for more computational power. In fact,
the peak performance of a computer system effectively
sets a limit to what the user can actually do. For a
Modelica user, the amount of computational power
available at simulation time is what determines what
can be simulated. Obviously, if we can simulate more

complex applications, the use of modeling and simu-
lation is promoted.
There are four different ways which a user can go
about in order to faster be able to simulate a more com-
plex physical structure:

1. Buy a faster computer

2. Optimize the model for faster simulation

3. Optimize the compiler

4. Parallelize the model, distributing simulation
across many processors.

While option one can sometimes be a viable alterna-
tive, it is so only up to a certain point. There is a limit
to how fast computers are available, even if you have
the financial resources to update your computer every
month.
Option two might very well be the issue for a whole
series of articles all by itself. Still, experience show
that there is a limit to the performance gain which can
be obtained also from model optimization.
Option three is an interesting item as it can potentially
boost performance of every model compiled with that
compiler. The amount of performance gain which can
be obtained by compiler optimization is however also
quite limited.
This paper will focus on item four, parallelization of
the model. The model is assumed to be written in
Modelica and to be of a size and complexity which
makes it nontrivial to simulate within reasonable time
on a single powerful computer. Apart from this, we
make no assumptions whatsoever on the model struc-
ture, composition or domain.

2 Parallelization in General

Parallelization of computational problems has been
an issue for as long as there has been computers.
Regardless of how fast current computers are, there
has always been applications where this is simply not

Parallelization in Modelica

The Modelica Association 169 Modelica 2005, March 7-8, 2005

enough. Parallelization of the problem is then the only
viable solution. The problem is to get good perfor-
mance while distributing the computation across sev-
eral CPUs. Communication between jobs can, even if
carefully implemented cause severe delays in the com-
putation because the necessary data may not be avail-
able when it is needed. Also, simple program branches
such as if-statements which decide which statement
should be executed and not must be treated with great
care so that the right program path is taken. These,
and several other issues must always be taken into ac-
count when trying to parallelize an application. This is
even more important when trying to parallelize a gen-
eral class of applications, such as Modelica models.

3 Parallelization in Modelica

We will in this paper try to summarize past, present
and future research advances within the area of par-
allelization of models expressed in the Modelica lan-
guage. We have divided the subject into three parts or
levels, depending on where the parallelization is ap-
plied. The high level parallelization tries to partition
the model on the Modelica source code level. The
medium level deals with the numerical solvers while
the low level parallelization deals with the solver gen-
erated code.
Before we begin, we would like to make one obser-
vation which makes the task of parallelizing Modelica
even more challenging than with other languages, for
example C or Fortran. Modelica developers are nor-
mally not experts in parallel programming. In fact,
they are usually not computer scientists at all, but
instead domain experts within one or many specific
fields using physical modeling. This demands a lot
of the parallelization framework since the user (that
is, the Modelica modeler) can not really take an active
part in the parallelization. This means that the par-
allelization must be automatically performed, without
user interaction to a great extent. If this is not possible
then at least the user interaction must be minimized
and formulated in a way that makes sense even to a
user with no experience whatsoever in parallel com-
puting.

4 High Level Parallelization

High level parallelization, as stated previously deals
with the problem of parallelizing models at the Mod-
elica source code level. In general, this means that
the Modelica language itself is extended or modified

in some way in order to allow the user to provide
the compiler with directions on how to parallelize the
simulation. In comparison with other high level lan-
guages, the Modelica language has some interesting
properties which can be used to our advantage when
trying to parallelize Modelica simulations.
The most interesting property is probably the connec-
tion construct. A Modelica model almost always con-
sists of a multitude of components with connections
between them. The connections define an explicit
interface between components which is quite useful
when considering how to best partition the model. In-
deed, both of the two high level parallelization meth-
ods we know about use connections in one way or an-
other.

4.1 The Transmission Line Modeling Method

The transmission line modeling (TLM) method [6] is
derived from two ideas. First, that many models can be
viewed as a continuous transmission line which propa-
gates information. Second, that the information being
propagated in time stept − 1 in many cases does not
differ much from the information propagated in step
time stept. This means that we can reuse information
received in time stept−1 in the calculations for time
t, thus reducing the amount of communication needed
between partitions in the model. While we do intro-
duce an error in the model by reusing values from ear-
lier time step, this error is mathematically decidable
and it is possible to reduce the amount of value reuse
and thus reduce the error introduced. The transmission
line modeling method is not yet implemented in any
Modelica implementation that we know of although an
implementation of the TLM method has been planned
in the GridModelica project [5] for 2005.

4.2 The Weak Connectors Method

Introduced by [7] this somewhat less explored method
also deals with connections. By introducing the con-
cept of weak connections, the model can be partitioned
in two or more parts. The idea is to separate fast sub-
systems from slow so that different solver step size,
or even different solvers can be used when solving the
system. The difficult part here is to find good places
to insert the weak connection, instead of a normal con-
nection. Such places frequently occur between domain
boundaries and while these could quite easily be iden-
tified by a domain expert, it is not so easy to find them
automatically, which is of course the desirable method.
One way of doing this could be to exploit the package

K. Nyström, P. Aronsson, P. Fritzson

The Modelica Association 170 Modelica 2005, March 7-8, 2005

structure of Modelica which roughly divides compo-
nents into different domains.

4.3 Other high level parallelization methods

There are a some high level parallelization tech-
niques in traditional parallel programming that could
be adapted to Modelica. One such technique is matrix
operation partitioning. Matrixes and vectors represent
large data chunks upon which operations are executed.
One example operation could be to add one to each
element in the matrix. Such an operation could quite
easily be distributed across several CPUs as the indi-
vidual operations of adding one to elementm[i][j] is
independent from the operation of adding one to ele-
mentm[k][l].
In the same way, parts of normal loop paralleliza-
tion techniques could probably be employed to achieve
parallelization in Modelica. For example High Perfor-
mance Fortran (HPF)[11] has theforall, pure and in-
dependentkeywords which gives the compiler direc-
tions on how to parallelize loops in the program. Even
though these constructs could quite easily be intro-
duced in the Modelica language, it is unsure whether
they will provide the same performance boost as they
do in HPF due to Modelicas radically different execu-
tion model.

5 Medium level parallelization

The next level of parallelization is at the equation sys-
tem and numerical solver level. Parallel solvers have
in the past had problems with numerical stability in
comparison with other state-of-the-art solvers. Thus,
limiting the usage of such solvers to specific domains
where the requirement on the numerical stability of the
solver is not too demanding. Parallelizing numerical
solvers is in itself a very complex task and while an
interesting way to achieve additional parallelism, for
example with algorithms such as [12, 13] it is not re-
ally Modelica specific. We shall therefore in this paper
concentrate on other ways of equation parallelization.
Another interesting solver related technique is the
mixed mode integration technique presented in [4]. It
is a compromise between explicit and implicit integra-
tion, done by splitting fast and slow subsystems in a
model and to apply implicit discretization only to the
fast part. Results presented in [4] indicates perfor-
mance increases ranging from four to sixteen times.
One task that could be parallelized without too much
effort be parallelized is the Jacobian calculation. Ja-

cobian calculation is sometimes necessary when using
an implicit ODE solver and its calculation is side effect
free which makes the amount of interCPU communi-
cation small. Related to this, it is possible to achieve
some degree of parallelism in the calculation of the
states in an ODE or a DAE, meaning functionf in the
ODE system 1 and functionsf ,g in the DAE system
2.

Ẋ = f (X, t) (1)

f (Ẋ,X,Y, t) = 0,g(X,Y,Z) = 0 (2)

It might also be possible to conduct parallelize solv-
ing of equation system in some cases, as done in [14].
Even though it is common that subcomponents in an
equation system depend upon each other in a linear
fashion, it does not have to be so. What has to be done
is to build a task dependency graph and determine if
subsystems can be solved simultaneously and pass this
to a task scheduler which then distributes the tasks.
Scheduling and partitioning algorithms as described in
[2] also belongs on this level. In that paper only static
scheduling algorithms are described and while these
work very well for continuous systems, they will not
work with hybrid models, meaning models that con-
tain both continuous and discrete parts. In such hybrid
systems, discrete events can radically change the be-
havior of the system so in that case, we need to use
dynamic scheduling instead.

6 Low level parallelization

While the difference between medium an low level
parallelization might be hard to define, we have in this
paper drawn the line at the data level at which the
parallelization algorithms work. With low level par-
allelization, the object is to parallelize the compiler
generated simulation code. We will refrain from de-
scribing low level parallelization here since it is al-
ready thorouwghly described in [3].

7 Discussion

Parallelization in Modelica is still very much under-
developed, with the possible exceptions of the low
level parallelization and solver integration. This is per-
haps somewhat surprising since physical modeling and
simulation is one of the areas with the strongest de-
mand for more computational power. While there ex-
ist some parameter study applications [10, 9, 8], real

Parallelization in Modelica

The Modelica Association 171 Modelica 2005, March 7-8, 2005

parallelization of Modelica models is still to a great
extent a an open issue to be explored.
While the above mentioned techniques can probably
be applied separately with good results, even better re-
sults can be expected if they are combined together.
For instance, parallelization of the model with the
TLM method can be combined with task merging in
the lower layer to achieve a coarse grained paralleliza-
tion at Modelica source level while achieving a more
fine grained parallelization at lower level.
To conclude, we think that while a modeling language
perhaps not does not live or die with its parallelization
abilities, it is still important to develop parallelization
in order to make the Modelica language a serious com-
petitor to Fortran, C and C++ also when it comes to
simulation of computationally demanding models.

8 Acknowledgement

This work was sponsored by Vinnova[19] via the
GridModelica[5] project.

References

[1] Aronsson P., Fritzson P. , Task Merging and
Replication using Graph Rewriting, Tenth In-
ternational Workshop on Compilers for Parallel
Computers, Amsterdam, the Netherlands, Jan 8-
10, 2003

[2] Aronsson P., Fritzson P.Clustering and Schedul-
ing of Simulation Code Generated from Equa-
tion Based Simulation Languages9th Workshop
on Compilers for Parallel Computers, CPC 2001,
June 27-29, Edinburgh, Scotland, UK

[3] Aronsson P. Fritzson P.A Task Merging Tech-
nique for Parallelization of Modelica Models
Modelica conference 2005, Hamburg, Germany
2005.

[4] Schiela A. Olsson H.Mixed-mode Integration for
Real-time SimulationProceedings of the Model-
ica Workshop 2000, pp 69-75.

[5] The GridModelica project,
http://www.ida.liu.se/labs/pelab/modelica/
GridModelica.html, accessed 2004-12-06.

[6] Christopoulos C. , The Transmission Line Mod-
eling Method, EEE/OUP Series on Electromag-
netic Wave Theory, 1995

[7] Casella F. , Maffezzoni C. : ”Exploiting Weak
Interactions in Object Oriented Modeling”, EU-
ROSIM Simulation News Europe, Mar. 1998, pp.
8-10.

[8] Nyström K, Aronsson P, Fritzson P.GridMod-
elica - A modeling and simulation framework
for the grid Proceedings of SIMS conference,
Copenhagen, Denmark 2004.

[9] Engelson V, Fritzson P.A Distributed Simulation
EnvironmentProceedings of SIMS 2002 confer-
ence.

[10] Joos H-D, Looye G, Moormann D.Design of
Robust Inversion Control Laws using Multi-
Objective OptimizationAIAA Guidance and
Control Conference, Montreal, Canada, 2001.

[11] High Performance Fortran ForumHigh Perfor-
mance Fortran Language Specification, version
1.0Houston, Texas, 1993

[12] Yi-Ling F. Chiang, Ji-Suing Ma, Kuo-Lin Hu and
Chia-Yo ChangParallel multischeme computa-
tion Journal of scientific computing, 3(3):289-
306, 1988

[13] Gilbert C. Sih and Edward A. LeeDecluster-
ing: A new multiprocessor scheduling technique
IEEE Transactions on Parallel and Distributed
Systems, 4(6):625-637, June 1993

[14] Andersson NiklasCompilation of Mathemati-
cal Models to Parallel codeLicenciate thesis,
Linköping University, 1996

[15] The OpenModelica project.
http://www.ida.liu.se/ pelab/ model-
ica/OpenModelica.html

[16] The Modelica Association.
http://www.modelica.org.

[17] Fritzson P, Aronsson O, Bunus P, Engelson V, Jo-
hansson H, Karström A, Saldamli L.The Open
Source Modelica Project. In Proceedings of the
2nd International Modelica Conference, Munich
Germany, 18-19 2002.

[18] Fritzson P.Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

[19] Vinnovahttp://www.vinnova.se

K. Nyström, P. Aronsson, P. Fritzson

The Modelica Association 172 Modelica 2005, March 7-8, 2005

