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A Framework for Describing and Solving PDE Models in Modelica

Levon Saldamli∗, Bernhard Bachmann†, Hansjürg Wiesmann‡, and Peter Fritzson∗

Abstract

Currently, the Modelica language [3, 4] has lim-
ited support for solving partial differential equations
(PDEs). There is ongoing work for introducing PDE
support at the language level [5, 6]. This paper de-
scribes a prototype for describing PDE problems us-
ing the Modelica Language without any extensions, as
an intermediate step. The goal is to define standard
PDE models independent of specific domains, bound-
ary conditions or any spatial discretization, and al-
low a user to reuse this without manual discretization.
Modelica packages are used to define continuous do-
main boundaries, domains, and field variables over do-
mains. Corresponding space discrete version of these
packages are used to solve the space discretized PDE
problem.

1 Introduction

A PDE problem can be specified and solved as fol-
lows using the approach in this paper (see Section 6
for more details):

model Gener i cBoundaryPo i s sonExample
parameter BoundaryCond i t i o n . Data d i r z e r o (

bcType= BoundaryCond i t io n . d i r i c h l e t ,
g = 0 ) ;

parameter BoundaryCond i t i o n . Data d i r f i v e (
bcType= BoundaryCond i t io n . d i r i c h l e t ,
g = 5 ) ;

package myBoundaryP = MyGenericBoundary ;
parameter myBoundaryP . Data mybnd (

bot tom ( bc= d i r z e r o ) ,
r i g h t ( bc= d i r f i v e ) ,
t o p ( bc= d i r z e r o ) ,
l e f t ( bc= d i r f i v e ) ) ;

package omegaP = Domain (
r edec l a r e package boundaryP =myBoundaryP ) ;

parameter omegaP . Data omega ( boundary=mybnd ) ;
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package PDE =
PDEbhjl . FEMForms . E q u a t i o n s . Poisson2D (

r edec l a r e package domainP = omegaP ) ;
PDE . E q u a t i o n pde (

domain=omega ,
g _ r h s = 1 ) ;

end Gener i cBoundaryPo i s sonExample ;

First, two Dirichlet boundary conditions are declared,
dirzero and dirfive with the right-hand side val-
ues 0 and 5, respectively. Then, a boundary component
mybnd of type MyGenericBoundary (see Section 6)
is declared, and the boundary conditions are assigned
to the boundary components bottom, right, top and
left of mybnd. A domain named omega is then de-
clared using the boundary object mybnd. Finally, the
PDE model is instantiated using omega as its defini-
tion domain.
Each declaration requires two actual declarations, one
for the package and one for the data of the object, as
explained in the following section.

2 The Package Approach

In order to use an object-oriented approach with poly-
morphism in Modelica, we use packages for defining
new types such as Domain, Field, and Boundary.
Each type Type contains at least a record called Data,
containing the member variables needed in objects of
type Type. The member functions are declared in the
Type package. Each member function has at least one
input argument, of the record type Type.Data. Thus,
when calling member functions on objects, the objects
data is passed as the input record argument. Declaring
an object of type Type is implemented by declaring
a local package, e.g. typeP which extends Type and
possibly modifies parts of it, and then declaring a com-
ponent of type typeP.Data which contains the data
of the object of the modified type. This way, replace-
able functions can be declared in a package, and re-
placeable packages extending these can exchange the
functions as required. In other words, the packages
define the class hierarchy for lookup of functions to
work, and the data records define the object hierarchy
storing the object instance data.
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When types contain instances of other types, they de-
clare a local package extending the other types pack-
age, and declare the objects data inside the Data
record. For example, an equation model declares a do-
main and a field as follows:

model E q u a t i o n " P o i s s o n equat ion 2D"
r ep l a c eab l e package domainP = Domain ;
parameter domainP . Data domain ;

package f i e l d P = F i e l d (
r edec l a r e package domainP = domainP ) ;

parameter f i e l d P . Data u ( domain=domain ) ;
end E q u a t i o n

This approach allows the equation model to be reused
with any domain without changing other parts of the
model. The package fieldP redeclares the replace-
able domain package in the Field package. This way,
the package hierarchy is correctly set up. The actual
data records are declared separately, in order to build
the object hierarchy of the model. The record u has
the type fieldP.Data and will contain the correct
domain data type from the given package domainP.
The domain data must be initialized with the local val-
ues though, which is done with the modification when
declaring the record u. When the domain is to be dis-
cretized, the shape function of its boundary package
is called. Since the boundary package of the domain
package is replaced when the domain is declared, the
correct shape function is called. This is handled au-
tomatically through the package DiscreteDomain,
explained in Section 5.1.1, which is declared in the
discrete parts of the equation models.
The drawback of this approach is that each instantia-
tion requires definition of a local package extending
the type package, together with a declaration of the
Data record of the local package. The advantage is
that the local package can be declared as replaceable,
and the correct version of the package will be used
without knowing the type in advance.

3 Continuous Model Description

This section describes the packages used for continu-
ous model description of domains and fields. These
are Boundary, Domain, and Field, which are dis-
cretization independent information needed for the
PDE problem. An overview of the packages in the
framework is shown in Figure 1.
The geometry of a domain is described using contin-
uous parametric curves, which is a fairly general rep-
resentation and is easy to discretize. Each domain ob-
ject contains a boundary object describing its bound-
ary, i.e., the boundary defines the domain. The direc-

Field

ConstField

Domain

BoundaryCondition

Boundary
1

1

1

Figure 1: Overview of the packages for continuous do-

main and field description. ConstField inherits Field, i.e.,

it is a field with a known value (time-dependent or time-

independent). Arrows represent aggregate, e.g. a domain

object contains one boundary object, which contains one

boundary condition object.

tion of the parametric curve representing the boundary
decides on which side of the boundary the domain re-
sides. Usually, the domain is on the left of the bound-
ary, i.e., the curve is followed in counter-clockwise di-
rection around a point in the domain.

3.1 Boundary Definition

A boundary contains a shape function representing the
parametric curve defined for parameters in the range
[0,1]. The shape function can be seen as a mapping
from a real value, the parameter, to the coordinate vec-
tor x. In two dimensions, one parameter suffices, in
three dimensions, two parameters are needed. The
specific return value of the shape function has the type
BPoint, which is a point with additional information
about the boundary conditions in that point.
The base package for all boundary types is the package
called Boundary:

package Boundary
r ep l a c ea b l e func t i on shape

input Rea l u ;
input Data d a t a ;
output BPoin t x ;

end shape ;

r ep l a c ea b l e record Data
parameter BoundaryCond i t i o n . Data bc ;

end Data ;
end Boundary ;

The formal parameter data to the shape function con-
tains the actual data of the specific boundary object.
The record BPoint, representing a point with bound-
ary condition information, is defined as follows:

type BPoin t = Rea l [ 3 ] " x , y and boundary p a r t i n d e x " ;

Here, index 1 and 2 represent the coordinates in two-
dimensions, while the third value is the boundary con-
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dition index, needed by the discretization and solution
steps.

3.2 Domain Definition

A base domain type called Domain is declared with a
boundary instance defining the actual geometry of the
domain:

package Domain
r ep l a c eab l e package boundaryP = Boundary

extends Boundary ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter boundaryP . Data boundary ;

end Data ;

f unc t i on d i s c r e t i z e B o u n d a r y
input I n t e g e r n ;
input boundaryP . Data d ;
output BPoin t p [ n ] ;

a lgor i thm
for i in 1 : n l oop

p [ i , : ] := boundaryP . shape ( ( i − 1 ) / n , d ) ;
end for ;

end d i s c r e t i z e B o u n d a r y ;
end Domain ;

The restriction specifies that if the package
boundaryP is replaced, the replacing package
must be a subtype of Boundary.
The function discretizeBoundary must reside in
the Domain package in order that the correct shape
function is called, depending on the replaceable pack-
age boundaryP. The discretization simply calculates
a given number of points uniformly distributed on the
boundary. The data record of the domain contains the
boundary record, which is the actual data record of
the selected boundary type.

3.3 Fields

A field represents a mapping from a domain to scalar
or vector values. The domain is declared as a re-
placeable package, which can be replaced by a pack-
age extending the Domain package described in Sec-
tion 3.2. The replaceable type FieldType determines
the value type of the field. The data record contains
the data of the domain:

package F i e l d
r ep l a c eab l e type F i e l d T y p e = Rea l ;
r ep l a c eab l e package domainP = Domain

extends Domain ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter domainP . Data domain ;

end Data ;

r ep l a c eab l e func t i on v a l u e
input P o i n t x ;
input Data d ;
output F i e l d T y p e y ;

a lgor i thm
y := 0 ;

end v a l u e ;
end F i e l d ;

The function value represents the mapping, which
can be defined when specifying fields with known val-
ues. Fields with unknown values that must be solved
for during simulation may use value functions that in-
terpolate the values for given coordinates.

3.3.1 A Field Example

An example showing a field with time-constant values
follows:

model Fie ldExample
f unc t i on m y f i e l d f u n c

input P o i n t x ;
input myFieldP . Data d ;
output myFieldP . F i e l d T y p e y ;

a lgor i thm
y := cos (2∗ PI∗x [ 1 ] / 6 ) + s i n (2∗ PI∗x [ 2 ] / 6 ) ;

end m y f i e l d ;

package omegaP =
Domain ( r edec l a r e package boundaryP = C i r c l e ) ;

package myFieldP =
F i e l d ( r edec l a r e package domainP =omegaP ,

r edec l a r e func t i on v a l u e = m y f i e l d f u n c ) ;

parameter C i r c l e . Data bnd ( r a d i u s = 2 ) ;
parameter omegaP . Data omega ( boundary=bnd ) ;
parameter myFieldP . Data m y f i e l d ( domain=omega ) ;

end Fie ldExample ;

The field function myfieldfunc defines the mapping
from the space coordinates to the field values of type
Real.

3.4 Included Boundaries

Some predefined boundaries can be found in the pack-
age Boundaries. All these packages extend the ba-
sic package Boundary. Therefore the data records
in each boundary contain the parameter bc of type
BoundaryCondition.Data, containing the bound-
ary condition information. Boundary conditions are
described in Section 4.3. An overview of the included
boundaries can be seen in Figure 2. They are also
briefly described in the following sections.

3.4.1 Line

Line is a straight line defined by two points, the start
and the end points of the line. The data record of Line
follows:

r edec l a r e record extends Data
parameter P o i n t p1 ;
parameter P o i n t p2 ;

end Data ;

The shape function simply interpolates the points lin-
early between the end points:

A Framework for Describing and Solving PDE Models in Modelica

The Modelica Association 115 Modelica 2005, March 7-8, 2005



Line HComposite Composite Bezier GenericArc
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Figure 2: Predefined boundaries contained in the pack-

age Boundaries. Composite is a boundary consisting of

boundary parts of different types. HComposite (homoge-

neous composite) consists of boundary parts of the same

type. Generic is a boundary type that can represent the

other concrete boundary types and is used in the Composite

boundary.

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
x [ 1 : 2 ] := d . p1 + u ∗ ( d . p2 − d . p1 ) ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

The boundary condition index is passed through to the
points on the boundary.

3.4.2 Arc

An arc is part of a circular boundary with given start
and end angles around a center and with a given radius:

r edec l a r e record Data
extends Boundary . Data ;
parameter P o i n t c ={0 ,0} ;
parameter Rea l r =1 ;
parameter Rea l a _ s t a r t =0 ;
parameter Rea l a_end =2∗ p i ;

end Data ;

Default values for the parameter gives a full circle.
The shape function calculates the position using sin
and cos functions:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
Rea l a =( d . a_end − d . a _ s t a r t ) ;

a lgor i thm
x [ 1 : 2 ] := d . c + d . r ∗{ cos ( d . a _ s t a r t + a∗u ) ,

s i n ( d . a _ s t a r t + a∗u ) } ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

3.4.3 Circle

A circle is simply defined by extending Arc and giving
the angles for a full circle:

package C i r c l e
extends Arc ( Data ( a _ s t a r t =0 , a_end =2∗ p i ) ) ;

end C i r c l e ;

3.4.4 Rectangle

A rectangle declares four lines as components, with
the names bottom, right, top and left. For exam-
ple bottom is declared as follows:

parameter Line . Data bot tom (
p1=p ,
p2=p + {w, 0 } ,
bc ( i n d e x =1 , name =" bot tom " ) ) ;

The parameters of the rectangle are p, w and h, rep-
resenting the bottom left corner, the width and the
height, respectively.
The rectangle class extends the HComposite package,
which is a container for several boundary parts of the
same type, as described below. The Rectangle pack-
age is defined as follows:

package R e c t a n g l e
extends HComposite (

r edec l a r e package Par tType = Line ) ;

r edec l a r e record
extends Data ( b n d d a t a (

n =4 ,
p a r t s ={ bottom , r i g h t , top , l e f t } ) ) ;

parameter Line . Data bot tom (
p1=p ,
p2=p + {w, 0 } ,
bc ( i n d e x =1 , name =" bot tom " ) ) ;

/ / r i g h t , t o p and l e f t d e f i n e d s i m i l a r l y
end Data ;

end R e c t a n g l e ;

Hence, bnddata is a data record inside the rectangle
record, with the parts initialized to the vector contain-
ing the four declared lines, and as the PartType de-
clared as Line, accordingly.

3.4.5 Bézier

The Bézier boundary package uses a number of con-
trol points given as parameters to calculate the coordi-
nates of the points on a bézier curve, using De Castel-
jau’s Algorithm [2]. The data record for Bezier pack-
age follows:

r edec l a r e record extends Data
parameter I n t e g e r n =1 ;
parameter P o i n t p [ n ] ;

end Data ;

The shape function implements the algorithm for cal-
culating the coordinates of a point on the curve, given
the parameter u:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
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P o i n t q [ : ] = d . p ;
a lgor i thm

for k in 1 : ( d . n − 1) l oop
fo r i in 1 : ( d . n − k ) l oop

q [ i , : ] := (1 − u )∗ q [ i , : ] + u∗q [ i + 1 , : ] ;
end for ;

end for ;
x [ 1 : 2 ] := q [ 1 , : ] ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

3.4.6 Generic

The boundary package Generic is needed in order
to define composite boundaries containing boundary
parts of different types. Since there are no pointers or
union types in Modelica, it is not possible to declare a
container for boundary parts where each part can be a
subclass of Boundary which is not known at the time
of library development. Hence, the Generic package
contains an enum parameter deciding the type of the
boundary part, and data records for each of the existing
types that can be selected. This leads to a lot of over-
head, since only one of the records are actually used,
but unused parameters are optimized away during the
compilation and this does not affect the resulting sim-
ulation code. In future implementations, union types
or other solutions for polymorphism might allow more
efficient implementation of generic boundary types.
The enumeration type and the data record for the
Generic boundary type follows:

type PartTypeEnum = e n u m e r a t i o n (
l i n e ,
a rc ,
c i r c l e ,
r e c t a n g l e ) ;

r edec l a r e r ep l a c ea b l e record Data
parameter PartTypeEnum p a r t T y p e ;
parameter Line . Data l i n e ;
parameter Arc . Data a r c ;
parameter C i r c l e . Data c i r c l e ;
parameter R e c t a n g l e . Data r e c t a n g l e ;

end Data ;

Because of lack of polymorphism, e.g. virtual func-
tions, the shape function must check the enumeration
variable and call the correct shape function:
r edec l a r e func t i on shape

input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
i f d . p a r t T y p e ==PartTypeEnum . l i n e then

x := Line . shape ( u , d . l i n e ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . a r c then

x := Arc . shape ( u , d . a r c ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . c i r c l e then

x := C i r c l e . shape ( u , d . c i r c l e ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . r e c t a n g l e then

x := R e c t a n g l e . shape ( u , d . r e c t a n g l e ) ;
end i f ;

end shape ;

3.4.7 Composite

The Composite boundary simply uses a given num-
ber of Generic boundaries to build a complete bound-
ary using parts of different types:

package Par tType = B o u n d a r i e s . G e n e r i c ;

r edec l a r e r ep l a c eab l e record extends Data
parameter I n t e g e r n =1 ;
parameter Par tType . Data p a r t s [ n ] ;

end Data ;

The shape function simply calls the shape function in
the Generic boundary package, using the index cal-
culated by dividing the formal parameter u uniformly
among the existing parts:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
Rea l s=d . n∗u ;
I n t e g e r i s = i n t e g e r ( s ) ;

a lgor i thm
x := Par tType . shape ( s − i s , d . p a r t s [1 + i s ] ) ;

end shape ;

Here, is contains the part index corresponding to the
value of the formal parameter u, and s-is is the new
parameter value scaled to map to the parameter range
of that particular boundary part. For example, if the
shape function is called for a boundary containing four
parts with u = 0.8, the value of is will be integer(4 ∗
0.8) = 3 and the value of s− is will be 4∗0.8−3 = 0.2,
mapping to the u value on the fourth boundary part.

HComposite is a simplified version of the
Composite boundary, containing only parts of
the same type.

4 Equation Models

The Equation models contain all the different com-
ponents of the PDE model, and handle the spatial dis-
cretization and the declaration of the discrete model
equations. The continuous components of the model,
i.e., the domain, its boundary, the boundary conditions
and the field, are declared here. Their discrete coun-
terparts are declared and initialized automatically from
the continuous components, using given discretiza-
tion parameters. The spatial discretization is done by
calling the finite element solver, which can be im-
plemented in Modelica, or an external solver called
through the Modelica external function interface. The
declared equations use the spatially discretized model.
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4.1 The Poisson Equation

The Poisson equation is a simple example of a station-
ary (time-independent) model. In differential form, the
equation is

−∇ · (c∇u) = f in Ω (1)

where u is the unknown field, c is a space-dependent
coefficient, f is the source term and Ω is the domain.

4.2 The Diffusion Equation

The diffusion equation for a field u is:

∂u
∂t

−∇ · (c∇u) = f in Ω (2)

where c is a space-dependent coefficient, f is the
source term and Ω is the domain.

4.3 Boundary conditions

In both cases the boundary conditions may be Dirich-
let, Neumann or mixed. The Diriclet boundary condi-
tions is used where the value of the unknown field is
known on the boundary:

u = g on Ω (3)

The Neumann boundary condition is used when the
value of the normal derivative of the field is known on
the boundary:

∂u
∂n

= g on Ω (4)

The mixed boundary condition, also called the Robin
boundary condition, contains both the value of the
field and the normal derivative:

a
∂u
∂n

+ bu = g on Ω (5)

5 Discretization

So far only the continuous parts of the packages have
been discussed. These are independent of the dis-
cretization, and thus also the solution method, e.g. the
finite element method or the finite difference method.
The method for discretization of the domain depends
on which solution method is used. The finite element
package is described in the following section. Pack-
ages for the finite difference method exist for an ear-
lier prototype of the framework. Also, packages for
the finite volume method are being considered.

5.1 The Finite Element Package

For the finite element solver, the domain is represented
by a triangular mesh. The mesh generator used in
this work requires a polygon describing the bound-
ary of the domain as input. This polygon is generated
by discretizing the domain boundary using the shape
function. A simple discretization function sampling a
given number of points uniformly on the boundary is
implemented as follows:

f unc t i on d i s c r e t i z e B o u n d a r y
input I n t e g e r n ;
input boundaryP . Data d ;
output BPoin t p [ n ] ;

a lgor i thm
for i in 1 : n l oop

p [ i , : ] := boundaryP . shape ( ( i −1) /n , d ) ;
end for ;

end d i s c r e t i z e B o u n d a r y ;

The resulting polygon is given to the mesh generator
bamg [1]. The triangulation is then imported to Mod-
elica. Figure 3 shows the overview of the packages
used in this process.

DiscreteDomain DiscreteField BCType

SolverMesh Equations

DiffusionEquationPoissonEquation

Domain Field BoundaryCondition

Continuous

Discrete (FEM package)

Figure 3: Packages involved in the discretization using the

finite element method. The user has only to deal with the

continuous part when using the equation packages.

The complete discretization and solution process is de-
picted in Figure 4. The external stiffness matrix calcu-
lation can be exchanged with internal code, i.e., func-
tions implemented in Modelica. A prototype imple-
mentation in Modelica exists for discretization of the
Poisson equation with homogeneous Dirichlet bound-
ary conditions.

5.1.1 DiscreteDomain

DiscreteDomain is the discrete version of Domain.
It contains a replaceable package domainP, rep-
resenting the continuous version of the domain.
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Discrete
Modelica definition

(boundary)

Continuous
Modelica definition

Discrete
Modelica Definition

External
Grid Generation

Results

External
Stiffness Matrix

Calculation

Boundary
Discretization

Simulation of
Modelica Model

Figure 4: Solution diagram. The boxes on the left show

the data flow. The rounded boxes show tools implemented

in Modelica, and ellipses show external tools.

The discretization is done automatically, once
DiscreteDomain is declared with a given Domain
package. DiscreteDomain is defined as follows:
package Disc re t eDomain

r ep l a c eab l e package domainP = Domain
extends Domain ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter I n t e g e r nbp ;
parameter domainP . Data domain ;
/ / A parame ter t o t h e mesh g e n e r a t o r
/ / s p e c i f y i n g d e t a i l l e v e l , l e s s e r means
/ / more t r i a n g l e s
parameter Rea l r e f i n e = 0 . 7 ;

/ / Array o f d i s c r e t e p o i n t s on t h e boundary
parameter BPoin t boundary [ nbp ]=

domainP . d i s c r e t i z e B o u n d a r y ( nbp ,
domain . boundary ) ;

parameter Mesh . Data mesh (
n= s i z e ( boundary , 1 ) ,
po lygon = boundary [ : , 1 : 2 ] ,
bc= i n t e g e r ( boundary [ : , 3 ] ) ,
r e f i n e = r e f i n e ) ;

parameter I n t e g e r b o u n d a r y S i z e =
s i z e ( boundary , 1 ) ;

end Data ;
end Disc re t eDomain ;

The actual mesh generation is done when the mesh

component is instantiated by the compiler, i.e., the
Mesh package contains the actual calls to the external
mesh generator.

5.1.2 DiscreteField

The package DiscreteField is incapsulates the
conversion of a continuous field to a discrete field, us-

ing a given discrete domain. A discrete field contains
two separate arrays of discrete points in the domain,
one array containing the unknown values and one con-
taining the known values, e.g. from given boundary
conditions. This representation corresponds to the rep-
resentation used in Rheolef [7], in order to simplify
the solver interface. Both arrays are indirect, e.g. they
contain indices of the actual points in the mesh repre-
sentation. The DiscreteField package is defined as
follows:

package D i s c r e t e F i e l d
r ep l a c ea b l e package f i e l d P = F i e l d ;
r ep l a c ea b l e package ddomainP = Disc re t eDomain ;

r ep l a c ea b l e record Data
parameter ddomainP . Data ddomain ;
parameter f i e l d P . Data f i e l d ;
parameter FEMSolver . FormSize f o r m s i z e ;
parameter I n t e g e r u _ i n d i c e s [ f o r m s i z e . nu ] ;
parameter I n t e g e r b _ i n d i c e s [ f o r m s i z e . nb ] ;
f i e l d P . F i e l d T y p e v a l _ u [ f o r m s i z e . nu ] (

s t a r t = z e r o s ( f o r m s i z e . nu ) ) ;
f i e l d P . F i e l d T y p e v a l _ b [ f o r m s i z e . nb ] ;

parameter I n t e g e r f i e l d S i z e _ u = s i z e ( val_u , 1 ) ;
parameter I n t e g e r f i e l d S i z e _ b = s i z e ( val_b , 1 ) ;

end Data ;

end D i s c r e t e F i e l d ;

Here, the default start values for the unknowns are set
to zeros. This value is overridden in the discrete parts
of the equation models, for appropriate initial value
setting. FormSize contains the sizes of the two arrays
of discrete values, and is imported from the external
solver since the sizes depend on the boundary condi-
tions actually used in the model. Basically, Dirichlet
and mixed boundary conditions decides the number of
known variables.

5.1.3 Equation Discretization

The spatial derivatives in the equations are discretized
using the external solver Rheolef [7], which is auto-
matically called from the equation models through ex-
ternal functions. Rheolef performs the assembling of
the matrix needed for the space discrete DAE system.
The result of the assembly is a coefficient matrix for
the unknown field values at the discrete points of the
domain. The resulting matrices are imported to Mod-
elica through external functions and used in the actual
equations in the equation models. The final, possi-
bly time-dependent, equation system, is simulated in
Dymola. An example solved using this framework is
shown in the following section.
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6 Example

The result of the discretization of the equation, i.e., the
assembly step, is a coefficient matrix for the unknown
field values at the discrete points of the domain. The
discrete part can be completely handled by the equa-
tion model, hiding the details from the user, as shown
in the example using the PoissonEquation model:

model Gener i cBoundaryPo i s sonExample
import PDEbhjl . B o u n d a r i e s . ∗ ;
import PDEbhjl . ∗ ;

parameter I n t e g e r n =40;
parameter Rea l r e f i n e = 0 . 5 ;
parameter P o i n t p0 ={1 ,1} ;
parameter Rea l w=5;
parameter Rea l h =3 ;
parameter Rea l r = 0 . 5 ;
parameter Rea l cw=5;

package myBoundaryP = MyGenericBoundary ;

parameter myBoundaryP . Data mybnd (
p0=p0 ,
w=w,
h=h ,
cw=cw ,
bot tom ( bc= d i r z e r o ) ,
r i g h t ( bc= d i r f i v e ) ,
t o p ( bc= d i r z e r o ) ,
l e f t ( bc= d i r f i v e ) ) ;

package omegaP = Domain (
r edec l a r e package boundaryP =myBoundaryP ) ;

parameter omegaP . Data omega ( boundary=mybnd ) ;

parameter BoundaryCond i t i o n . Data d i r z e r o (
bcType= BoundaryCond i t i o n . d i r i c h l e t ,
g =0 ,
q =0 ,
i n d e x =1 ,
name =" d i r z e r o " ) ;

parameter BoundaryCond i t i o n . Data d i r f i v e (
bcType= BoundaryCond i t i o n . neumann ,
g =5 ,
q =1 ,
i n d e x =2 ,
name =" d i r f i v e " ) ;

parameter BoundaryCond i t i o n . Data b c l i s t [ : ] =
{ d i r z e r o ,

d i r f i v e } ;

package PDE =
PDEbhjl . FEMForms . E q u a t i o n s . Poisson2D

( r edec l a r e package domainP = omegaP ) ;

PDE. E q u a t i o n pde (
domain=omega ,
nbp=n ,
r e f i n e = r e f i n e ,
g0 =1 ,
nbc= s i z e ( b c l i s t , 1 ) ,
bc= b c l i s t ) ;

end Gener i cBoundaryPo i s sonExample ;

Here, two different boundary conditions are assigned
to different parts of the boundary. The boundary used
here is defined as follows:

package MyGenericBoundary
extends Boundary ;

r edec l a r e record extends Data
parameter P o i n t p0 ;
parameter Rea l w;
parameter Rea l h ;
parameter Rea l cw ;

parameter Rea l ch=h ;
parameter P o i n t cc =p0 + {w, h / 2 } ;

parameter Line . Data bot tom (
p1=p0 ,
p2=p0 + {w, 0 } ) ;

parameter Line . Data t o p (
p1=p0 + {w, h } ,
p2=p0 + {0 , h } ) ;

parameter Line . Data l e f t (
p1=p0 + {0 , h } ,
p2=p0 ) ;

parameter B e z i e r . Data r i g h t (
n =8 ,
p= f i l l ( cc , 8 ) +

{ { 0 . 0 , −0 . 5 } , { 0 . 0 , −0 . 2 } , { 0 . 0 , 0 . 0 } ,
{ −0 .85 , −0 .85} ,{ −0 .85 ,0 .85} ,{0 .0 ,0 .0} ,
{ 0 . 0 , 0 . 2 } , { 0 . 0 , 0 . 5 }

} ∗ { {cw , 0 } , {0 , ch } } ) ;

parameter Composi te . Data boundary (
p a r t s 1 ( l i n e = bottom ,

p a r t T y p e =PartTypeEnumC . l i n e ) ,
p a r t s 2 ( b e z i e r = r i g h t ,

p a r t T y p e =PartTypeEnumC . b e z i e r ) ,
p a r t s 3 ( l i n e = top ,

p a r t T y p e =PartTypeEnumC . l i n e ) ,
p a r t s 4 ( l i n e = l e f t ,

p a r t T y p e =PartTypeEnumC . l i n e ) ) ;
end Data ;

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
x := Composi te . shape ( u , d . bounda ry ) ;

end shape ;

end MyGenericBoundary ;

The basic contents of the Poisson2D equation model
used above is defined as follows:

package Poisson2D " P o i s s o n problem 2D"
package uDFieldP = D i s c r e t e F i e l d (

r edec l a r e package ddomainP = ddomainP ,
r edec l a r e package f i e l d P = u F i e l d P ) ;

uDFieldP . Data fd (
ddomain=ddomain ,
f i e l d = u F i e l d ,
f o r m s i z e = f o r m s i z e ,
u _ i n d i c e s = u _ i n d i c e s ,
b _ i n d i c e s = b _ i n d i c e s ,
v a l _ u ( s t a r t ={1 f o r i in 1 : f o r m s i z e . nu } ) ) ;

equat ion
l a p l a c e _ u u ∗ fd . v a l _ u

= mass_uu∗ g _ r h s . v a l _ u + mass_ub∗ g _ r h s . v a l _ b
− l a p l a c e _ u b ∗ fd . v a l _ b ;

fd . v a l _ b = b v a l s ; / / known boundary v a l u e s
end E q u a t i o n ;

end Poisson2D ;
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The matrices laplace_uu, mass_uu, mass_ub and
laplace_ub are retrieved from the external solver
Rheolef. Also bvals is calculated by the external
solver. For diffusion problems, additional matrices are
retrieved for the coefficients for the time derivatives of
the unknowns.

The plot of the simulation result can be seen in Fig-
ure 5. For comparison, same model is exported to and
solved in FEMLAB. Figure 6 shows the result gener-
ated by FEMLAB. The triangulation of the domain in
both cases can be seen in Figure 7.
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Figure 5: Results from solving the Poisson equation

(steady-state) in Dymola.

Figure 6: Results from solving the Poisson equation

(steady-state) in FEMLAB.
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Figure 7: The meshes automatically generated from do-

main description in Modelica. Bamg mesh on the left, FEM-

LAB solution mesh on the right.

7 Conclusion and Future Work

The packages presented here give a general framework
for easily defining general domains over which the
predefined PDE models from the framework can be
solved. New boundaries are easy to define using the
existing boundaries as components, as shown in Sec-
tion 6. Additional standard boundaries can also be
added to the Boundaries package for future use.
New PDE models are also easy to add to the frame-
work. Models that can be formulated using forms as
described in the Rheolef User Manual [8] can be added
to the framework by using the external function inter-
face and implementing necessary extensions.
Further work is needed on the finite difference and
the finite volume packages and adapt them to the cur-
rent continuous definition framework. Also, the fi-
nite difference solver can be improved to support non-
rectangular domains.
A simple extension of the framework is to include do-
mains that use the existing standard boundaries. For
example, a CircularDomain can be defined in the
framework as follows:

package Circu la rDo ma i n
extends Domain (

r edec l a r e package boundaryP = C i r c l e ) ;
end Circu la rDo ma i n ;

Such a domain can be used directly when defining new
problems, instead of declaring a general domain each
time and replacing the boundary manually.
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