
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

F. Casella
Politecnico di Milano, Italy
Exploiting Weak Dynamic Interactions in Modelica
pp. 97-102

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH

Exploiting Weak Dynamic Interactions in Modelica
Francesco Casella

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci, 32 - 20133 Milano ITALY
e-mail: casella@elet.polimi.it

Abstract

The simulation of complex systems can be made
more efficient by splitting the system into several,
weakly interacting subsystems, and then integrating
their equations separately. The paper discusses the
required extension to the Modelica language, as well
as the corresponding integration algorithms. Possible
applications include real-time integration of large
systems, distributed simulation, and the integration
of Modelica with external simulators.

1 Introduction

Consider a complex dynamical system, obtained by
connecting fast and slow subsystems. The simultane-
ous integration of the corresponding large set of
DAEs can become highly inefficient, especially
when a fixed-step algorithm is employed (e.g., for
real-time simulation): the fast dynamic subsystems
force the adoption of a very small integration time
step, and the system of coupled DAEs to be solved
at each step is very large.
In some cases, however, the system can be decom-
posed into two (or more) weakly interacting subsys-
tems, whose describing DAEs can be solved inde-
pendently at each time step. This allows to split the
overall numerical integration task into many smaller
tasks, which can be carried out more efficiently;
moreover, it opens the way to distributed simulation,
where each integration task runs on a different CPU.
This method can offer very significant performance
improvements in real-time, fixed time-step simula-
tors, e.g. for hardware-in-the-loop and training appli-
cations.
The weak dynamic interaction method has been ex-
tensively investigated in our research group in the
past 10 years. The first notable example is the gener-
al-purpose, object-oriented modelling and simulation
environment MOSES [1], which relied on an object-
oriented database for system modelling, and on

DASSL-RT to perform variable step-size integra-
tion. The second example is the ProcSim package
[2], a simulation environment for power plant simu-
lation, based on the visual LabView environment,
relying on ad-hoc, implicit Euler integration algo-
rithms.
A brief paper on the basic concepts of weak interac-
tions in object-oriented modelling appeared several
years ago on the Eurosim Simulation News Europe
magazine [3]; the purpose of this paper is to propose
an implementation of those concepts in the Modelica
framework. The mathematical foundations of weak
dynamic interaction are first introduced in Section 2.
The extension of the Modelica language is then dis-
cussed in Section 3, with reference to a simple ex-
ample; the problem of generating the corresponding
numerical simulation code, as well as the application
to distributed simulation are also dealt with. Section
4 follows with further discussion, including the com-
parison of the proposed approach to other existing
methods to speed up real-time simulations. Section 5
concludes the paper with some proposals for future
work.

2 Weak Dynamic Interaction: Math-
ematical Foundations

The concept of weak dynamic interaction is intro-
duced with the aid of a simple example. Consider the
electrical circuit represented in Fig. 1.
The complete set of the component and connection
DAEs is:

E

I1 I2

VA R1 R2
I4 VB I5 VC

C1 C2 R3
I3

Figure 1: A simple electrical circuit

Exploiting Weak Dynamic Interactions in Modelica

The Modelica Association 97 Modelica 2005, March 7-8, 2005

E−V A=0
V A−V B=R1 I 1

C1 V̇ B=I 4

V B−V C=R1 I 2

C 2 V̇ C=I 5

V C=R3 I 3

I 1− I 4− I 2=0
I 2−I 5−I 3=0

(1)

In this particular case, it is straightforward to solve
the algebraic equations for the algebraic variables,
and to rewrite the system in ODE form:

(2)

where and

Suppose that the system (2) is solved by Euler's im-
plicit formula; at each time step, the following linear
system has to be solved:

(3)

where H = I – A∆t, f = Bu∆t, and ∆t is the integra-
tion time step. The integration algorithm is A-stable
for any ∆t. Note that, in the case of a non-linear sys-
tem, the role of matrix H would be played by the
system Jacobian, which should be inverted at (al-
most) each time step.
If the system is solved by Euler's explicit formula,
the solution is given by

(4)

where F = I + A∆t. In this case, no matrix inversion
is needed; on the other hand, the algorithm is A-sta-
ble only if ∆t < 2Tmin, where Tmin is the minimum
time constant of matrix A. Explicit integration for-
mulae are not convenient if the system is stiff, i.e. if
there are mixed fast and slow dynamics, as the fast
one dictates the maximum possible time step.
Suppose now that both R2 and C2 are sufficiently
large: the variation of the voltage VC within a time
step is likely to be small, compared to the voltage
drop across the resistor, thus having a weak influ-
ence on the current I2; conversely, the current I2 can-
not vary VC substantially over a single time step, and
thus has a weak influence on VC. With reference to
the R2-C2 connection, the voltage is thus a weak
connection variable on the resistor side, while the
current is a weak connection variable on the capaci-
tor side. In other words, an approximate dynamic de-
coupling can be applied at the connection between
R2 and C2. It is then possible split the model in two
parts, as shown in Fig. 2.

E

I1

I2

VA R1 R2
I4 VB

I5

VCC1 C2 R3
I3

I2

VC

Figure 2: The electrical circuit split into two inter-
acting subsystems.

The left part of the circuit is connected to a fictitious
voltage generator VC, and the right part of the circuit
is connected to a fictitious current generator IC.
The idea is now to adopt a mixed implicit-explicit
integration algorithm to the system of Fig. 2. At each
time-step, the equations of each sub-circuit are inte-
grated using Euler's implicit formula, while taking
into account the last computed value of the boundary
variable IC or VC. The corresponding integration for-
mula is:

(5)

where GL and GR are the following triangular matri-
ces:

G L=[1  t
R1C1

0

−
 t

R2C 2
1

 t
R3C 2

]
GR=[1  t

R2C1

0 1−
 t

R2C 2
]

As matrix GL is now triangular (due to the dynamic
decoupling), the solution of equation (5) is trivial,
and has almost the same computational weight of the
explicit formula (4). However, the integration for-
mula remains A-stable for much larger time steps
than the fully explicit formula; for large values of R2,
it is even unconditionally stable. For example, if the
following values are taken:
R1=0.1; C1=1; R3=1; C2={1,3,10}; R2=[0.1-10];

the stability regions shown in Fig. 3 and 4 are ob-
tained; the stable region is below the limit curve for
each value of C2. It is apparent how the algorithm
based on the weak interaction method allows far
larger integration time steps than the explicit algo-
rithm, while requiring a comparable computational
time, as no matrix inversion is required.

x=[V B V C] '

H xk1=xk f k1

xk1=F xk f k

G L xk1=GR xk f k1

ẋ=AxBu

u=E.

F. Casella

The Modelica Association 98 Modelica 2005, March 7-8, 2005

Figure 3: Stability regions of explicit Euler's integra-
tion algorithm.

Figure 4: Stability regions of the weakly interacting
integration algorithm.

Going beyond the simple example shown here, the
advantages of the proposed modelling and numerical
integration strategy become more and more substan-
tial if the systems are nonlinear, and as the order of
the weakly coupled subsystems grows larger.
Finally, if the dynamics of the weakly coupled sub-
systems is very different (i.e. one is fast and one is
slow), a multirate integration algorithm could be
adopted, in which the time step of the slow subsys-
tem is a multiple of the time step of the fast subsys-
tem. This kind of strategy, whose detailed analysis is
outside the scope of this paper, can lead to even larg-
er computational savings, if the fast subsystems have
a few states, while the slow subsystems contains the
majority of the states.

3 Weak Interaction in the Modelica
Framework

3.1 The weak modifier

The weak interaction method will now be introduced
in the Modelica framework with the help of a repre-
sentative example, i.e., the simulation of a power
generation system. The system (see Fig. 5) is com-
posed by the connection of two main sub-systems:
the mechanical power generation unit (e.g. a gas tur-
bine unit, or a boiler-steam turbine unit), and a syn-
chronous generator, connected either to the grid or to
local loads. The aim of the simulation is to simulta-
neously represent the control system dynamics of
both units, with time scales ranging from less than a
tenth of a second (swing dynamics of the syn-
chronous generator), to several minutes (boiler pres-
sure dynamics).

Assuming that the rotational inertia has been lumped
on the MechGen side, the high mechanical inertia of
the gas turbine shaft provides a dynamic decoupling
between the thermo-mechanical system on the left
side of the connection and the electro-mechanical
system on the right side of the connection. In other
words, a step variation of the torque applied to the
shaft by the electrical generator cannot vary the shaft
speed substantially over time scales smaller than 0.2-
0.5 seconds; this means that the torque is a weak
connection variable on the mechanical generator
side. On the other hand, since the shaft speed cannot
vary substantially over such a time scale, the shaft
angle is a weak connection variable on the electrical
generator side.
If the two subsystems are connected by means of
standard Modelica.Mechanics.Rotational connec-
tors, this situation could be described by adding the
weak modifier to the Modelica language, and by in-
troducing the concept of weak connection:

connect(MechGen.Shaft(weak tau),
 ElecGen.Shaft(weak phi));

Figure 5: Model of a power generation system.

MechGen ElecGen

G Network
Shaft Shaft

Exploiting Weak Dynamic Interactions in Modelica

The Modelica Association 99 Modelica 2005, March 7-8, 2005

Alternatively, the weak attribute could be directly
built in the two sub-system connectors, which should
be declared as follows:

import Modelica.Mechanics.Rotational.*;
model MechGen
 Interfaces.Flange_a Shaft(weak tau);
...
end MechGen;
model ElecGen
 Interfaces.Flange_b Shaft(weak phi);
...
end ElecGen;
It should also be possible to apply the weak modifi-
er to variables declared inside a model, if their influ-
ence on the object behaviour across a single time-
step is small; for example, the air temperature at the
gas turbine air intake.

3.2 Integration Algorithms

The weak variables can now be exploited by the in-
tegration algorithm. The basic idea is that every
weak variable can be treated as an input variable by
the numerical integration algorithm, regardless of its
actual physical causality; the corresponding input
value will correspond to last computed value avail-
able to the integration algorithm.
If the weak variables are replaced by input vari-
ables, the Modelica compiler could then easily de-
compose the dynamics of the whole system in two
weakly interacting subsystems, as shown in Fig. 6.
The numerical integration task could then be decom-
posed into two smaller sub-tasks. Each sub-task will
read the last computed value available of its input
variables to compute the next value of its output
variable, as explained by the following pseudo-code
(an explicit integration algorithm is assumed for
simplicity):

T := 0.05; // Time step length
loop
 (phi,x_mech) :=
 MechGenInt(tau,x_mech,T);
 (tau,x_elec) :=
 ElecGenInt(phi,x_elec,T);
end loop;
where x_mech and x_elec are the state vectors of
the two subsystems.

 Figure 6: Weakly interacting subsystems.

Each subsystem can be integrated with the method
of choice, represented here by the MechGenInt
and ElecGenInt functions. If implicit algorithms
are used, the dynamic decoupling leads to two small-
er sets of nonlinear equations, to be solved sequen-
tially. This has beneficial effects on the computation
time, as already discussed in Section 2.
In the simple example shown above, the two integra-
tion algorithms are synchronous (i.e., they share the
same time step). However, since the two correspond-
ing subsystems are characterised by widely different
dynamic time constants, it is also possible to choose
different step lengths for each one, as shown in the
following pseudo-code:

Tmech := 0.1;
Tel := Tmech/N;
loop
 (phi,x_mech) :=
 MechGenInt(tau,x_mech,Tmech);
 for h in 1:N loop
 (tau,x_elec) :=
 ElecGenInt(phi,x_elec,Tel);
 end for;
end loop;

This scheme has a big potential for the real-time,
fixed time-step simulation of complex systems: in-
stead of dealing with a huge coupled system, which
must be integrated with a small time step dictated by
its fastest subsystem, it is possible to split the inte-
gration task into many independent sub-tasks, each
one having the appropriate step length. In this way,
each subsystem is neither under-sampled or over-
sampled, and the computational resources are used
efficiently.

3.3 Distributed Simulation

If a system can be decomposed into several, weakly
interacting subsystems, it is also straightforward to
devise a distributed simulation strategy: the integra-
tion tasks of each sub-system can be allocated on
different CPUs, communicating e.g. through a
shared memory database or TCP/IP sockets (Fig. 7).

Figure 7. Distributed simulation architecture.

MechGen ElecGen
tau

phi

MechGen
Integrator

ElecGen
Integrator

Shared process variable database

...

F. Casella

The Modelica Association 100 Modelica 2005, March 7-8, 2005

A further possibility is to support co-simulation, by
introducing “external simulator” objects, which are
an extension of the already existing Modelica exter-
nal functions. In this case, a Modelica “wrapper”
model, defining the input, output, and weakly inter-
acting connector variables, could be written and then
linked to external simulation applications. The actu-
al communication between the Modelica-based sim-
ulator and the other ones could then be performed
via TCP/IP sockets, DLLs, DDE, or any other inter-
process communication mechanism. In this way, it
would become possible to merge parts of a simulator
obtained from a Modelica model with other parts
provided by different simulators (e.g. a CFD code,
or a digital controller emulator), or by interactive
user interfaces.

3.4 Further extensions to the proposed method.

When introducing the example in Section 3.1, the as-
sumption was made that the shaft inertia was entire-
ly contained in the MechGen model; in other words,
that the electrical generator model inside ElecGen
had no inertia at all. If this is not true, the weakening
method cannot be applied directly as explained: the
ElecGen.Shaft.phi variable, far from being
weakly interacting with the MechGenShaft.phi
variable, has some inertia rigidly connected to it.
The corresponding decoupled integration algorithm
would probably be unstable for rather small time
steps.
This case could be easily recognised by the symbolic
manipulation engine: the weakly interacting model
(Fig. 6) would have more state variables correspond-
ing to the weak connection variable phi, if com-
pared with the original, rigidly connected model. It
could then be possible to devise a symbolic manipu-
lation procedure to remove the inertia contribution
from the weak side (i.e., ElecGen) and add to the
other side (i.e., MechGen). This could widen the
range of applicability of the proposed method.

4 Discussion and Outlook

The proposed method requires a very limited modifi-
cation to the Modelica language, i.e., introducing the
weak modifier to the variable declarations. It also
requires a very limited intervention to the user's
models, i.e. redeclaring some connector variables as
weak, in order to obtain faster simulation code. The
weak modifier can be thought of as a modelling at-
tribute, stating that a particular variable has a weak
dynamic influence on the model behaviour, as well

as a hint to the compiler on how to produce more ef-
ficient simulation code.
The main drawback is that an “expert” user is need-
ed, who knows by experience which connection (or
model) variables are good candidates to be consid-
ered as weak, in order to speed up the simulation. In
fact, if the “wrong” weak variables are selected, the
integration algorithm could become unstable even
for small values of the time step.
The stability analysis of the simulation of an electri-
cal or hydraulic network split into two weakly inter-
acting sub-networks is discussed in detail in [4]. The
stability criterion is formulated in terms of the
impedances of the two sub-networks; a heuristic rule
can then be derived, stating that the sub-network
with a weak flow connection variable should have
low resistance and/or high capacitance, while the
one with a weak effort connection variable should
have high resistance and/or low capacitance. A simi-
lar, physical-based analysis could be carried out for
mechanical connections, such as the case discussed
in Section 3.
Another possibility could be to devise numerical in-
dicators (for generic models), based on the analysis
of the linearised equations, to help the user deter-
mine which connection variables can be considered
weak. An exhaustive search of all the potential can-
didates should not be computationally too expensive,
as the number of connections is limited; moreover,
only connections between higher-level subsystems
could be considered, e.g. the shaft connection in the
example of Fig. 5, while ignoring the connections in-
side the MechGen and ElecGen models.
The proposed numerical method has already been
tested with both variable step-size [1] and fixed step-
size [2] integration algorithm. Although a reduction
around 30% has been reported in a variable step-size
robotic simulation, the application of the weak inter-
action method to variable step-size, higher-order in-
tegration algorithm can only give a limited benefit,
as it is hampers the lengthening of the time step, as
well as the switching to higher order formulae;
moreover, devising multirate, variable step-size al-
gorithms is very difficult. The most significant per-
formance enhancements can be obtained with fixed
time-step algorithm, in particular for real-time appli-
cations. A typical case is a large physical system
with mixed slow and fast dynamics, possibly con-
trolled by digital control systems with widely differ-
ent sampling times. Such systems are often encoun-
tered in industrial practice.

Exploiting Weak Dynamic Interactions in Modelica

The Modelica Association 101 Modelica 2005, March 7-8, 2005

The proposed method can readily benefit from the
inline integration method [5], which can be directly
applied to the integration of the weakly interacting
sub-systems.
There are some similarities between the weak dy-
namic interaction method and the mixed-mode inte-
gration method proposed in [6], as both try to exploit
mixed implicit-explicit algorithms to break large
non-linear systems of equations into smaller ones.
The method proposed in [6] tries to suitable partition
the overall model into a “fast” and a “slow” part, by
linear eigenvalue analysis and some heuristics to
limit the search space, while the method presented
here focuses on a system-level approach, i.e. tries to
exploit the weak coupling between sub-systems at
their connections. It is nevertheless possible that the
two methods could be suitably integrated, as their
approaches are somehow complementary to each
other.
Another method which has been proposed to decou-
ple the equations of large systems is the Transmis-
sion Line Method [7, 8]. In this case, the finite prop-
agation speed of physical quantities along connect-
ing elements is exploited to allow the implicit inte-
gration of each connected subsystem, using only past
values from the other ones. The main advantage in
this case is that decoupling comes naturally from the
system equations, which are exact; in some cases,
such as hydraulic networks or high-frequency elec-
trical circuits, this can be very convenient. On the
other hand, there are cases where the “physical”
propagation speed is too high, so that the TLM
method could unnecessarily introduce fast dynamics
when there is no need to; moreover, the exact value
of the integration time step becomes tightly coupled
with the connecting element parameters. It could be
interesting to investigate if the stability analysis
studies carried out for the TLM method could be
somehow extended to the weak interaction method.

5 Conclusions

The introduction of the weak variable concept al-
lows to widen the applicability of the Modelica
framework in these directions:
• efficient fixed-step simulation of weakly interact-

ing complex systems, possibly having different
time scales;

• distributed simulation;
• co-simulation of Modelica-based simulators and

other simulation engines;
• user interaction by means of standard SCADA

tools;

while retaining all the advantages of a fully object-
oriented description.
Possible applications range from real-time hardware-
in-the-loop simulation, to interactive training simula-
tors, to the interfacing of system-level models with
detailed (e.g. CFD) models of specific system com-
ponents.
The implementation of this concept would require
the following steps:

1. Extend the definition of the Modelica language to
include the weak modifier keyword.

2. Implement the symbolic manipulation algorithm
to split weakly coupled subsystems, as well as
decoupled numerical integration algorithms, into
an existing Modelica compiler (e.g., Dymola or
OpenModelica)

3. Validate the method on selected case studies (e.g.
robotics, power generation systems).

Step 2. could be initially limited to very simple inte-
gration schemes, such as synchronous explicit Euler,
and then possibly extended to more sophisticated so-
lutions, such as implicit, high-order, multi-step, and
multirate algorithms.

References

[1] C. Maffezzoni, R. Girelli “MOSES: Modular
Modelling in an Object Oriented Database”,
Mathematical Modelling of Systems, v. 4, pp
121-147, 1998.

[2] A. Leva, A. Bartolini, C. Maffezzoni: “A pro-
cess simulation environment based on visual
programming and dynamic decoupling”, Simu-
lation, v.71, n. 3, pp.183-193, 1998.

[3] F. Casella, C. Maffezzoni: "Exploiting Weak
Interactions in Object Oriented Modeling",
EUROSIM Simulation News Europe, Mar.
1998, pp. 8-10.

[4] F. Casella: “Modelling, Simulation, and Con-
trol of a Geothermal Power Plant”, Ph.D. Dis-
sertation, Politecnico di Milano, Italy, 1999,
pp. 27-46.
http://www.elet.polimi.it/upload/casella/tesi.pdf

[5] H. Elmqvist, S.E. Mattsson, H. Olsson: “New
Methods for Hardware-in-the-loop Simulation
of Stiff Models”, Proceedings of the Modelica
Conference 2002, Oberpfaffenhofen, Ger-
many, March 18-19 2003, pp. 59-64.

F. Casella

The Modelica Association 102 Modelica 2005, March 7-8, 2005

[6] A. Schiela, H. Olsson: “Mixed-Mode Integra-
tion for Real-Time Simulation”, Proceedings
of the Modelica 2000 Workshop, October 23-
24 2000, pp 69-75.

[7] D. M. Auslander: “Distributed System Simula-
tion with Bilateral Delay-Line Models”, Jour-

nal of Basic Engineering, Trans. ASME pp
195-200, June 1968.

[8] B. Johansson, P. Krus: “Modelica in a Dis-
tributed Environment Using Transmission
Line Modelling”, Proc. Modelica Workshop
2000, October 23-24 2000, pp. 193-198.

Exploiting Weak Dynamic Interactions in Modelica

The Modelica Association 103 Modelica 2005, March 7-8, 2005

