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Abstract

The  simulation  of  complex  systems  can  be  made
more efficient  by splitting the  system into several,
weakly interacting subsystems, and then integrating
their  equations separately.  The paper discusses  the
required extension to the Modelica language, as well
as the corresponding integration algorithms. Possible
applications  include  real-time  integration  of  large
systems, distributed simulation,  and the integration
of Modelica with external simulators.

1 Introduction

Consider a complex dynamical system, obtained by
connecting fast and slow subsystems. The simultane-
ous  integration  of  the  corresponding  large  set  of
DAEs can  become  highly  inefficient,  especially
when a fixed-step  algorithm is  employed (e.g.,  for
real-time simulation):  the  fast  dynamic subsystems
force the adoption of a very small integration time
step, and the system of coupled DAEs to be solved
at each step is very large.
In some cases, however, the system can be decom-
posed into two (or more) weakly interacting subsys-
tems,  whose describing DAEs can be solved inde-
pendently at each time step. This allows to split the
overall numerical integration task into many smaller
tasks,  which  can  be  carried  out  more  efficiently;
moreover, it opens the way to distributed simulation,
where each integration task runs on a different CPU.
This method can offer very significant performance
improvements  in  real-time,  fixed  time-step  simula-
tors, e.g. for hardware-in-the-loop and training appli-
cations.
The weak dynamic interaction method has been ex-
tensively investigated in  our research  group in  the
past 10 years. The first notable example is the gener-
al-purpose, object-oriented modelling and simulation
environment MOSES [1], which relied on an object-
oriented  database  for  system  modelling,  and  on

DASSL-RT  to  perform  variable  step-size  integra-
tion. The second example is the  ProcSim package
[2], a simulation environment for power plant simu-
lation,  based  on  the  visual  LabView environment,
relying  on  ad-hoc,  implicit  Euler  integration  algo-
rithms.
A brief paper on the basic concepts of weak interac-
tions in object-oriented modelling appeared several
years ago on the  Eurosim Simulation News Europe
magazine [3]; the purpose of this paper is to propose
an implementation of those concepts in the Modelica
framework. The mathematical  foundations  of  weak
dynamic interaction are first introduced in Section 2.
The extension of the Modelica language is then dis-
cussed in Section 3, with reference to a simple ex-
ample; the problem of generating the corresponding
numerical simulation code, as well as the application
to distributed simulation are also dealt with.  Section
4 follows with further discussion, including the com-
parison of the proposed approach to other  existing
methods to speed up real-time simulations. Section 5
concludes the paper with some proposals for future
work.

2 Weak Dynamic Interaction: Math-
ematical Foundations

The concept  of  weak dynamic interaction  is  intro-
duced with the aid of a simple example. Consider the
electrical circuit represented in Fig. 1. 
The complete set of the component and connection
DAEs is:

E

I1 I2

VA R1 R2
I4 VB I5 VC

C1 C2 R3
I3

Figure 1: A simple electrical circuit
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E−V A=0
V A−V B=R1 I 1

C1 V̇ B=I 4

V B−V C=R1 I 2

C 2 V̇ C=I 5

V C=R3 I 3

I 1− I 4− I 2=0
I 2−I 5−I 3=0

(1)

In this particular case, it is straightforward to solve
the algebraic  equations  for  the algebraic  variables,
and to rewrite the system in ODE form:

(2)

where and

Suppose that the system (2) is solved by Euler's im-
plicit formula; at each time step, the following linear
system has to be solved:

(3)

where H = I – A∆t,  f = Bu∆t,  and ∆t is the integra-
tion time step. The integration algorithm is A-stable
for any ∆t. Note that, in the case of a non-linear sys-
tem, the role  of matrix  H would be played by the
system Jacobian,  which  should  be  inverted  at  (al-
most) each time step.
If the system is  solved by  Euler's explicit  formula,
the solution is given by

(4)

where F = I + A∆t. In this case, no matrix inversion
is needed; on the other hand, the algorithm is A-sta-
ble only if  ∆t < 2Tmin,  where  Tmin is  the  minimum
time constant  of matrix  A.  Explicit  integration for-
mulae are not convenient if the system is stiff, i.e. if
there are mixed fast and slow dynamics, as the fast
one dictates the maximum possible time step.
Suppose  now that  both  R2 and  C2 are  sufficiently
large: the variation of the voltage  VC within a time
step is  likely to be small,  compared to the voltage
drop across the resistor,  thus having a  weak influ-
ence on the current I2; conversely, the current I2 can-
not vary VC substantially over a single time step, and
thus has a  weak  influence on  VC. With reference to
the  R2-C2 connection,  the  voltage  is  thus  a  weak
connection  variable on the resistor  side,  while  the
current is a weak connection variable on the capaci-
tor side. In other words, an approximate dynamic de-
coupling can be applied at the connection between
R2 and C2. It is then possible split the model in two
parts, as shown in Fig. 2.

E

I1

I2

VA R1 R2
I4 VB

I5

VCC1 C2 R3
I3

I2

VC

Figure 2: The electrical  circuit  split  into two inter-
acting subsystems.

The left part of the circuit is connected to a fictitious
voltage generator VC, and the right part of the circuit
is connected to a fictitious current generator IC. 
The idea is now to adopt a mixed implicit-explicit
integration algorithm to the system of Fig. 2. At each
time-step, the equations of each sub-circuit are inte-
grated  using  Euler's  implicit formula,  while  taking
into account the last computed value of the boundary
variable IC or VC. The corresponding integration for-
mula is:

(5)

where GL and GR are the following triangular matri-
ces:

G L=[1  t
R1C1

0

−
 t

R2C 2
1

 t
R3C 2

]
GR=[1  t

R2C1

0 1−
 t

R2C 2
]

As matrix GL is now triangular (due to the dynamic
decoupling),  the  solution  of equation (5)  is  trivial,
and has almost the same computational weight of the
explicit  formula  (4).  However,  the  integration  for-
mula  remains  A-stable  for  much  larger  time steps
than the fully explicit formula; for large values of R2,
it is even unconditionally stable. For example, if the
following values are taken:
R1=0.1; C1=1; R3=1; C2={1,3,10}; R2=[0.1-10];

the stability regions shown in Fig. 3 and 4 are ob-
tained; the stable region is below the limit curve for
each value of  C2.  It is  apparent  how the algorithm
based  on  the  weak  interaction  method  allows  far
larger integration time steps than the explicit  algo-
rithm, while  requiring a comparable  computational
time, as no matrix inversion is required.

x=[V B V C ] '

H xk1=xk f k1

xk1=F xk f k

G L xk1=GR xk f k1

ẋ=AxBu

u=E.
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Figure 3: Stability regions of explicit Euler's integra-
tion algorithm.

Figure 4: Stability regions of the weakly interacting
integration algorithm.

Going beyond the simple example shown here, the
advantages of the proposed modelling and numerical
integration strategy become more and more substan-
tial if the systems are nonlinear, and as the order of
the weakly coupled subsystems grows larger. 
Finally, if the dynamics of the weakly coupled sub-
systems is very different (i.e. one is fast and one is
slow),  a  multirate integration  algorithm  could  be
adopted, in which the time step of the slow subsys-
tem is a multiple of the time step of the fast subsys-
tem. This kind of strategy, whose detailed analysis is
outside the scope of this paper, can lead to even larg-
er computational savings, if the fast subsystems have
a few states, while the slow subsystems contains the
majority of the states.

3 Weak Interaction  in  the  Modelica
Framework

3.1 The  weak modifier

The weak interaction method will now be introduced
in the Modelica framework with the help of a repre-
sentative  example,  i.e.,  the  simulation  of  a  power
generation system. The system (see Fig. 5) is com-
posed by the connection of two main sub-systems:
the mechanical power generation unit (e.g. a gas tur-
bine unit, or a boiler-steam turbine unit), and a syn-
chronous generator, connected either to the grid or to
local loads. The aim of the simulation is to simulta-
neously  represent  the  control  system dynamics  of
both units, with time scales ranging from less than a
tenth  of  a  second  (swing  dynamics  of  the  syn-
chronous generator), to several minutes (boiler pres-
sure dynamics).

Assuming that the rotational inertia has been lumped
on the MechGen side, the high mechanical inertia of
the gas turbine shaft provides a dynamic decoupling
between  the  thermo-mechanical  system on the  left
side  of  the  connection  and  the  electro-mechanical
system on the right side of the connection. In other
words, a step variation of the torque applied to the
shaft by the electrical generator cannot vary the shaft
speed substantially over time scales smaller than 0.2-
0.5 seconds;  this  means  that  the  torque  is  a  weak
connection variable  on  the  mechanical  generator
side. On the other hand, since the shaft speed cannot
vary substantially over such a time scale, the shaft
angle is a weak connection variable on the electrical
generator side.
If  the  two subsystems  are  connected  by means  of
standard  Modelica.Mechanics.Rotational  connec-
tors, this situation could be described by adding the
weak modifier to the Modelica language, and by in-
troducing the concept of weak connection:

connect(MechGen.Shaft(weak tau),
        ElecGen.Shaft(weak phi));

Figure 5: Model of a power generation system.

MechGen ElecGen

G Network
Shaft Shaft
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Alternatively,  the  weak attribute  could  be directly
built in the two sub-system connectors, which should
be declared as follows:

import Modelica.Mechanics.Rotational.*;
model MechGen
  Interfaces.Flange_a Shaft(weak tau);
...
end MechGen;
model ElecGen
  Interfaces.Flange_b Shaft(weak phi);
...
end ElecGen;
It should also be possible to apply the weak modifi-
er to variables declared inside a model, if their influ-
ence on the object  behaviour across a single time-
step is small; for example, the air temperature at the
gas turbine air intake.

3.2 Integration Algorithms

The weak variables can now be exploited by the in-
tegration  algorithm.  The  basic  idea  is  that  every
weak variable can be treated as an input variable by
the numerical integration algorithm, regardless of its
actual  physical  causality;  the  corresponding  input
value will correspond to last computed value avail-
able to the integration algorithm.
If the  weak variables are replaced by  input vari-
ables,  the Modelica compiler  could then easily de-
compose the dynamics of the whole system in two
weakly interacting  subsystems, as shown in Fig. 6.
The numerical integration task could then be decom-
posed into two smaller sub-tasks. Each sub-task will
read the  last  computed value available  of  its  input
variables  to  compute  the  next  value  of  its  output
variable, as explained by the following pseudo-code
(an  explicit  integration  algorithm  is  assumed  for
simplicity):

T := 0.05; // Time step length
loop
  (phi,x_mech) := 
     MechGenInt(tau,x_mech,T);
  (tau,x_elec) := 
     ElecGenInt(phi,x_elec,T);
end loop;
where x_mech and x_elec are the state vectors of
the two subsystems. 

 Figure 6: Weakly interacting subsystems.

Each subsystem can be integrated with the method
of  choice,  represented  here  by  the  MechGenInt
and  ElecGenInt functions. If implicit algorithms
are used, the dynamic decoupling leads to two small-
er sets of nonlinear equations, to be solved sequen-
tially. This has beneficial effects on the computation
time, as already discussed in Section 2.
In the simple example shown above, the two integra-
tion algorithms are synchronous (i.e., they share the
same time step). However, since the two correspond-
ing subsystems are characterised by widely different
dynamic time constants, it is also possible to choose
different step lengths for each one, as shown in the
following pseudo-code:

Tmech := 0.1;
Tel := Tmech/N; 
loop
  (phi,x_mech) := 
    MechGenInt(tau,x_mech,Tmech);
  for h in 1:N loop
    (tau,x_elec) := 
      ElecGenInt(phi,x_elec,Tel);
  end for;
end loop;

This  scheme has  a  big potential  for  the  real-time,
fixed time-step simulation of complex systems:  in-
stead of dealing with a huge coupled system, which
must be integrated with a small time step dictated by
its fastest subsystem, it is possible to split the inte-
gration task into many independent sub-tasks, each
one having the appropriate step length. In this way,
each  subsystem is  neither  under-sampled  or  over-
sampled,  and the computational resources  are  used
efficiently.

3.3 Distributed Simulation

If a system can be decomposed into several, weakly
interacting subsystems, it  is  also straightforward to
devise a distributed simulation strategy: the integra-
tion  tasks  of  each sub-system can be  allocated  on
different  CPUs,  communicating  e.g.  through  a
shared memory database or TCP/IP sockets (Fig. 7).
 

Figure 7. Distributed simulation architecture.

MechGen ElecGen
tau

phi

MechGen
Integrator

ElecGen
Integrator

Shared process variable database

...
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A further possibility is to support co-simulation,  by
introducing “external simulator” objects,  which are
an extension of the already existing Modelica exter-
nal  functions.  In  this  case,  a  Modelica  “wrapper”
model, defining the input, output, and weakly inter-
acting connector variables, could be written and then
linked to external simulation applications. The actu-
al communication between the Modelica-based sim-
ulator and the other ones could then be performed
via TCP/IP sockets, DLLs, DDE, or any other inter-
process  communication mechanism. In this  way,  it
would become possible to merge parts of a simulator
obtained  from a  Modelica  model  with  other  parts
provided by different  simulators (e.g. a CFD code,
or  a  digital  controller  emulator),  or  by  interactive
user interfaces.

3.4 Further extensions to the proposed method.

When introducing the example in Section 3.1, the as-
sumption was made that the shaft inertia was entire-
ly contained in the MechGen model; in other words,
that the electrical generator model inside  ElecGen
had no inertia at all. If this is not true, the weakening
method cannot be applied directly as explained: the
ElecGen.Shaft.phi variable,  far  from  being
weakly interacting with the  MechGenShaft.phi
variable,  has  some  inertia  rigidly  connected  to  it.
The corresponding decoupled integration algorithm
would  probably  be  unstable  for  rather  small  time
steps. 
This case could be easily recognised by the symbolic
manipulation  engine:  the  weakly interacting model
(Fig. 6) would have more state variables correspond-
ing to  the  weak connection  variable  phi,  if  com-
pared with the original, rigidly connected model. It
could then be possible to devise a symbolic manipu-
lation  procedure to remove the inertia contribution
from the weak side (i.e.,  ElecGen) and add to the
other  side  (i.e.,  MechGen).  This  could  widen  the
range of applicability of the proposed method.

4 Discussion and Outlook

The proposed method requires a very limited modifi-
cation to the Modelica language, i.e., introducing the
weak modifier  to the variable declarations.  It also
requires  a  very  limited  intervention  to  the  user's
models, i.e. redeclaring some connector variables as
weak, in order to obtain faster simulation code. The
weak modifier can be thought of as a modelling at-
tribute, stating that a particular variable has a weak
dynamic influence on the model behaviour, as well

as a hint to the compiler on how to produce more ef-
ficient simulation code.
The main drawback is that an “expert” user is need-
ed, who knows by experience which connection (or
model) variables are good candidates to be consid-
ered as weak, in order to speed up the simulation. In
fact, if the “wrong” weak variables are selected, the
integration  algorithm  could  become unstable  even
for small values of the time step. 
The stability analysis of the simulation of an electri-
cal or hydraulic network split into two weakly inter-
acting sub-networks is discussed in detail in [4]. The
stability  criterion  is  formulated  in  terms  of  the
impedances of the two sub-networks; a heuristic rule
can  then  be  derived,  stating  that  the  sub-network
with a weak flow connection  variable  should have
low resistance  and/or  high  capacitance,  while  the
one with  a weak effort  connection variable  should
have high resistance and/or low capacitance. A simi-
lar, physical-based analysis could be carried out for
mechanical connections, such as the case discussed
in Section 3.
Another possibility could be to devise numerical in-
dicators (for generic models), based on the analysis
of  the  linearised equations,  to help  the  user  deter-
mine which connection variables can be considered
weak. An exhaustive search of all the potential can-
didates should not be computationally too expensive,
as the number of connections is limited; moreover,
only  connections  between  higher-level  subsystems
could be considered, e.g. the shaft connection in the
example of Fig. 5, while ignoring the connections in-
side the MechGen and ElecGen models. 
The  proposed  numerical  method  has  already  been
tested with both variable step-size [1] and fixed step-
size [2] integration algorithm. Although a reduction
around 30% has been reported in a variable step-size
robotic simulation, the application of the weak inter-
action method to variable step-size, higher-order in-
tegration algorithm can only give a limited benefit,
as it is hampers the lengthening of the time step, as
well  as  the  switching  to  higher  order  formulae;
moreover,  devising multirate,  variable  step-size  al-
gorithms is very difficult. The most significant per-
formance enhancements can be obtained with fixed
time-step algorithm, in particular for real-time appli-
cations.  A  typical  case  is  a  large  physical  system
with  mixed slow and fast  dynamics,  possibly  con-
trolled by digital control systems with widely differ-
ent sampling times. Such systems are often encoun-
tered in industrial practice.
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The proposed method can readily  benefit  from the
inline integration method [5], which can be directly
applied to the integration of the weakly interacting
sub-systems. 
There  are  some similarities  between  the  weak dy-
namic interaction method and the mixed-mode inte-
gration method proposed in [6], as both try to exploit
mixed  implicit-explicit  algorithms  to  break  large
non-linear  systems of  equations  into  smaller  ones.
The method proposed in [6] tries to suitable partition
the overall model into a “fast” and a “slow” part, by
linear  eigenvalue  analysis  and  some  heuristics  to
limit  the search space, while the method presented
here focuses on a system-level approach, i.e. tries to
exploit  the  weak coupling  between sub-systems at
their connections. It is nevertheless possible that the
two methods  could be  suitably integrated,  as  their
approaches  are  somehow  complementary to  each
other.
Another method which has been proposed to decou-
ple the equations of large systems is the Transmis-
sion Line Method [7, 8]. In this case, the finite prop-
agation speed of physical quantities along connect-
ing elements is exploited to allow the implicit inte-
gration of each connected subsystem, using only past
values from the other ones. The main advantage in
this case is that decoupling comes naturally from the
system equations,  which  are  exact;  in  some cases,
such as hydraulic networks or high-frequency elec-
trical  circuits,  this  can be very convenient.  On the
other  hand,  there  are  cases  where  the  “physical”
propagation  speed  is  too  high,  so  that  the  TLM
method could unnecessarily introduce fast dynamics
when there is no need to; moreover, the exact value
of the integration time step becomes tightly coupled
with the connecting element parameters. It could be
interesting  to  investigate  if  the  stability  analysis
studies  carried  out  for  the  TLM method  could  be
somehow extended to the weak interaction method.

5 Conclusions

The introduction of the  weak variable concept  al-
lows  to  widen  the  applicability  of  the  Modelica
framework in these directions:
• efficient fixed-step simulation of weakly interact-

ing  complex  systems,  possibly  having  different
time scales;

• distributed simulation;
• co-simulation of Modelica-based simulators  and

other simulation engines;
• user  interaction  by  means  of  standard  SCADA

tools;

while retaining all the advantages of a fully object-
oriented description. 
Possible applications range from real-time hardware-
in-the-loop simulation, to interactive training simula-
tors, to the interfacing of system-level models with
detailed (e.g. CFD) models of specific system com-
ponents.
The  implementation  of  this  concept  would require
the following steps:

1. Extend the definition of the Modelica language to
include the weak modifier keyword.

2. Implement the symbolic  manipulation algorithm
to  split  weakly  coupled  subsystems,  as  well  as
decoupled numerical integration algorithms, into
an existing Modelica  compiler  (e.g.,  Dymola or
OpenModelica)

3. Validate the method on selected case studies (e.g.
robotics, power generation systems).

Step 2. could be initially limited to very simple inte-
gration schemes, such as synchronous explicit Euler,
and then possibly extended to more sophisticated so-
lutions, such as implicit, high-order,  multi-step, and
multirate algorithms.
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