
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

J. Ungethüm
German Aerospace Center, Stuttgart, Germany
Fuel Cell System Modeling for Real-time Simulation
pp. 67-74

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH



Fuel Cell System Modeling for Real-time Simulation

Jörg Ungetḧum∗

German Aerospace Center, Institute of Vehicle Concepts
Pfaffenwaldring 38-40, 70569 Stuttgart

Abstract

In this paper a model of a subsystem of an automo-
tive fuel cell power generation unit is presented. The
subsystem model describes the cathode side of the fuel
cell, containing the air supply system. As far as possi-
ble, standard libraries were used to accomplish a high
level of compatibility with other models. The model
runs in real-time on dSPACE hardware and is used in a
Hardware-In-the-Loop (HIL) simulation environment.
Keywords: fuel cell, automotive simulation, real-time
simulation, hardware-in-the-loop

1 Introduction

In the context of future vehicle development, models
are needed for the simulation of the fuel cell system
and its periphery. These models are used for off-line
system simulation as well as for HIL simulation with
respect to controller development. Most of the exist-
ing models are built upon MATLAB/Simulink. The
model which is presented in this paper serves partic-
ularly in the evaluation of object-oriented modeling
in Modelica as an alternative to modeling in MAT-
LAB/Simulink. Apart from modeling potentialities,
flexibility and simulation performance, the code ad-
ministration is also relevant in this context.
In figure 1 a sketch of the modeled subsystem is
shown, which covers the cathode side of a PEM fuel
cell system. The fuel cell is supplied with compressed
and cooled air. Due to the electro-chemical reaction in
the stack, the rate of oxygen in the air is reduced and
at the same time the air takes up the major part of the
reaction water. Heat is rejected by means of a cooling
medium. The remaining pressure difference between
the stack outlet and the environment is used in an ex-
haust gas turbine. Therefore, and to recover reaction
water, liquid water is dragged from the air in a separa-
tor. Using the recirculation valve, air can be led back

∗joerg.ungethuem@dlr.de

Figure 1: Sketch a the fuel cell subsystem to simulate

directly to the entrance of the compressor. Compres-
sor and exhaust gas turbine are mounted together with
an electrical drive engine on a common shaft.

2 Model design

The model covers the process engineering part of the
system, whereby the focus has been the description of
the thermodynamic behavior. The mechanical part is
built up with simple models, the fuel cell stack is re-
alized as thermal inertia and a source of heat and hu-
midity. The model realistically reproduces the most
important influences on the dynamic behavior of the
system. These are the volumes and thermal capacities
of the components and the inertia of the common shaft
of compressor, exhaust gas turbine and electrical ma-
chine. The top level of the model is shown in figure 2.

Fuel Cell System Modeling for Real-time Simulation

The Modelica Association 67 Modelica 2005, March 7-8, 2005



Figure 2: The Modelica system model

3 Aspects of real-time simulation

3.1 Toolchain

As the model is used in context of HIL simulation on
a dSPACE system, it has to run in real-time on the tar-
get. To enable real-time simulation of potentially stiff
models, Dymolas inline integration approach is used
[1]. The model is embedded as a S-function into a
simple Simulink wrapper model (figure 3) using Dy-
molas Simulink interface block. The MATLAB Real-
Time Workshop and the dSPACE target compiler are
needed to compile the compounded Simulink model.
Visualization is realized using the dSPACE Control-
Desk program.

3.2 Real-time model requirements

The central requirements of real-time modeling are de-
terministic computing time and high computing speed.
In order to provide a deterministic computing time, it-
erative solution algorithms should be avoided. High
computing speed is reached by keeping model equa-
tions as simple as possible.

3.2.1 Avoidance of nonlinear sets of equations

Nonlinear sets of equations must be solved by itera-
tion, if they cannot be eliminated symbolically. How-

ever, this leads to bad performance of the simulation.
In real-time simulation the situation is even worse, be-
cause the iteration can prevent the deterministic solu-
tion behavior which is required. On the other hand it
is not strictly necessary to avoid any implicit equation.
As long as the required number of iterations is moder-
ate, real-time requirements can be fulfilled anyway.

3.2.2 Use of simple medium models

The evaluation of medium properties in thermody-
namic models can take up a major part of the com-
puting time. Therefore properties should not be for-
mulated more complicated than absolutely necessary.
In particular numeric problematic functions, e.g. loga-
rithm, high polynomial degrees and broken exponents
should be avoided. Within the implementation extra-
ordinary care must be put on good performance and
numeric stability. Using Horner’s scheme instead of
the pow() function for polynomial evaluation might
be mentioned as an example.

3.2.3 Properties and state variables

In most cases, thermodynamic variables of state are
also state variables of the model. The medium proper-
ties should be present as explicit, fast evaluable func-
tions of the actual set of state variables. Therefore, the
choice of the variables of state depends on the used

J. Ungethüm

The Modelica Association 68 Modelica 2005, March 7-8, 2005



Figure 3: The Simulink wrapper model

states derivatives

p, ρ ∂ρ
∂h |p,

∂ρ
∂p|h

ρ, T ∂u
∂ρ |T , ∂u

∂T |ρ

Table 1: Extra 2nd order derivatives needed in trans-
formed balance equations

property model. Most property models are explicit in
densityρ and temperatureT or enthalpyh and pres-
surep. As a result the thermodynamic balance equa-
tions should be formulated in such a way that either
density and temperature or enthalpy and pressure are
computed by differential equations. Since in the pri-
mary form of mass and energy balance densityρ and
internal energyu are calculated, these equations must
be transformed. The transformed balance equations
contain additional partial differentials of the thermo-
dynamic state variables, which must be computed in
the property model (table 1, [7]).

3.2.4 Avoidance of numeric Jacobians

Numerical Jacobian approximation is a common
source of instability and inaccuracy. In Dymola nu-
meric Jacobians are used only if the necessary partial
derivatives cannot be computed symbolically. There
are few cases where symbolic derivative generation is
not possible yet:

• external functions (library calls, calls to routines
written in C or Fortran)

• Modelica functions with the exception of one-
liners (at least up to Dymola 5.2)

However, the necessary derivatives can be provided
explicitly by the user [4].

3.2.5 Avoidance of numerically disadvantageous
functions

Some mathematical built-in functions are problem-
atic in numeric simulations. The square root func-
tion and the logarithm function have limited definition
ranges, the derivation of the root function has an ad-
ditional singularity at zero. These functions should be
avoided or should be replaced by smooth approxima-
tions. Note, due to the symbolic equation treatment,
the inverse functions of the above can also lead to trou-
ble.

3.2.6 Avoidance of redundant events

Due to event propagation events require additional
evaluations of the set of equations, which can lead to
injury of the computing time restriction [2]. Events
can be avoided if discontinuous equations and func-
tions are replaced by continuous approximations.

4 Selection of Modelica libraries

An aim of the project is to use standard libraries as far
as possible to achieve good compatibility with other
models. Apart from proprietary developments [6] the
ThermoFluid library [7] and in particular the new li-
braries Modelica.Fluid and Modelica.Media [3] are of
special interest. Although the Modelica.Fluid library
is still in an early development state, this library was
selected as the base library. Modelica.Fluid itself is

Fuel Cell System Modeling for Real-time Simulation

The Modelica Association 69 Modelica 2005, March 7-8, 2005



based on the Modelica.Media library. As an unique
feature Modelica.Fluid allows the implementation of
models which are in fact medium-independent. In or-
der to achieve good performance, the formulation of
the thermodynamic balance equations must be adapted
to the material property routines. In the ThermoFluid
library this adaption is done explicitly by the user, as
a suitable state transformation is selected. In the new
Modelica.Fluid library this transformation takes place
automatically via skillful use of the index reduction al-
gorithm.
The Modelica.Fluid library is currently under con-
struction. Substantially components like discretized
pipes or control valves are still missing. Neverthe-
less the library is already usable. The interfaces (con-
nectors), a control volume and throttling devices are
already available. The Modelica.Media library is al-
ready developed further. Property models for ideal
gases, several models for water (among other the
IAPWS97 formulation [8]) are implemented. Mix-
tures are implemented likewise. However, these could
not be used because of implementation problems in
the version that was used. The library already offers
a sufficiently good documentation including a tutorial,
which makes the implementation of additional prop-
erty models possible.

5 Component library

To implement the fuel cell subsystem model outlined
in chapter 1, component models like heat exchanger,
mixer, separator, compressor and exhaust gas turbine
are needed. These component models go beyond the
scope of the Modelica.Fluid library. Therefore, a new
component library ModelicaFluidX is built on basis of
Modelica.Fluid. The structure of the library is shown
in figure 4. Due to the level of development of the base
libraries, structure and implementation are still subject
of change. The library is developed aiming real-time
applications.

5.1 The CommonFunctions folder

The folder CommonFunctions was taken over from
the ThermoFluid library. The functions were partly
redesigned as one-liners in order to ensure their au-
tomatic differentiability. As an example the function
ThermoRoot is shown. The actual Modelica code was
generated using the C Preprocessor:

function ThermoRoot
"Square root function with cubic

Figure 4: The ModelicaFluidX component library

spline interpolation near 0"
input Real x;
input Real deltax;
output Real y;

algorithm
/ *
// pipe this through ’cpp -P -’ to
// generate Modelica one-liner below
#define adeltax abs(deltax)
#define C1 (5/(4 * adeltaxˆ(0.5)))
#define C3 (-1/(4 * adeltaxˆ(2.5)))
algorithm

y := noEvent(if (x > adeltax)
then sqrt(x)
else
if (x < -adeltax)
then -sqrt(-x)
else (C1

+ C3* x* x) * x);
// EOF

* /
y := noEvent(if (x > abs(deltax))

then sqrt(x)
else
if (x < -abs(deltax))
then -sqrt(-x)
else ((5/(4 * abs(deltax)ˆ(0.5)))

+ (-1/(4 * abs(deltax)ˆ(2.5))) * x* x) * x);
end ThermoRoot;

The function extends the root function into the range
of negative arguments and avoids the singularity of
the 1st derivative in the origin (see figure 5). In con-
trast to the implementation in the ThermoFluid library,
this version can be differentiated automatically. As
side effect the restriction to constant approximation
radii of the original implementation is void. Since

J. Ungethüm

The Modelica Association 70 Modelica 2005, March 7-8, 2005



Figure 5: The ThermoRoot library function

the function is continuously differentiable, the auto-
matic event generation can be suppressed by using the
noEvent() function.

5.2 The Interfaces folder

The library uses mainly the container models which
are available in Modelica.Fluid. However these are not
always sufficient, so additional interfaces must be pro-
vided. This applies especially for the discretized mod-
els, since Modelica.Fluid does not offer vectorized in-
terfaces yet.

5.3 The Components folder

The Components folder contains the subfolder Base-
Components and SubComponents. The first contains
abstract base models for components, the second con-
tains component models, which are used only within
other components. To give an idea of the level of im-
plementation, some component models are discussed
more explicitly.

5.3.1 The LongPipeS model

Hence Modelica.Fluid does not contain a useful model
of a discretized pipe, a provisional model was imple-
mented, which consists of a variable number alternat-
ing successively arranged control volumes and throt-
tling devices. These two components are available as
JunctionVolume and ShortPipe in Modelica.Fluid. In
contrast to the more sophisticated implementation in
the ThermoFluid library only the stationary impulse
balance is implemented. For convenience, the model

Figure 6: The SimpleHeatExchanger model

has an additional n-dimensional fluid connector. Us-
ing this connector, mass or heat can be transferred to
each individual control volume.

5.3.2 The SimpleHeatExchanger model

The simple model of a heat exchanger consists of two
LongPipeS models, the model of a massless wall and
two very simple convection models. The models of
the wall and of the convection are implemented in the
subfolder SubComponents and can be replaced easily,
if e.g. the thermal capacity of the wall has to be consid-
ered. On the other hand, the designs for heat exchang-
ers are so various that generally appropriate abstract
models can hardly be indicated.

5.3.3 The SimpleCompressor and SimpleEx-
pander models

For compressors and exhaust gas turbines abstract base
models are implemented. The models consider the
volumes, the heat capacities and the rotating masses
of the machines. The individual behavior of a machine
is usually available as characteristic diagrams of mass
flow and efficiency. These characteristics are imple-
mented as replaceable class parameters, so that arbi-
trary machines can be modeled. The characteristic di-
agrams can take off either only the stationary or also
the dynamic behavior of the machine. In most cases
only stationary characteristics from measurements are
available.

Fuel Cell System Modeling for Real-time Simulation

The Modelica Association 71 Modelica 2005, March 7-8, 2005



Figure 7: The BaseCompressor model

6 Medium properties

For the computation of the medium properties the
Modelica.Media library is used. This library does
not contain any model suitable for fuel cell systems
computation yet. A model for humid air is needed,
whereas both, the humidity and the gas composition
are variable. The implementation of such a property
model is already possible within the Modelica.Media
library, this, however, did not succeed due to gen-
eral problems concerning the mixture models. As a
temporary solution the single component model Sim-
pleAir is used, whereas the restriction of the tempera-
ture range was waived. This model is well suitable for
real-time simulation in particular because of the sim-
ple implementation with constant heat capacity. With
the exception of the compressor outlet the temperature
of the air remains below 100oC. In order to simu-
late the humidification and the drying process of air, a
crude workaround is implemented into some compo-
nent models. The heat of the condensation is com-
puted directly in the component model and the ab-
solute humidity of the medium is passed on as signal
to the following component.

7 Simulation of the model

The model which is shown in figure 1 consists of 1761
unknowns, 704 time-varying variables and 31 contin-
uous time states. To enable offline tests, some sim-
ple controllers were added to the model. Thus a sys-
tem startup was simulated using the Dassl variable step
solver. The timetable of the system startup is shown in
table 2. In figure 8, 9, 10 some results are arranged.
For simulation of the startup process with the Dassl

time action
t = 0 s The desired pressure ratio is set to 2.2,

compressor and turbine starts.
t = 5 s The stack begins to deliver heat and

water.
t = 7 s The recirculation valve begins to open.
t = 8 s The recirculation valve reaches 25 %

opening.
t = 10 s Simulation stops.

Table 2: Simulation of the system startup

Figure 8: Simulation of system startup: angular veloc-
ity of common shaft

solver 1.01 s CPU time was used on a Intel Centrino
1400 MHz. During the entire starting process 16 state
events occurred.
For comparison the same model was simulated using
the mixed implicit/explicit Euler inline solver. The
startup with angular velocity at zero is not possible in
this case due to a division by zero. In figure 11 and
12 the deviations between the two simulation runs are
shown. The difference between the simulation results
is with exception of the very beginning less than ap-
proximately 2 %. Larger differences occur in the case
of fast changes of the system states.

8 Real-time simulation on the
dSPACE HIL target

The system model (figure 2) is inserted into a simple
Simulink wrapper model (figure 3) and compiled with
the help of the MATLAB Real-Time Workshop for a
dSPACE target. The model runs with a stepsize of
2 ms on a dSPACE DS1005 PPC board in real-time.
On the target, a certain number of overruns must be al-
lowed, since in particular during the startup phase sev-
eral overruns arises. Note, such adjustment is not pos-

J. Ungethüm

The Modelica Association 72 Modelica 2005, March 7-8, 2005



Figure 13: Screenshot of dSPACE ControlDesk with running simulation on a DS1005 target

Figure 9: Simulation of system startup: mass flow rate
through compressor, exhaust gas turbine and recircu-
lation valve

sible on any arbitrary real-time hardware. On various
real-time platforms an overrun is a fatal error which
aborts the simulation. In figure 13 a screen shot of the
running simulation is shown. The two gages show the
number of revolutions of the common shaft and the
mass flow through the compressor. Right beside the

Figure 10: Simulation of system startup: air tempera-
ture at humidifier and separator, compressor, exhaust
gas turbine and heat exchanger outlet

temperature in the compressor discharge line and in
the outlet of the fuel cell are shown. Above the task
counter, the number of overruns, the sample time and
the actual turnaround time are indicated. The simula-
tion clock is shown in the upper left corner. Although

Fuel Cell System Modeling for Real-time Simulation

The Modelica Association 73 Modelica 2005, March 7-8, 2005



Figure 11: Comparison of simulation results using
Dassl solver and fixed-step inline integration: differ-
ence of compressor mass flow

Figure 12: Comparison of simulation results using
Dassl solver and fixed-step inline integration: differ-
ence of compressor outlet temperature

the mean turnaround time is more than 75 % (ca. 1.5 -
1.8 ms) of the sample time, overruns are rare after the
startup phase.

9 Conclusion

On basis of a relatively simple model substantial re-
quirements for real-time modeling of fuel cell systems
in Modelica were worked out. Using the Dymola in-
line integration approach it is possible to use Modelica
models in the HIL simulation on dSPACE hardware.

The generation and compilation of the target code with
the help of the MATLAB Real-Time Workshop is a
complex and expensive solution. Direct generation of
the target executable without any MATLAB tools is al-
ready possible, but should be better supported by Dy-
mola.

References

[1] Hilding Elmqvist, Sven Erik Mattsson, Hans
Olsson. New Methods for Hardware-in-the-loop
Simulation of Stiff Models. In: Proceedings of
the 2th Modelica Conference 2002, Oberpfaffen-
hofen, Germany, Modelica Association, 18-19
March 2002.

[2] Hilding Elmqvist, Sven Erik Mattsson, Hans
Olsson, Johan Andersson, Martin Otter, Chris-
tian Schweiger, Dag Brück. Real-time Simula-
tion of Detailed Automotive Models. In: Pro-
ceedings of the 3rd Modelica Conference 2003,
Linköping, Sweden, Modelica Association, 3-4
November 2003.

[3] Hilding Elmqvist, Hubertus Tummescheit, Mar-
tin Otter. Object-Oriented Modeling of Thermo-
Fluid Systems. In: Proceedings of the 3rd Model-
ica Conference 2003, Linköping, Sweden, Mod-
elica Association, 3-4 November 2003.

[4] Dymola User’s Manual Version 5.1a. Dynasim
AB, Research Park Ideon, SE-22370 Lund, Swe-
den.

[5] Peter Fritzson. Object-Oriented Modeling and
Simulation with Modelica 2.1. John Wiley &
Sons, Inc.

[6] Peter Treffinger, Martin Goedecke. Development
of Fuel Cell Powered Drive Trains With Model-
ica. In: Proceedings of the 2nd Modelica Confer-
ence 2002, Oberpfaffenhofen, Germany, Model-
ica Association, 18-19 March 2002.

[7] Hubertus Tummescheit, Jonas Eborn, Falko
Wagner. Development of a Modelica Base Li-
brary for Modeling of Thermo-hydraulic Sys-
tems. Modelica 2000 Workshop, Lund, Sweden.
http://www.modelica.org/events/workshop2000

[8] Wolfgang Wagner, Alfred Kruse. Properties of
water and steam. Berlin, Springer Verlag 1998.

J. Ungethüm

The Modelica Association 74 Modelica 2005, March 7-8, 2005




