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Abstract 
Modelica is used since 1998 to model thermo-fluid 
systems. At least eight different libraries in this field 
have been developed and are utilized in 
applications. In the last year the Modelica 
Association has made an attempt to standardize the 
most important interfaces, provide good solutions 
for the basic problems every library in this field 
have and supply sophisticated base elements, 
especially media descriptions. This paper 
summarizes the design, new Modelica language 
elements, new symbolic transformation algorithms 
and describes two new libraries – for media 
description and for fluid base components – that will 
be included in the Modelica standard library. 

1 Introduction 
Careful decomposition of a thermodynamic system 
is essential to achieve reusable components. This 
paper discusses appropriate Modelica interfaces to 
handle thermodynamic properties, empirical closure 
relations like pressure drop correlations, mass 
balances and energy balances. Special attention has 
been placed on allowing flows with changing 
directions and allowing ideal splitting and merging 
of flows by connecting several components at one 
junction as well as parallel flow paths having zero 
(neglected) volume. A purely declarative approach 
solves the problem of splitting and merging flows in 
a physically based way. For mixing, the resulting 
specific enthalpy or temperature is implicitly defined 
and is obtained by solving a system of equations.  

All balance equations are provided in their 
natural form. Necessary differentiations are carried 
out by a tool through index reduction. Due to newly 
developed symbolic transformation algorithms, the 
described approach leads to the same simulation 
efficiency as previously developed thermo-fluid 
libraries, but without having their restrictions. 

The discussed method is implemented in two 
new Modelica libraries, “Modelica_Fluid” and 
“Modelica_Media” that will become part of the free 
Modelica standard library as Modelica.Fluid and 

Modelica.Media. “Media” contains a generic 
interface to media property calculations with 
required and optional media variables. A large 
amount of pre-defined media models are provided 
based on media models of the ThermoFluid library 
Tummescheit and Eborn (2001). Especially, about 
1200 gases and mixtures of these gases, as well as a 
high precision water model based on the IF97 
standard are included. The “Fluid” library provides 
the generic fluid connectors and the most important 
basic devices, such as sources, sensors, and pipes 
for quasi 1-dimensional flow of media with single or 
multiple phases and single or multiple substances. 
The same device model is used for incompressible 
and compressible flow. A tool will perform the 
necessary equation changes by index reduction 
when, e.g., an incompressible medium model is 
replaced by a compressible one in a device model. 

The “Fluid” and “Media” libraries are a good 
starting point for application specific libraries, such 
as for steam power plants, refrigeration systems, 
machine cooling, or thermo-hydraulic systems. 

2 Devices, medium models, 
balance volumes and ports 

We will consider thermodynamic properties of 
fluids in coupled devices, such as tanks, reactors, 
valves as well as pipes, Figure 1. Control volumes 
(or balance volumes) will be considered for all 
devices. 

 
Figure 1. Connected devices 

 

2.1 Medium models 
The thermodynamic state of the fluid at any point is 
represented by two variables, e.g., pressure p and 
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specific enthalpy h. Other thermodynamic quantities 
may be calculated from the chosen thermodynamic 
state variables. It is important that a model for a 
device can be written in such a way that it can be 
used in combination with different media models. 
This property is achieved by representing the media 
as a replaceable package. The details are given in 
Section 5. Such a media package contains, among 
other definitions, a model with three equations as 
shown in the following partial example for a simple 
model of air based on the ideal gas law: 

package SimpleAir 
  ... 
  constant Integer nX = 0; 
  model BaseProperties 
    AbsolutePressure       p; 
    Temperature            T; 
    Density                d; 
    SpecificInternalEnergy u; 
    SpecificEnthalpy       h; 
    MassFraction           X[nX]; 
    constant Real R_air = 287.0506; 
    constant Real h0    = 274648.7; 
  equation 
    p = d*R_air*T; 
    h = 1005.45*T + h0; 
    u = h – p/d; 
  end BaseProperties; 
  ... 

end SimpleAir; 

How such a media package can be utilized in a 
model is shown in the following heated device 
model without incoming or leaving mass flows. 

model ClosedDevice 
  import M = Modelica.Media; 
  replaceable package Medium= 
         M.Interfaces.PartialMedium; 
  Medium.BaseProperties medium 
  parameter … 
equation 
  // Mass balance   
  der(m) = 0; 
  m = V*medium.d; 
 
  // Energy balance 
  der(U) = Q; 
  U = m*medium.u; 

  end ClosedDevice;  

When using this device model, a specific medium 
has to be defined: 

ClosedDevice device(redeclare 
      package Medium = SimpleAir); 

The device model is not influenced by the fact that 
the medium model is compressible or 
incompressible. 

2.2 Ports 
Figure 2 shows a detailed view of a connection 
between two devices. An important design decision 

 
Figure 2. Details of device connection 

 

is the selection of the Modelica connector that 
describes a device port. For the Modelica_Fluid 
library the connector is defined for quasi one-
dimensional fluid flow in a piping network, with 
incompressible or compressible media models, one 
or more phases, and one or more substances. The 
connector variables are selected such that the 
equations of the connect(...) statements of connected 
components fulfill the following balance equations: 
• mass balance 
• substance mass balance (of a medium with 

several substances). 
• energy balance in the form of the “internal 

energy balance” (see Section 3). 
Additionally, a non-redundant set of variables is 
used in the connector in order to not have any 
restrictions how components can be connected 
together (restrictions would be present, if an 
overdetermined set of describing variables would be 
used in the connector). These design requirements 
lead to a unique selection of variables in the 
connector: 

Pressure p, specific (mixing) enthalpy h, 
independent (mixing) mass fractions X, mass flow 
rate m_dot, enthalpy flow rate H_dot, and the 
independent substance mass flow rates mX_dot  
connector FluidPort  
 replaceable package Medium =  
 Modelica_Media.Interfaces.PartialMedium; 
   
 Medium.AbsolutePressure  p; 
 flow Medium.MassFlowRate m_dot; 
   
 Medium.SpecificEnthalpy      h; 
 flow Medium.EnthalpyFlowRate H_dot; 
     
 Medium.MassFraction      X     [Medium.nX] 
 flow Medium.MassFlowRate mX_dot[Medium.nX] 
end FluidPort; 
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Due to the design of the connectors, the mass and 
energy balance is fulfilled in connection points (see 
also discussion of perfect mixing in the next 
Section). Since the momentum balance is not taken 
into account, device couplings with a considerable 
amount of losses (e.g., if pipes with different 
diameters are connected) have to be modeled with a 
dedicated loss model. 

2.3 Splitting, Joining and Reverse Flow 
Figure 2 also shows the control volumes associated 
with the devices and the boundary conditions. The 
flow through the port of a device is equal to the flow 
through the corresponding boundary of the control 
volume. Note that the specific enthalpy might have 
a discontinuity.  

The connector variable FluidPort.h represents 
the specific enthalpy outside the control volume of 
the device. In fact, for two connected devices R and 
S, with FluidPort instances named “port”, R.port.h = 
S.port.h represent the specific enthalpy of an 
infinitesimally small control volume associated with 
the connection. The relation between the boundary 
and the port specific enthalpy depends on the flow 
direction. It is established indirectly by considering 
the enthalpy flow. We will introduce the notation 
hport = R.port.h = S.port.h and will for simplicity of 
notation neglect spatial variation of the specific 
enthalpy, hR and hS, within each control volume. The 
enthalpy flow rate into device R, RH&  is then 
dependent on the mass flow rate, Rm&  as follows. 



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=
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This equation has to be present within the model of 
device R. Such conditional expressions could be 
written as if-then-else expressions, but to facilitate a 
recently identified set of powerful symbolic 
simplifications a new function, semiLinear(...), has 
been proposed for inclusion in the Modelica 
language (see also Figure 3), that can be used as 
follows in model R: 

port.H_dot =  
semiLinear(port.m_dot, port.h, h); 

 

The corresponding equation for a device S is 
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Devices R and S, see Figure 2, are connected 
together with a connect(...) statement of the form: 

connect(R.port, S.port); 

leading to the following zero sum equations that are 
equivalent to the mass and energy balance of the 
infinitesimal small control volume at the connection 
point: 
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Figure 3. The semiLinear(...) function  

From these four equations, hport can be solved 
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According to Modelica flow semantics, 0>Rm&  
corresponds to flow into component R and therefore 
the specific enthalpy flowing across the boundary is  
hS at the device boundary, hport. It should be noted 
that although hport is undefined for zero mass flow 
rate, RH&  and SH&  are well-defined as zero, i.e., the 
dynamics of the system are independent of what 
value is chosen for hport. 

We will now consider the connection of three 
ports R.port, S.port and T.port. A symbolic solution 
of the common specific enthalpy, 

h  =  R.port.h  =  S.port.h  = T.port.h 
is given by 

h = -( 
(if R.port.m_dot > 0 then 0 else 
  R.port.m_dot*R.h)+ 
(if S.port.m_dot > 0 then 0 else 
  S.port.m_dot*S.h)+ 
(if T.port.m_dot > 0 then 0 else 
  T.port.m_dot*T.h) )  
/ ( 
(if R.port.m_dot > 0 then 
  R.port.m_dot else 0)+ 
(if S.port.m_dot > 0 then 
  S.port.m_dot else 0)+ 
(if T.port.m_dot > 0 then 
  T.port.m_dot else 0) ) 

For a splitting flow, for example from R to S and T, 
i.e., R.port.m_dot < 0, S.port.m_dot > 0 
and T.port.m_dot > 0, we get 

H&

m&

porth

h
slope 
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h = -R.port.m_dot*R.h / 
  (S.port.m_dot + T.port.m_dot ) 

Since 
0 = R.port.m_dot + S.port.m_dot +  

    T.port.m_dot 

the specific enthalpy h in the port is computed as 
h=-R.port.m_dot*R.h/(-R.port.m_dot ) 

or 
h = R.h 

For a merging flow, for example, from R and T into 
S (i.e., R.port.m_dot < 0, S.port.m_dot < 
0 and T.port.m_dot > 0) we get 

h = -(R.port.m_dot*R.h +  
    S.port.m_dot*S.h) / T.port.m_dot 

or 
h=(R.port.m_dot*R.h+S.port.m_dot*S.h) 
   /(R.port.m_dot + S.port.m_dot) 

i.e., the perfect mixing condition.  
The degenerate case that all mass flows are 

zero can be handled symbolically by the tool, as it 
does not influence the dynamics: For two connected 
devices R and S, the division with R.port.m_dot can 
be performed symbolically leading to 

h = if R.port.m_dot > 0 then R.h 
                        else S.h 

As a result, for zero mass flow rate h = S.h. For 
three and more connected devices, the equation 
system is underdetermined. From the infinitely 
many solutions the one can be picked that is closest 
to the solution in the previous integrator step. 

It should be noted that a similar approach 
could be used to handle flow composition for flows 
with several substances. 

Earlier attempts tried to solve a restricted 
problem of changing flow direction in a 
programming style, i.e., by explicitly defining the 
temperature depending on the flow direction. Such a 
method cannot be generalized to mixing flows, 
because the temperature is not given by equations in 
just one volume. The presented solution for splitting 
and joining flows is derived by considering the 
equations of a small connection volume. By setting 
it's mass to zero, the usual sum-to-zero equations for 
mass flow rate and energy flow rate are obtained. 
This means that the usual flow semantics is 
appropriate for modeling of splitting and merging 
flows.  

3 Mass-, momentum- and energy-
balances 

We will show a general implementation of the 
governing equations, which might serve as a 

template for specialized models. Consider the 
equations (mass, momentum and energy balances) 
for quasi-one-dimensional flow in a device with 
flow ports in the ends such as a pipe, Thomas 
(1999) [16], Anderson (1995) [1]. 
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where t represents time, x is the spatial coordinate 
along device, ρ  is the density, v is the velocity, A 
is the area, p is the pressure, FF represents the 
friction force per length, f is the Fanning friction 
factor, S is the circumference, g is the gravity 
constant, z is the vertical displacement, k is the 
thermal conductivity and medium properties: 

ρ
ρ
ρ

/
),(
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where h is the specific enthalpy and  u is the specific 
internal energy. 

The energy equation can be considerably 
simplified by subtracting the momentum balance 
multiplied by v. Simplifications that are shown in 
the appendix, give the result. 

( ( ) )
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v u A

uA p T
vA kA

t x x x x

pρ
ρ ρ

∂ +
∂ ∂ ∂ ∂

+ =
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+  

Finite volume method 
Such partial differential equations can be solved by 
various methods like finite difference, finite element 
or finite volume methods. The finite volume method 
is chosen because it has good properties with 
regards to maintaining the conserved quantities. The 
device is split into segments, for which the PDEs are 
integrated and approximated by ODEs. Let x=a and 
x=b be the coordinates for the ends of any such 
segment. Integrating the mass balance equation over 
the spatial coordinate, x, gives 
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Assuming the segment boundaries (a, b) to be 
constant, we can interchange the integral and 
derivative: 
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In order to handle the general case of changing 
volumes for, e.g., displacement pumps, tanks, or 
moving boundary models of two phase flows, this 
formula needs to be extended by use of the Leibnitz 
formula. 

Introducing appropriate mean values for 
density and area and introducing incoming mass 
flow rates m& , i.e. b x b

m Avρ
=

= −&  and a x a
m Avρ

=
=& , 

we can rewrite the mass balance as: 
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Introducing m mm A Lρ= and L b a= − gives the 
desired form of the mass balance 
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dm m m
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We proceed in a similar way with the momentum 
balance: 
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and introducing appropriate mean values gives: 
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with 2/)( bam AAA += . Substitution by m&  and the 
values at the respective boundaries and introducing 

the approximation 
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We will make the approximation that a b mρ ρ ρ= =  

evaluated at mean pressure 
2

a b
m

p p
p

+
= . 

Integrating the energy balance for internal energy 
gives: 
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Substitution and approximation gives 
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Introducing m m m mU A muu Lρ= = , the inner energy 
and hmH ⋅= && , the enthalpy flow rate give 
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The diffusion term contains the temperature 
gradients at the segment boundaries. A first order 
approximation of the gradient is 

( ) ( )
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It should be noticed that ( )
2
x

T a
∆

−  is a property of 

an adjacent segment, i.e. not directly accessible. 
However, such diffusion terms are already available 
in the model ThermalConductor of the 
Modelica.Thermal.HeatTransfer library. This means 
that we can introduce a heat flow port with mT and 

Q& and write the energy equation as 

QppAvHH
dt

dU
abmmba

&&& +−++= )(  

The flow variable Q&  will be the sum of the 
diffusion from neighboring segments at x=a and x=b 
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and external heat transfer (for example in a heat 
exchanger). 

Modelica model 
The Modelica model equations corresponding to the 
mass- momentum and energy balances derived 
above are given below. In addition, a medium 
component is used for the mean quantities. The 
semiLinear function is used to handle the interfacing 
of the balance volume boundary quantities with the 
quantities of the device ports as discussed earlier. 
model DeviceSegment 

replaceable package Medium = 
Modelica_Media.Interfaces.PartialMedium; 
FluidPort port_a (redeclare package 
  Medium=Medium); 
FluidPort port_b (redeclare package  
  Medium=Medium); 
Medium.BaseProperties medium; 
// Variable and parameter declarations 
equation 
// Mean values 
medium.p =(port_a.p + port_b.p)/2; 
m_dot_m = (port_a.m_dot-port_b.m_dot)/2; 
d_m = medium.d; 
   
// Mass balance   
der(m) = port_a.m_dot + port_b.m_dot; 
m = medium.d*A_m*L; 
   
// Substance balances 
port_a.mX_dot = semiLinear(port_a.m_dot,  
  port_a.X, medium.X); 
port_b.mX_dot = semiLinear(port_b.m_dot, 
  port_b.X, medium.X); 
der(mX) = port_a.mX_dot + port_b.mX_dot; 
mX = m*medium.X; 
   
// Momentum balance 
L*der(m_dot_m) =  
  A_m*(port_a.p - port_b.p) 
  + port_a.m_dot*port_a.m_dot/(A_a*d_m)  
  - port_b.m_dot*port_b.m_dot/(A_b*d_m) 
  - m_dot_m*abs(m_dot_m)/ 
   (2*d_m*A_m^2)*f*S*L  
  - A_m*d_m*g*(Z_b - Z_a); 
 
// Energy balance   
port_a.H_dot = semiLinear(port_a.m_dot,  
    port_a.h, medium.h); 
port_b.H_dot = semiLinear(port_b.m_dot, 
    port_b.h, medium.h); 
der(U) = port_a.H_dot + port_b.H_dot +  
m_dot_m/d_m*(port_b.p - port_a.p) + 

  heatPort.Q_dot; 
U = m*medium.u; 
heatPort.T = medium.T; 

end DeviceSegment;   

The model derivation given above is generic. It can 
be generalized and extended in many ways. For 
example, to allow changing volume of the segment, 
the integrations can be carried out with variable 

boundaries, using the Leibnitz rule. In the above 
derivations, simple definitions of the mean values 
were used. It is possible to get better accuracy, for 
example, by using an upwind scheme taking into 
account the flow direction when calculating the 
mean values.  

A staggered grid is sometimes used for 
solving such PDEs. It is claimed to give better 
convergence properties in certain cases by a better 
approximation of the pressure gradient. It is possible 
to make such an implementation in Modelica. In 
fact, the ThermoFluid library uses the staggered grid 
approach. In this case, the equation for momentum 

is integrated over another interval ,
2 2

L L
a a− + 
  

. 

This momentum can be included in a flow element 
model. The mass and energy balances are included 
in a finite volume model. There are special problems 
of communicating, for example, the momentum 
term 2 2

/ 2 / 2x a L x a L
v A v Aρ ρ

= + = −
−  since the flow 

element is assumed to have the same mass flow rate 
at both its connectors. Additional, non-physical, 
connectors or additional connector variables need to 
be introduced in order to communicate these 
variables to neighboring flow elements. 

4 Pressure Loss due to Friction 
The momentum balance contains a term for the 
friction force 

LSfmm
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F mmmm
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ρ
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Often, the pressure loss is used instead of the 
friction force (pLoss = Ffric/Am) and different 
equations are in use to compute the pressure loss 
from the mass flow rate. In the Modelica_Fluid 
library a component to model this pressure loss is 
available that provides two versions of a generic 
pressure loss equation: 

if end

else

thenif

,...)(

,...)(
 from_dp 

2
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Lossm

mfp

pfm

&

&

=

=
 

Using the parameter “from_dp” in the “Advanced”- 
menu, users can select whether the mass flow rate is 
computed from the pressure loss (this is the default) 
or whether the pressure loss is computed from the 
mass flow rate. Depending on how the device is 
connected in a network, there might be fewer non-
linear equations if parameter “from_dp” is selected 
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correspondingly. In a future version, this selection 
might be performed automatically by a tool. 

The user can currently choose between three 
variants of the pressure loss model: 
1. Constant Laminar: mkpLoss &⋅=   

It is assumed that the flow is only laminar. The 
constant k is defined by providing Lossp  and m&  
for nominal flow conditions that, for example, 
are determined by measurements. 

2. Constant Turbulent: mmkpLoss && ⋅⋅= .  
It is assumed that the flow is only turbulent. 
Again, the constant k is defined by providing 

Lossp  and m&  for nominal flow conditions. For 
small mass flow rates, the quadratic, or in the 
inverse case the square root, characteristic is 
replaced by a cubic polynomial. This avoids the 
usual problems at small mass flow rates. 

3. Detailed Friction: provides a detailed model of 
frictional losses for commercial pipes with non-
uniform roughness (including the smooth pipe 
as a special case) according to.:  
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with 
λ : friction coefficient (= 4·fm) 
λ2 : used friction coefficient (= λ·Re·|Re|) 
Re : Reynolds number. 
L : length of pipe 
A : cross-sectional area of pipe 
D : hydraulic diameter of pipe  

  = 4*A/wetted perimeter  
  (circular cross Section: D = diameter) 

δ : Absolute roughness of inner pipe wall 
  (= averaged height of asperities) 

∆ : Relative roughness (=δ/D) 
ρ : density 
η : dynamic viscosity 
v : Mean velocity  
k2 abbreviation for Lη2/(2D3ρ3) 

 
Note that the Reynolds number might be negative if 
the velocity or the mass flow rate is negative. The 
"Detailed Friction" variant will be discussed in more 
detail, since several implementation choices are 
non-standard: The first equation above to compute 
the pressure loss as a function of the friction 
coefficient λ and the mean velocity v is usually used 
and presented in textbooks, see Figure 4. This form 

is not suited for a simulation program since λ = 
64/|Re| if |Re| < 2000, i.e., a division by zero occurs 
for zero mass flow rate because Re = 0 in this case. 
More useful for a simulation model is the friction 
coefficient λ2 = λ·Re·|Re| introduced for the pipe loss 
component, because λ2

 = 64·Re if Re < 2000 and 
therefore no problems for zero mass flow rate occur. 
The characteristic of λ2 is shown in Figure 5 and is 
implemented in the pipe loss model. The absolute 
roughness δ of the pipe is a parameter of this model. 

 
Figure 4. Moody Chart: lg(λ) = f (lg(Re), ∆) 

The pressure loss characteristic is divided into three 
regions: 

Region 1: For Re ≤ 2000, the flow is laminar and 
the exact solution of the 3-dim. Navier-Stokes 
equations (momentum and mass balance) is used 
under the assumptions of steady flow, constant 
pressure gradient and constant density and viscosity 
(= Hagen-Poiseuille flow):  

λ2
 = 64·Re   or   m

A
DkpLoss &⋅

⋅
⋅⋅=

η
264  

 
Figure 5. λ2 = λ2(Re, ∆) = λ·Re·|Re|.  

(x-axis: lg(Re), y-axis: lg(λ2)) 
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Region 3: For Re ≥ 4000, the flow is turbulent. 
Depending on parameter “from_dp” either of two 
explicit equations are used: If from_dp = true 
( )(1 Losspfm =& ), λ2

 is computed directly from pLoss 
using λ2

 = pLoss/k2. The Colebrook-White equation 
(Colebrook (1939); Idelchik (1994) p. 83, eq. (2-9))  









∆⋅+⋅−= 27.0

Re
51.2lg21

λλ
 

gives an implicit relationship between Re and λ. 
Inserting λ2 = λ·Re·|Re| allows to solve this equation 
analytically for Re: 

)sign(27.051.2lg2Re 2
2

2 λ
λ

λ ⋅












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These are the full-line curves in Figure 4 and 
Figure 5. If from_dp = false ( )(2 mfpLoss &= ), λ2 
is computed by an approximation of the inverse of 
the Colebrook-White equation (Swamee and Jain 
(1976); Miller (1990) p. 191, eq. (8.4)) adapted to 
λ2: 
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These are the dotted-line curves in Figure 4 and 
Figure 5. 
 
Region 2: For 2000 ≤ Re ≤ 4000 there is a 
transition region between laminar and turbulent 
flow. The value of λ2 depends on more factors than 
just the Reynolds number and the relative 
roughness, therefore only crude approximations are 
possible in this area. A laminar flow up to Re = 
2000 is only reached for smooth pipes. The 
deviation Reynolds number Re1 at which the 
transition region starts is computed according to 
(Idelchik (1994), p. 81, sect. 2.1.21): 

∆≤∆=
⋅=

/0065.010.00653
7451Re 3

elsethenifk
ek

 

Between Re1 = Re1(∆) and Re2 = 4000, λ2 is 
approximated by a cubic polynomial in the "lg(λ2) = 
f(lg(Re))" chart (see Figure 5) such that the first 
derivative is continuous at these two points. In order 
to avoid the solution of non-linear equations, two 
different cubic polynomials are used for the direct 
and the inverse formulation (from_dp = false/true). 
This leads to some discrepancies in λ and λ2 if ∆ > 
0.003 (= differences between the full and the dotted 
curves in the above Figures). This is acceptable, 
because the transition region is not precisely known 
since the actual friction coefficient depends on 

additional factors and since the operating points are 
usually not in this region.  

The pressure loss equations above are valid 
for incompressible flow. According to (Idelchick 
(1994) p. 97, sect. 2.1.81) they can also be applied 
for compressible flow up to a Mach number of 
about Ma = 0.6 with a maximum error in λ of about 
3 %. In a wide region the effect of gas 
compressibility can be taken into account by: 

47.0
2Ma

2
11

−







 ⋅−+⋅= κλλcomp  

where κ is the isentropic coefficient (for ideal gases, 
κ is the ratio of specific heat capacities cp/cv). This 
effect is not yet included in the pipe friction model. 
Another restriction is that the pressure loss model is 
valid only for steady state or slowly changing mass 
flow rate. For large fluid acceleration, the pressure 
drop depends additionally on the frequency of the 
changing mass flow rate. 

To summarize, the pipe friction component 
provides a detailed pressure loss model in pipes in 
the form ),(1 ∆= Losspfm&  or ),(2 ∆= mfpLoss & . 
These functions are continuous and differentiable, 
are provided in an explicit form without solving 
non-linear equations, and do behave well also at 
small mass flow rates. This pressure loss model can 
be used stand-alone in a static momentum balance 
and in a dynamic momentum balance as the friction 
pressure drop term. It is valid for incompressible 
and compressible flow up to a Mach number of 0.6. 

5 Standard Medium Interface 
The main properties of a single substance medium 
are described by 3 algebraic equations between the 5 
thermodynamic variables pressure (p), temperature 
(T), density (d), specific internal energy (u) and 
specific enthalpy (h). In a medium model, three of 
these variables are given as function of the 
remaining two. For multiple substance media, 
additionally nX independent mass fractions X[nX] 
are present. For example, if p and T are selected as 
independent variables besides X, a medium model 
provides the algebraic equations 

),,(
),,(
),,(

XTphh
XTpuu
XTpdd

=
=
=

 

The mass and energy balance equations in a device 
structurally have the following form for a single 
substance medium (see Section 3): 
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balance mass//
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where m is the mass and U is the internal energy in 
the control volume. Since the time derivatives of m 
and U appear, the derivatives of density d and 
internal energy u are implicitly needed which in turn 
means that the partial derivatives of d(p,T) and 
u(p,T) with respect to the independent variables p 
and T have to be calculated. As a result, the balance 
equations are reformulated in the variables p, T and 
this requires differentiation and formula 
manipulation. 

Depending on the modeled device, additional 
fluid properties are needed, e.g., the dynamic 
viscosity if friction is modeled directly or the 
thermal conductivity for heat transfer coefficients or 
if diffusion is taken into account. Finally, a fluid 
may undergo phase changes and/or multiple 
substances may be involved. 

Obtaining and computing the discussed fluid 
properties often takes the most effort in the 
modeling process. The availability of measurement 
data or correlations defines the level of accuracy 
that can be obtained with a thermo-fluid model. The 
needs of applications vary broadly from very simple 
properties with constant density and constant heat 
capacity to highly accurate non-linear models.  

In order to ease fluid 
modeling with 
Modelica, a free 
Modelica library has 
been developed that 
provides (a) a 
standardized interface 
to media models and 
(b) a growing number 
of at once useable 
media models based 
on this interface, see 
Figure on the left. The 
temporary name of 
this library is 
“Modelica_Media”. It 
is planned to include 

this package in the Modelica standard library as 
Modelica.Media after an evaluation phase. 

The Modelica_Media library is designed such 
that it can be used in different thermo-fluid libraries 
that may, e.g., have completely different connector 

definitions and design philosophies. In particular, 
the Modelica_Fluid library discussed in previous 
sections is based on this library, but it might also be 
useful for other thermo-fluid libraries. The 
Modelica_Media library has the following 
fundamental properties: 
• Different independent medium variables may be 

used for media description, e.g., p,T or p,h or 
d,T or p,d. 

• The definition of the medium is decoupled from 
the formulation of the balance equations in 
order that the balance equations can be 
formulated in their most natural form. There is 
enough information available for a tool to 
transform the medium equations into the form 
needed by the balance equations. This is 
achieved with the same efficiency as a usually 
used balance equation dedicated to a particular 
set of independent medium variables. 

• Device models can be implemented 
independently of the choice of medium model. 
For example, exchanging an incompressible by 
a compressible medium model or a single by a 
multiple substance medium model is usually 
possible and has no major influence on the 
design of the device model. 

5.1 Structure of Medium Interface 
A medium model of Modelica_Media is essentially 
a package that contains the following definitions 
(the basic idea for this approach is from Newman et 
al (2002)): 
• Definition of constants, such as the medium 

name or the number of substances. 
• A model in the package that contains the 3 basic 

thermodynamic equations that relate the 5+nX 
primary medium variables. 

• Optional functions to compute medium 
properties that are only needed in certain 
circumstances, such as dynamic viscosity. These 
optional functions need not be provided by 
every medium model. 

• Type definitions, which are adapted to the 
particular medium. For example, a type 
“Temperature” is defined where the attributes 
“min” and “max” define the validity region of 
the medium. In a device model, it is advisable to 
use these type definitions, e.g., for parameters, 
in order that medium limits are checked as early 
as possible. 

Note, although we use the term “medium model”, 
this is actually a Modelica “package” that contains 
all the constants and definitions required for a 
complete “medium model”. The basic interface to a 
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medium is defined by Modelica_Media. 
Interfaces.PartialMedium that has the following 
structure: 

partial package PartialMedium 
  import SI = Modelica.SIunits; 
 
  constant String  mediumName; 
  constant String  substanceNames; 
  constant Boolean incompressible; 
  constant Boolean reducedX; 
  constant Integer nX = size( 
                  substanceNames,1); 
 
  record BasePropertiesRecord 
    AbsolutePressure       p; 
    Temperature            T; 
    Density                d; 
    SpecificInternalEnergy u; 
    SpecificEnthalpy       h; 
    MassFraction           X[nX]; 
  end BasePropertiesRecord; 
 
  replaceable model BaseProperties 
    extends BasePropertiesRecord; 
    // parameter declarations 
  end BaseProperties; 
 
  // optional medium properties 
  replaceable partial function  
                   dynamicViscosity 
    input  BasePropertiesRecord 
                            medium; 
    output DynamicViscosity eta; 
  end dynamicViscosity; 
  // other optional functions 
 
  // medium specific types 
  type AbsolutePressure = 
         SI.AbsolutePressure ( 
                min     = 0,  
                max     = 1.e8,  
                nominal = 1.e5,  
                start   = 1.e5); 
  type DynamicViscosity = ...; 
  // other type definitions 

  end PartialMedium; 

We will discuss all parts of this package in the 
following paragraphs. An actual medium model 
should extend from PartialMedium and has to 
provide implementations of the various parts. 

The constants at the beginning of the package 
(with exception of nX) do not have a value yet  (this 
is valid in Modelica), but a value has to be provided 
when extending from package PartialMedium. Once 
a value is given, it cannot be changed any more. The 
reason to use constants instead of parameters in the 
model BaseProperties is that some of these 
constants have to be used in connector definitions 

(such as the number of mass fractions nX). When 
defining the connector, only constants in packages 
can be accessed, but not parameters in a model, 
because a connector cannot contain an instance of 
BaseProperties. 

The record BasePropertiesRecord contains the 
variables primarily used in balance equations. Three 
equations for these variables have to be provided by 
every medium in model BaseProperties. Optional 
medium properties are defined by functions, such as 
the function “dynamicViscosity” (see code Section 
above) to compute the dynamic viscosity. Model 
BaseProperties extends from the record and the 
optional functions have an instance of this record as 
an input argument. This construction simplifies the 
usage considerably as demonstrated in the following 
code fragment: 
  replaceable package 

             Medium = PartialMedium; 
Medium.BaseProperties   medium; 
Medium.DynamicViscosity eta; 
 ... 
U  =m*medium.u; //Internal energy 

  eta=Medium.dynamicViscosity(medium); 

“Medium” is the medium package that satisfies the 
requirements of a “PartialMedium” (when using the 
model above, a value for Medium has to be 
provided by a redeclaration). The “medium” 
component is an instance of the model 
“Medium.BaseProperties” and contains the core 
medium equations. Variables in this model can be 
accessed just by dot-notation, such as medium.u or 
medium.T. If an optional medium variable has to be 
computed, the corresponding function from the 
actual Medium package is called, such as 
“Medium.dynamicViscosity”. The medium instance 
can be given as input argument to this function, 
because model Medium.BaseProperties is a subclass 
of BasePropertiesRecord – the argument required 
from the function.  

If a medium model does not provide 
implementations of all optional functions and one of 
these functions is called in a model, an error occurs 
during translation since the not redeclared optional 
functions have the “partial” attribute. For example, 
if function dynamicViscosity is not provided in the 
medium model when it is used, only simple pressure 
drop loss models without a reference to the viscosity 
can be used and not the sophisticated ones. 

At the bottom of the PartialMedium package 
type declarations are present that are used in all 
other parts of the PartialMedium package and that 
should be used in all models and connectors where a 
medium model is accessed. The reason is that 
minimum, maximum, nominal and sometimes also 
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start values are defined and these values can be 
adapted to the particular medium at hand. For 
example, the nominal value of AbsolutePressure is 
1.0e5 Pa. If a simple model of water steam is used 
that is only valid above 100 °C, then the minimum 
value in the Temperature type should be set to this 
value. The minimum and maximum values are also 
important for parameters in order to get an early 
message if data outside of the validity region is 
given. The “nominal” attribute is important as a 
scaling value if the variable is used as a state in a 
differential equation or as an iteration variable in a 
non-linear system of equations. The “start” attribute 
is useful to provide a meaningful default start or 
guess value if the variable is used, e.g., as iteration 
variable in a non-linear system of equations. Note, 
all these attributes can be set specifically for a 
medium in the following way: 

package MyMedium 
  extends PartialMedium( 
     ... 
     Temperature(min=373); 
  ); 
  ... 

  end MyMedium; 

The type PartialMedium.MassFlowRate is defined 
as 

type MassFlowRate = SI.MassFlowRate 
  (quantity =  

   "MassFlowRate." + mediumName); 

Note that the constant “mediumName”, that has to 
be defined in every medium model, is used in the 
quantity attribute. For example, if mediumName = 
“SimpleLiquidWater”, then the quantity attribute 
has the value “MassFlowRate.SimpleLiquidWater”. 
This type should be used in a connector definition of 
a fluid library: 

connector FluidPort 
  replaceable package Medium = 
                      PartialMedium; 
  flow Medium.MassFlowRate m_dot; 
  ... 

  end FluidPort; 

In the model where this connector is used, the actual 
Medium has to be defined. Connectors can only be 
connected together, if the corresponding attributes 
are either not defined or have identical values. Since 
mediumName is part of the quantity attribute of 
MassFlowRate, it is not possible to connect 
connectors with different media models together. In 
Dymola this is already checked when models are 
connected together in the diagram layer of the 
graphical user interface. 

5.2 Defining Medium Models 
The definition of a new medium model based on the 
PartialMedium interface is demonstrated using a 
simple model for air. First, the template package 
“Modelica_Media.Interfaces.TemplateMedium” 
should be copied and renamed. Afterwards, all parts 
of this template should be adjusted to the actual 
medium model. In particular: 

package SimpleAir 
  extends Modelica_Media.Interfaces. 
                     PartialMedium( 
   mediumName = "SimpleAir"; 
   substanceNames  = fill("",0); 
   incompressible  = false; 
   reducedX        = true; 
  ); 
  ... 

  end SimpleAir; 

The new medium package is extended from 
PartialMedium and all constants that do not have a 
value in PartialMedium are defined now. If the 
medium consists of only one substance, set the 
dimension of the substanceNames vector to zero 
with the fill(..) operator. If the medium defines the 
density to be a constant, set “incompressible” to 
true. If there is only one substance, set reducedX 
also to true (the meaning of this flag will be 
explained below). 

In a next step, implementations of model 
BaseProperties and of all supported functions have 
to be provided. With the current Modelica language, 
this is cumbersome, since new classes with different 
names have to be introduced and then the 
PartialMedium classes have to be redeclared to the 
new names. A more convenient Modelica definition 
could be: 

redeclare model BaseProperties 
  extends; 
  ... 

  end BaseProperties; 

This just means that model BaseProperties, which is 
available due to “extends PartialMedium” is 
replaced by a model with the same name and all 
properties defined in PartialMedium.BaseProperties 
are included via the “extends” statement. This 
proposed language construct is available as a test 
implementation in Dymola. At the next Modelica 
design meeting, a formal decision will be made 
whether this or something similar will be included 
into the Modelica language. For the simple air 
model the redeclaration takes the form: 
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package SimpleAir 
  ... 
redeclare model BaseProperties 
  import Modelica.SIunits. 
           conversions.*; 
  extends( 
   p(stateSelect = ..), 
   T(stateSelect = ..) 
  ); 
  constant Real R_air = 287.0506; 
  constant Real h0    = 274648.7; 
equation 
  p = d*R_air*T; 
  h = 1005.45*T + h0; 
  u = h – p/d; 
end BaseProperties; 
  ... 

  end SimpleAir; 

The “stateSelect = ...” statements read 
stateSelect = 
      if preferedMediumStates then 
         StateSelect.prefer  
      else  
         StateSelect.default 

This is the essential definition to decouple balance 
and medium equations: “preferedMediumStates” is 
a Boolean parameter defined in PartialMedium. In 
every device that needs medium properties for 
balance equations in the form of differential 
equations, this flag has to be set to true. If no 
derivatives of any of the 5+nX basic thermodynamic 
variables are needed, this flag has to be set to false. 
Due to the above if-expression, the stateSelect 
attributes of the independent medium variables are 
set to “prefer” if preferedMediumStates = true. 
This in turn means that implicitly equations of the 
form “pd = der(p)“ and  „Td = der(T)“ are present 
and that p and T should be selected as states, if this 
is possible. This is important, if the property 
functions, such as u(p,T) are non-linear in the 
independent variables. If the independent variables 
would not be selected as states, this would result in 
non-linear systems of equations for the inversion of 
the property function.  

The balance equations and the medium 
equations together with the above definition of 
preferred states define a DAE (= Differential 
Algebraic Equation system) of index 2. For 
example, if p and T are used as independent medium 
variables, this DAE consists of the following 
equations: 
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Modelica models often result in higher index DAEs. 
Dymola solves this problem by using (a) the 
Pantelides algorithm (Pantelides (1988))  to 
determine the equations that have to be 
differentiated and (b) the dummy derivative method 
(Mattsson and Söderlind (1993), Mattsson et.al. 
(2000)) to select appropriate states. For the above 
code fragment, the Pantelides algorithm determines 
that the equations of m, U and therefore also of d 
and u need to be differentiated resulting in the 
following additional equations: 
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With the dummy derivative method it is possible to 
select p and T as states from the original set of 
potential states (p,T,m,U), especially since p and T 
have the “prefer” attribute. Using symbolic formula 
manipulation it is possible to solve the above 
equations efficiently for Tp && , . 

Note, it is important to set the stateSelect 
attribute to its default value when 
preferedMediumStates = false. Otherwise, a tool 
would have to compute the derivative of p and T, 
although these derivatives are not needed. Worse, in 
order to compute these derivatives most likely other 
device equations would have to be differentiated. 

After implementation of the BaseProperties 
model, the optional functions supported by the 
medium model have to be defined, e.g., a constant 
dynamic viscosity for the simple air model: 
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package SimpleAir 
  ... 
redeclare function dynamicViscosity 
  input BasePropertiesRecord medium; 
  output DynamicViscosity eta; 
 algorithm  
    eta := 1.82e-5; 
end dynamicViscosity; 
  ... 

  end SimpleAir; 

Note, instead of using the short “extends;” as in the 
BaseProperties model, it is also possible to just 
repeat the declaration of the function (this is 
possible with Modelica’s type system). For the 
optional functions, this is a bit longer but seems to 
be easier to understand for someone looking up the 
function definition. 

The essential part of the medium model is 
now defined and can be utilized. However, there are 
additional issues that have to be taken into account, 
especially for non-linear medium models. This is 
discussed in the next subsections. 

5.3 Initialization 
Since variables of the medium are used as states, 
and the device models using the medium model do 
(on purpose) not know what independent variables 
are defined in the medium, initialization has to be 
defined in the medium model. 

For fluid modeling, two types of standard 
initializations are common: steady state and 
prescribed initial conditions. A third alternative is 
additionally supported in the Modelica_Media 
library: The time scales of the energy- and mass 
balance related dynamics can be very different for 
fluid systems and are therefore treated differently in 
the initialization. A potential state that is determined 
by the mass balance dynamics (pressure or density) 
is initialized in steady state i.e., der(d)=0 or 
der(p)=0. A potential state that is determined by 
the energy balance equation (temperature or specific 
enthalpy) is directly set (e.g. T = 300.0 or h = 
2.5e6). This case occurs also when, e.g., initial 
temperatures are determined by measurements. 

In package PartialMedium, several parameters 
are declared in order to define the initialization. A 
Dymola screen shot of the “Initialization” menu tab 
is shown in Figure 6. In the lower part, start values 
for p or d, T or h, and X can be defined. The 
meaning of a start value, e.g., whether it is a guess 
value or a definite start value is defined by the first 
parameter “initType”. It is defined with a selection 
box containing several alternatives (this is 
implemented as Integer with annotations to specify 
the content of the selection box, since Dymola does  

 
Figure 6 Initialization menu of PartialMedium 

not yet support Modelica enumerations): 
• Selection NoInit (the default) does nothing, to 

allow user-specific initialization. 
• Selection InitialStates means that the 

independent variables of the medium model 
should be initialized with start values. 

• Selection SteadyState sets the time derivatives 
of the independent medium variables to zero. 
The start values are interpreted as guess values 
for the occurring non-linear algebraic equations. 

• Selection SteadyMass sets one of the equations 
der(p) = 0.0 or der(d) = 0, depending whether p 
or d is an independent variable of the medium 
model. The start value for p or d is interpreted 
as a guess value. The start value for T or h is 
used to initialize the remaining independent 
variable of the medium model. 

In the lower part of the “Initialization” menu, start 
values can be defined. If the Boolean init_p = 
true, then the start value p_start for pressure is 
used, otherwise the start value d_start for 
density. Correspondingly, if init_T = true, the 
start value T_start for temperature is used, 
otherwise the start value h_start for specific 
enthalpy. Additionally, for multiple substance 
fluids, start values for mass fractions X_start can 
be defined. Start values that are not needed are used 
as initial guesses, where appropriate. 

While this is not a fully exhaustive list of 
useful initializations for fluid models, it provides a 
broad range of practically important cases. 

The above parameters are defined in package 
PartialMedium. An actual implementation must be 
provided by every medium model. For example, the 
simple air model, needs the following additions: 

package SimpleAir 
  ... 
redeclare model BaseProperties 
  import C = Choices.Init; 
  protected  
    parameter T_start2 =  
       if init_T then 
          T_start  
       else  
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          (h_start – h0)/cp_air; 
    parameter h_start2 =  
       if init_T then  
          cp_air*T_start + h0 
       else h_start; 
    parameter p_start2 = 
       if init_p then  
          p_start  
       else R_air*d_start*T_start2; 
    parameter d_start2 = 
       if init_p then 
          p_start/(R_air*T_start2)  
       else d_start) 
  public 
  extends( 
   p(start = p_start2, stateSelect=..,), 
   T(start = T_start2, stateSelect=..,), 
   d(start = d_start2), 
   h(start = h_start2), 
   u(start = h_start2 – p_start2/ 
             d_start2) 
  ); 
  constant Real R_air  =    287.0506; 
  constant Real cp_air =   1005.45; 
  constant Real h0     = 274648.7; 

Above is the first part of the initialization. In the 
extends clause of the BaseProperties model together 
with the new protected Section, start values for all 
variables are calculated from the given start values. 
This requires to evaluate the medium equations with 
the given start values. In situations with more 
complex equations, it is often useful to define them 
with functions and call the functions for start value 
calculation and in the equation section. The reason 
to provide consistent start values for all variables is 
that these variables are potentially iteration variables 
in non-linear algebraic loops and need therefore 
reasonable guess values. It is not known beforehand 
which iteration variable the symbolic translator will 
select. In the remaining code, the initialization 
equations and the medium equations are defined: 

initial equation 
  if preferedMediumStates then 
    if initType == C.InitialStates then 
      p = p_start2; 
      T = T_start2; 
    elseif initType==C.SteadyState then 
      0 = der(p); 
      0 = der(T); 
    elseif initType == C.SteadyMass then 
      0 = der(p); 
      T = T_start2; 
    end if; 
  end if; 
equation 
  p = d*R_air*T; 
  h = cp_air*T + h0; 
  u = h – p/d; 
end BaseProperties; 
  ... 

  end SimpleAir; 

Initial equations are only provided if 
preferedMediumStates = true, i.e., if medium 
variables should be used as states. Depending on 
parameter initType, the different initialization 
equations are defined. These equations depend on 
the independent variables of the medium model. 

5.4 Multiple Substance Media 
Media that consist of several (non-reacting) 
substances are both supported from the 
Modelica_Media and the Modelica_Fluid library. In 
Modelica_Media essentially the mass fractions X of 
the substances are used as independent variables to 
compute the medium properties. Two common 
approaches are supported by the Modelica_Media 
library: 
• From the n substances, n-1 substances are 

treated as independent, i.e., n-1 mass fractions 
are additional independent variables. If needed, 
the n-th mass fraction is computed from the 
algebraic equation X_n = 1- sum(X[1:n-1]). 

• All n substances are treated as independent 
during simulation, i.e., n mass fractions are used 
as independent variables and there are n 
additional substance mass balance equations. 
Since the constraint that the mass fractions sum 
up to one, is not utilized, a slight drift of the 
mass fractions may occur. Of course, the initial 
mass fractions have to be defined such that they 
are summed up to one (this is checked in the 
PartialMedium package). 

In order to not have special cases, the 
Modelica_Media and Modelcia_Fluid libraries 
define the constant “nX” of PartialMedium to be the 
“number of independent” mass fractions. This might 
be n-1 or n substances of a multiple substance 
medium. In order to be able to make some checks, 
such as for initialization, the constant “reducedX” 
must be defined. If true, nX characterizes n-1 
substances, if this flag is false, nX characterizies n 
substances. 

Note, for single substance media, no mass 
fraction vector or substance mass flow rate vector is 
present, because nX = 0 in this case and zero sized 
vectors are removed in the code generation phase. 

6 Medium Models in  
Modelica_Media 

In this Section, some of the more advanced medium 
models available in the Modelica_Media package 
are discussed in more detail. All of them are based 
on the medium interface described in the last 
Section. 
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6.1 High Accuracy Water Model IF97 
The Modelica_Media library contains a very 
detailed medium model of water in the liquid, gas 
and two phase region based on the IF97 standard 
[6]. It is an adapted and slightly improved version 
from the ThermoFluid library (Tummescheit and 
Eborn (2001), Tummescheit (2002)). 

High accuracy thermodynamic properties of 
fluids are modeled with two kinds of multi-
parameter, fundamental equations of state: 

• An equation for the specific Helmholtz free 
energy f(ρ,T) or f(v=1/ρ,T) 

• An equation for the Gibbs free enthalpy 
g(p,T) 

For numerical reasons the fundamental equations 
use dimensionless variables which are most often 
scaled with the critical parameters. The IF97 
industrial steam tables uses both equation types and 
furthermore divides the overall fluid state into 5 
regions in order to achieve high accuracy 
everywhere with a lower number of parameters. In 
spite of the complexities of the underlying 
formulation, the user interface for calling the 
properties is very simple. The medium interface is 
implemented with utility functions that have a 
simple interface, e.g.  

rho = Water.IF97.rho_ph(p,h); 
                   //density 
T   = WaterIF97.T(p,h); 
                  //temperature 
s   = WaterIF97.s_ph(p,h); 

               //specific entropy 

Common sub-expression elimination and nested 
inlining of function calls ensure that the 
computationally expensive call to one of the 
fundamental equations happens only once. A record 
containing the fundamental derivatives of the 
equation of states is used by Dymola in the common 
sub-expression elimination and is thus only 
computed once. The fundamental derivatives for the 
free Helmholtz energy f(ρ,T) are: 

TTv

TT

T

T

Tfc

ffp

fp

fs

ffp

−=

+=

=

−=
∂
∂==

ρρρρ

ρ

ρ

ρρ

ρ

ρ
ρρ

2

2

22

2

 

Here the short subscript notation is used for partial 
derivatives, see explanation above. A similar set of 
fundamental derivatives exists for the Gibbs free 
enthalpy g(p,T): 
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From these fundamental derivatives, all other partial 
derivatives of thermodynamic properties with 
respect to other properties can be computed using 
thermodynamic determinants, e.g.  
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When needed, e.g. for index reduction to change the 
states to numerically favorable ones, these partial 
derivatives can be computed with minimal effort 
from the fundamental derivatives in the property 
record. In order to add other Helmholtz-or Gibbs-
based equations of state to Modelica_Media, only 
the fundamental derivatives need to be computed, 
the functions to compute the standard properties are 
part of the library.  

The partial derivatives are used in two 
situations where the Modelica_Media properties 
provide unique features for efficiency and model 
order reduction. For all property calls that may have 
to be differentiated for index reduction, efficient 
derivative functions are provided. A very useful 
model order reduction for large two-phase heat 
exchangers is to equate the metal mass and boiling 
water temperatures, e.g. as in the drum Boiler model 
in [3]. Equating the temperatures leads to an index 
reduction problem. The algorithm for index 
reduction needs to compute the time derivative of 
temperature as a function of the time derivatives of 
the states. When pressure p and specific enthalpy h 
are the states, the expansion reads: 

region phase  twoin the if

phase singlein  if

p
T

dt
dT

h
T

p
T

dt
dT

sat

ph

∂
∂=

∂
∂+

∂
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These derivatives are automatically computed when 
needed without user interaction. This allows writing 
the equations in the most natural form, as 
demonstrated in [3]. The same algorithmic 
procedure is used to transform the “natural” form of 
the mass- and energy balances into equations using 
the input to the property routines as states.  
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Density as a Function of Enthalpy and Pressure

200

1000

2000

4000 1

0.1

1

10

100

1000

Density [kg/m3]

Enthalpy [kJ/kg]
100 1000

10
Pressure [bar]

400

x = 0

x = 1

 
Figure 7: log.-plot of ρ(p,h) for IF97 water 

6.2 High Accuracy Ideal Gas Models 
Ideal gas properties cover a broad range of 
interesting engineering applications: air 
conditioning and climate control, industrial and 
aerospace gas turbines, combustion processes, 
automotive engines, fuel cells and many chemical 
processes. Critically evaluated parameter sets are 
available for a large number of substances. The 
coefficients and data used in the Modelica_Media 
library are from [9]. Care has been taken to enable 
users to create their own gas mixtures with minimal 
effort. For most gases, the region of validity is from 
200 K to 6000 K, sufficient for most technical 
applications. The equation of state consists of the 
well-known ideal gas law TRp ⋅⋅= ρ  with R the 
specific gas constant, and polynomials for the 
specific heat capacity )(Tcp , the specific enthalpy 

)(Th and the specific entropy ),( pTs : 
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The polynomials for )(Th  and )(0 Ts are derived via 
integration from the one for )(Tcp and contain the 
integration constants 21,bb  that define the reference 
specific enthalpy and entropy. For entropy 
differences the reference pressure p0 is arbitrary, but 
not for absolute entropies. It is chosen as 1 standard 
atmosphere (101325 Pa). Depending on the intended 
use of the properties, users can choose between 
different reference enthalpies: 

1. The enthalpy of formation Hf of the molecule 
can be included or excluded. 

2. The value 0 for the specific enthalpy without Hf 

can be defined to be at  298.15 K (25 °C) or at 0 
K. 

For some of the species, transport properties are also 
available. The form of the equations is: 
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with the kinematic viscosity ν , dynamic viscosity 
η , thermal conductivity λ  and parameters A,B,C,D 
and k. Note, though, that the thermal conductivity is 
only the “frozen” thermal conductivity, i.e., not 
valid for fast reactions.  

6.3 Ideal Gas Mixtures 
For mixtures of ideal gases, the standard, ideal 
mixing rules apply: 
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where the ix are the mass fractions, the iR are the 
specific gas constants and the iy are the molar 
fractions of the components of the mixture. Most 
other properties are then computed just as for single 
species media. Dynamic viscosity and thermal 
conductivity for mixtures require interaction 
parameters of a similar functional form as the 
viscosity itself and are (not yet) implemented. 

For mixtures of ideal gases, three usage 
scenarios can be distinguished:  

1. The composition is fixed and is the same 
throughout the system. This means that a 
new data record can be computed by 
preprocessing the component property data 
that can be treated as a new, single species 
data record (assuming ideal mixing). 

2. The composition is variable, but changes in 
composition occur only through convection, 
i.e. slowly. 

3. The composition is variable and may 
change through reactions too, i.e. 
composition changes are possibly very fast. 

Case 1 and 2 above can be handled within a single 
model with a Boolean switch, case 3 needs to extend 
from that model because usually a number of 
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additional properties are needed, e.g. the parameters 
to compute chemical equilibrium reaction constants. 
Modelica_Media will initially not contain models 
for reactive flows, but all data is present for users 
who wish to define such models.  

7 Conclusions 
Thermodynamic fluid modeling is complex in many 
ways. This paper has shown a careful structuring of 
libraries for medium and fluid components in such a 
way that the same component models can be used 
with different easily replaceable media. To our 
knowledge this is the first approach that is able to 
treat compressible and incompressible fluids in a 
unified framework.  A careful consideration of 
numerous issues concerning numerical efficiency, 
model structuring and user friendliness has been 
presented in this paper:  

• Suitable device interfaces 
• Principles for handling of reversing, joining 

and splitting flows  
• The governing partial differential equations 

and their transformation into ODEs 
• Pressure loss calculations 
• Medium interface design 
• Initialization  
• Media available in Modelica_Media 

Much design effort has been spent on considerations 
for robust and efficient simulation. The presented 
framework and libraries have the potential to serve 
as a powerful base for the development of 
application-oriented libraries. 

Appendix – Energy balance 
This appendix contains the derivation of the 
equivalent but simpler energy balance. 

Multiplication of the momentum balance by v 
gives 

2( ) ( )

F

vA v A
v

t x

p z
vA vF vA g

x x

ρ ρ

ρ

∂ ∂
+ =

∂ ∂

∂ ∂
− − −

∂ ∂

 
 
   

Utilizing the mass balance, this equation can be 
rewritten as 
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To show the equivalence, consider the two left hand 
sides: 
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i.e. 1 2LH LH= . 
Subtracting the equation derived above from 

the energy balance gives 
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