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Abstract 

A new Modelica implementation based on IDA 
Simulation Environment (IDA SE) is presented. 
IDA SE is primarily used for development of equa-
tion based simulators for end-users with limited 
modeling skills but provides interesting features also 
for the advanced user. A recently developed Mode-
lica application for simulation of tunnel ventilation 
for commuter rail networks illustrates IDA usage. 
Excerpts of models from this application are pre-
sented in some detail as well as a list of present 
limitations of the IDA based Modelica implementa-
tion. 

1 Introduction 
Modelica has proven to be of excellent service to 

advanced modelers in several domains. However, 
presently, there is usually close contact between 
model developers and end-users. In fact, they fre-
quently coincide in a single person. As Modelica 
uptake evolves, the need to deploy Modelica based 
simulators among less experienced users is likely to 
increase. IDA Simulation Environment (IDA SE) 
has been developed to facilitate this process. Origi-
nally based on a Modelica predecessor, NMF [1], 
IDA SE has been used for equation based end-user 
application development since the early nineties. 
Several real-scale simulation applications have been 
developed, some of which have earned leading roles 
in their respective markets. 

IDA SE is based on the concept of pre-compiled 
component models, i.e. most IDA application end-
users work only with fixed1 component models that 
may be combined into arbitrary (input-output free) 
configurations without need for compilation. Simu-
lators do not require a working compiler installation. 

                                                      
1 array sizes, including connector arrays, can be modified 
after compilation 

Encryption is not needed to preserve component 
model secrecy. The new Modelica implementation 
which has been included in the IDA SE package 
retains this structure, separating the typical roles of 
the model developer and end-user.  

A large majority of potential simulation users 
have little appreciation of the beauty and generality 
of an advanced modeling language. They have a 
design problem to solve and want quality answers 
with minimum effort. Quite often the full mathe-
matical formulation of the problem is of less inter-
est. A good simulation application must communi-
cate in terms natural to the user and in most situa-
tions this does not involve any modeling language 
but rather physical concepts from the target applica-
tion. Pipes, pumps and valves may well be the opti-
mal elements of communication rather than differ-
ential-algebraic equations. 

The structure and main features of IDA Simula-
tion Environment are presented in the next section. 
In Section 3, a sample IDA application is presented, 
followed by a discussion about the current state of 
the Modelica implementation. Some code details 
from train traffic modeling are discussed in an Ap-
pendix. 

2 IDA Simulation Environment 
Figure 1 shows the three main software modules 

of IDA SE: 

 

IDA Modeler:  the interactive front-end 
IDA Solver:  the numerical DAE solver 
IDA Translator:  the model source code editor and 

processor 
A development version contains all three, while a 

runtime installation lacks IDA Translator. The de-
veloper uses IDA Translator to generate a set of C 
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or F77 routines for each component2, for equation 
evaluation, analytical Jacobian evaluation and gen-
eral information about the model. The code is com-
piled from the translator into a Windows DLL 
which is then linked to IDA Solver. The Modelica 
(or NMF) source may or may not be shipped with 
the application, depending on the desired level of 
confidentiality. Also generated are native class de-
scriptions for IDA Modeler, containing structural 
information about the model library. This code may 
then be complemented by application specific ex-
tensions.  

IDA Modeler

IDA Solver

IDA
Translator

*.C
*.F77

*.NMF
*.MO

*.IDA

*.EO

*.APP
*.LSP

Application definition files
Application specific source

Component description file

Component
source

Component equations

System
descrip-
tion file

Results

Figure 1: Structure of IDA Simulation Environment 
 

Applications may be shipped stand alone, includ-
ing an IDA runtime environment or as separate 
plug-ins for an existing IDA environment. Both the 
model library and the user interface of an applica-
tion may be amended and altered by multiple extra 
separate installations, for customizations and appli-
cation extensions. This allows efficient management 
of complex version structures. 

The cost of the runtime environment for each in-
stallation is significantly lower than that of the full 
development environment, normally only a small 
fraction of the cost of the end-user product. 

                                                      
2 A component or a compilation unit becomes an indi-
visible building block in the end-user application. The 
Modelica source of a component model may be a com-
posite, hierarchical model. It is also possible to define 
hierarchical models in IDA Modeler containing multiple 
components. 

IDA Simulation Environment is presently avail-
able as an off-the-shelf product only with NMF for 
Microsoft Windows 98 or NT 4.0 and higher. IDA 
Solver and Translator have previously been ported 
to Unix platforms but are not maintained in this 
setting. Modelica is presently supported only for 
specific customers. We will return to the state of the 
Modelica implementation in Section 4. 

2.1 IDA Solver 

In tools, such as Dymola, where equations are 
globally reduced prior to integration, the numerical 
solver will deal with a fairly dense system of equa-
tions but where each equation can be quite complex. 
One can generally expect equation evaluations to 
take some time while factorization of Jacobian ma-
trices is likely to be faster due to the dense problem 
structure. In a pre-compiled setting, the situation is 
the opposite: functions are rather simple (simple 
enough to differentiate analytically!) while Jacobi-
ans are typically large and sparse.  

IDA relies on standard software components for 
sparse Jacobian factorization. Since large sparse 
matrices occur in many technical and scientific ap-
plications a range of powerful solvers are readily 
available for scalar as well as parallel architectures. 
Available solvers for IDA are: SuperLU [2], 
MUMPS [3] and UMFPACK [4]. The graph theo-
retical analysis of system structure is done by these 
external solvers rather than in the context of a global 
symbolic preprocessing.  

There are many implications of this difference in 
solution strategy. A thorough discussion of this is 
beyond our current scope and we will merely point 
out a few aspects:  

+ Component structure is maintained during 
integration. This allows for example: (1) 
Exploitation of special component structure 
by tailored methods. (2) Component level 
co-simulation with external tools such as 
FEMLAB (see Figures 2 and 3). (3) Com-
ponent level debugging. 

+ Equation topology may change during simu-
lation. Since the graph theoretical analysis 
may be done in each timestep, discontinui-
ties that alter the system structure can be ac-
cepted. 

+ For few-timestep simulations, global compi-
lation may take a significant part of the total 
execution time. 
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- Pre-compiling component models precludes 
some operations that are natural in a setting 
where a global symbolic analysis is done. 
The most serious limitation concerns index 
reduction. Although index 2 systems gener-
ally can be simulated without any problems 
in IDA Solver, serious high-index problems 
are most likely better solved by means of 
global symbolic analysis.  

 

 
Figure 2: A FEMLAB-Simulink standard case 

“Thermal controller.“ A heat source in a 2D region 
is controlled by a thermostat. 

10 1 102 103
10 0 

10 1 

10 2 

10 3 

10 4 TIME 

NODES 

IDA      
Simulink 

Figure 3: Execution time vs. FEMLAB spacial reso-
lution in the “Thermal controller case“. The original 
Simulink model is compared to an identical FEM-

LAB-IDA model (from [5]). 
 

IDA Solver is a variable timestep and order 
solver based on the MOLCOL implicit multistep 
methods, which include the most common implicit 
methods such as BDF. Explicit methods are cur-
rently not available for the global integrator but may 
be implemented for individual components.  

A selection of methods for initial value computa-
tion are available: damped Newton, line-search, 
gradient and homotopy (embedding) methods 

2.2 IDA Modeler 

IDA Modeler provides a framework for interface 
development. It may be used to write simulation 
oriented applications of sufficient quality for com-
petition with tools written from scratch but at a frac-
tion of the cost. IDA Modeler exploits the fact that 
many tasks are common to most simulation applica-
tions: building and presenting models, editing pa-
rameters, interacting with a data base, making simu-
lation experiments, viewing results as diagrams and 
reports, checking user licenses etc. 

More elaborate IDA applications, divide the user 
interface into three levels, to serve users with differ-
ent needs and capabilities:  

 

Wizard 
level: 

Least demanding. Each required input 
is presented in a sequence of user input 
forms. 

Standard 
level 

Intermediate. The user is required to 
formulate a model, but in terms that are 
natural to the domain. 

Advanced 
level 

The user builds a model using equation 
based objects. Facilities for model 
checking, automatic mapping of global 
data, selection of given variables and 
similar tasks are available. 

 

In such an IDA application, the Advanced level 
interface offers a model-lab work bench similar to 
that offered by other DAE environments, providing 
the user with direct contact with the individual equa-
tions, variables and parameters of the mathematical 
model. However, a great majority of end-users pre-
fer the tools of the Standard and Wizard level inter-
faces, where the basic mental concept is that of a 
physical system and not of a mathematical model.  

The kernel of IDA Modeler is written in Com-
mon Lisp but most application programming is done 
interactively or by writing native scripts. Extensive 
facilities are available to simplify common tasks 
such as: building user interfaces in multiple natural 
languages; defining a data bases for input data ob-
jects; report generation; data mapping etc. Some 
user interface elements, such as dialog boxes with 
complex logic, may be written via an API in other 
languages. 
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Figure 4: Applications may have multiple Wiz-

ard level interfaces for typical simulation tasks. 
Each interface has a separate data model and a tai-

lored script language for data mapping between 
levels is provided. 

 

Special emphasis has been laid on tools for de-
velopment of web clients, running in a browser, 
powered by an IDA based simulation engine on the  
(Windows) server. A large portion of the native data 
structures have been mapped to Java script, facilitat-
ing advanced web development with minimum ef-
fort.  

Several examples of full-complexity applications 
written in IDA Modeler are available. Equa markets 
two such applications: IDA Indoor Climate and 
Energy (IDA ICE) and IDA Road Tunnel Ventila-
tion. Others have been developed for specific cus-
tomers. IDA ICE is with more than 2000 users a 
leading international tool for thermal building simu-
lation, available in six languages. 

3 Ventilation and fire in com-
muter rail tunnel networks 

The first full-complexity Modelica based IDA 
application concerns prediction of air flows in tun-
nels and on platforms of commuter rail networks. 
Results are needed for several reasons: hygienic 
ventilation, thermal comfort, smoke propagation in 
fire scenarios and for gas and particle dispersion 
studies.  

A primarily pulsating air movement through the 
system is driven by train piston effect. Secondary 
driving forces are thermal stack effect, wind pres-
sure on portals and openings and possible fan opera-
tion.  

In this application, air has been modeled as, 
weakly compressible, i.e. propagating pressure 
waves have infinite speed but the temperature-
density relationship is modeled (perfect gas law) in 
order to capture the stack effect. Solving the fully 
compressible equations is often required for rail 
tunnel studies to predict the effects of interacting 
pressure waves but this has not been done here since 
the solution of the resulting hyperbolic equations is 
likely to be time consuming and otherwise problem-
atic. 

Pressure drop in tunnels is modeled in 1D with 
conventional pipe flow theory: With the fluid is 
transported a series of fractions for computation of 
CO2, age of air etc. Flows with altering directions, 
often fluctuating around zero, may be numerically 
difficult to handle in branched systems with high 
Reynolds number since coarse approximations of 
viscous losses tends to produce discontinuities. To 
overcome these problems Gardel [6] empirical for-
mulae have been implemented for viscous loss coef-
ficients, providing continuity around zero flow 
situations. Bulk air inertia is modeled leading to an 
index 2 system. Figure 5 shows a model of a four-
station section. 

A convenient way of expressing train traffic 
through the system is essential. A design principle 
has been to separate the models of the tunnel system 
from the traffic models. Input data for a train route 
through the system is depicted in Figure 6, including 
line segmentation, speed limits, accelerations, dwell 
times at stations etc. To add a new route, the user 
selects a sufficient number of objects in the direc-
tion of the traffic to unambiguously determine a 
path. The segmentation of the Route need not corre-
spond to the segmentation of the physical tunnel. 
(The latter may e.g. depend on needed resolution of, 
e.g., a smoke front.) 
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Figure 5: A model of a four-station underground 

section of the Stockholm subway. Tunnels and other 
airflow paths are modeled. 

Each Route through the system is contained in a 
single instance of the Route block (code extract in 
Appendix). This block is then automatically con-
nected to each segment of the physical tunnel using 
application specific code. The connection lines are 
not visible, since the number of tunnel segments 
may be exorbitant.  

 
Figure 6: The IDA form for description of a train 

route through the system. 

The management of train routes is a good exam-
ple of application specific programming, where the 
standard drag, drop and connect functionality needs 
to be complemented. The Route form in Figure 6 is 
an example of a native IDA form, which first has 
been automatically generated and then subsequently 
interactively altered. In the Outline tab, the user can 
see all available parameters, variables and interfaces 
of the block and in the Code tab, the Modelica code 
can be browsed (but not edited). 

 
Figure 7: Computed airflows at station Mariator-

get, with five minute traffic of C20 trains in one 
direction. 

4 Present state of Modelica in IDA 
The current IDA Modelica implementation has 

been developed to cater to the immediate modeling 
needs of ongoing projects like the mentioned sub-
way ventilation study. It is our intention to continue 
to enhance the tools in the scope of cooperative 
modeling projects and then, at some future point, 
release an off-the-shelf product.  

The design of the Modelica language itself has 
for natural reasons been centered around the only 
presently available implementation by Dynasim. In 
this section, we will outline a few issues where the 
present Modelica design is less well suited to usage 
in the pre-compiled setting of IDA and where 
Modelica extensions have been introduced. Present 
shortcomings of the implementation are also dis-
cussed. 

4.1 Interpretation of Modelica code 

The IDA Translator compiles classes, not com-
plete systems. Compiled models normally contain:  
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• public connectors 
• more variables than equations 
• outer elements 
• arrays with non-constant sizes 
 

All public non-partial and non-local classes de-
clared with keywords class, model or block 
are compiled to IDA components. Blocks are pres-
ently compiled to IDA algorithmic models. Public 
non-partial and non-local atomic types and connec-
tor classes are similarly compiled to IDA quantity 
and link types. 

A compiled model may be extended after compi-
lation by inserting and connecting submodels. 

Public top-level connectors in compilation units 
are preserved by the compiler available for connec-
tions. 

Compilation units may contain unresolved outer 
components. Such compiled models should be used 
only as elements of models that contain correspond-
ing inner components. Unresolved outer classes are 
not supported. 

For each compilation unit, a symbolic analysis is 
performed where as many variables as possible are 
solved for symbolically, effectively removing them 
from the global system of equations. Resulting 
equations are differentiated and code for evaluation 
of analytical Jacobians is generated. Although prin-
cipally possible, no index reduction is currently 
done at this stage.  

It is possible to allow the IDA Translator to 
process entire simulation problems, resulting in just 
a single compilation unit. However, this is not the 
intended usage of the tool since the topological 
flexibility of being able to re-configure pre-
compiled units is an essential feature of most IDA 
applications. 

4.2 IDA driven Modelica extensions 

Events in functions and pre operator 
The previous IDA language, NMF, supports 

events in functions, also in foreign functions. This is 
possible because the variables that monitor events 
are explicit in NMF models. In Modelica, these 
variables are automatically generated and not avail-
able for the programmer. 

We have implemented events using the special 
function mo_event(var, expr). The variable var is a 
special kind of variable (called assigned state in 

NMF) that keeps its value from the previous 
timestep. The function modifies the value of var and 
generates an event whenever it changes sign. In 
order to be used in a function, the previous value of 
var should be passed to the function and the modi-
fied value should be returned. To make this possi-
ble, we have changed the semantic of the pre opera-
tor. In our implementation, pre(v) is always the 
value of v at the previous successful time step; this 
is also valid for non-discrete variables. 

The modified pre operator may also be used for 
several other purposes, for example: 

• To calculate a maximum value during the simu-
lation: 
xMax = max(x, pre(xMax));

• To break an algebraic loop in order to simplify 
solution of an equation with weak dependences: 
RhoAir = 1/287.0 * pre(PAir) / Tair;

• To implement local integration methods, for 
efficency or for limiting numerical dissipation in 
PDE:s 

A full account of the arguments for the extension 
of the pre operator is beyond the scope of this pa-
per. However, uncontrolled numerical dissipation 
due to large and variable timesteps is a fundamental 
problem for many Modelica applications that should 
be further discussed. 

Conversion to strings 
In Modelica 2.1 there are functions that converts 

scalar values to strings, but there are no functions 
for converting arrays and matrices. We have imple-
mented automatic conversion of non-strings to 
strings. Example: 
assert(x>0, "x = "+ x + " should be positive")

Graphics 
• More named colors 
• Arrow: Closed, Left, Right, {type,side}. The 

size may be a vector 
• lineThickness=0 - non-scaled minimal thickness 
• Transformation:  negative scale and aspectRatio 

may be used instead of flip. 

4.3 Features yet to be implemented 

The following list is intended to give a flavor of 
the present state of development. 

Available variable and parameter types 
� All variables and non-scalar parameter declared 

as Integer or Boolean are converted to Real. 
These variables cannot be used as arguments of 
function calls. 
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� Boolean scalar parameters are converted to In-
teger. 

� String variables are not implemented (string 
parameters are supported) 

� Attributes (except value and start) should be 
constant. They cannot be used in expressions. 

� Attributes displayUnit, fixed, enable, nominal, 
stateSelect are not used. 

Connections 
� Connection of subconnectors is not yet sup-

ported 
Modification and redeclarations 
� Modifications of class elements are not sup-

ported (i.e., when instantiating or extending a 
class, it is not possible to modify local classes in 
that class). 

� No subtype checking in redeclarations. The 
constraining clause is ignored. 

� Choice annotations not supported. 
Expressions 
� Record constructors are not supported. 
Iterations 
� Multiple iterations (separated by “,”) not yet 

supported. 
� Ranges with step from:step:to are not supported. 
� Vectors in indices only partially supported. 
� The index end is not supported. 
� Deduction of range is not implemented. 
Arrays  
� Array expressions (not instances) may not be 

used as arguments to non-built-in functions. 
Functions 
� Optional arguments are not supported (except in 

some built-in functions) 
� Record arguments are not supported. 
� Protected variables in functions are not sup-

ported. 
� The annotation derivative is not yet supported. 
� Some restrictions on external functions. 
� Not all Modelica utility functions are imple-

mented. 
� External objects are not implemented. 
Initialization 
� Initial equation/algorithm not implemented 
Built-in functions and operators 
� Not implemented functions: initial, terminal,

smooth, sample, edge, change, reinit, termi-

nate, div, rem, integer, cardinality. 
Graphics 
� Attribute visible and smooth is ignored. 

� Cylinders and Sphere fill patterns are not sup-
ported. 

� BorderPattern shown as rectangle with 3D bor-
der 

� No line pattern if lineThickness >= 0.375 
� Text rotation is not implemented 
� Filled text is not implemented. 
� Bitmaps: may be rotated by 90 degrees only, 

imageSource not implemented, fileName just 
copied (no directory information added). 

5 Summary and further work 
The present IDA Modelica implementation is a 

sufficient base for complex application development 
and delivery. Several partner projects are underway, 
where Equa supports developers with needed new 
functionality. Perceived user demand will determine 
when a public product is released. 

Equation based simulation is presently limited by 
fragmentation into disparate single-vendor user 
communities. As a technology, Modelica is suffi-
ciently neutral and powerful to break the presnet 
status quo. Hopefully, another reasonably complete 
independent implementation will aid this process. 
However, it is vital that the present Modelica com-
munity focuses on the truly critical success factors 
rather than on yet another intriguing technical issue. 
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Appendix - Structure of commuter rail model 
 
The Traffic connector transmits information about train location, speed and acceleration between the Route 
block and the physical tunnel model: 
  
connector Traffic "Traffic line in tunnel segment"
Velocity speed(start=0) "traffic speed";
Real nFront "no of vehicle fronts per segment";
Real nBack "no of vehicle backs per segment";
Length lBody "total length of vehicles per segment";
Acceleration acc(start=0) "traffic acceleration";

end Traffic;

Below is the template for a Tunnel system. The end user may add instances of different models (sections, 
platforms, ventilation shafts, traffic routes) into a compiled Tunnel system and then connect and simulate the 
system (see Figure 5). 

// The template for Tunnel document
model Tunnel "Tunnel Document"
inner parameter ArraySize nFract = 2 "Number of air fractions";
inner parameter ArraySize nVeh=1 "Number of vehicle types";
inner parameter Vehicle[nVeh] veh "Description of vehicles";
inner parameter Fraction[nFract] fract "Description of air fractions";
Ambient amb "Properies of ambient air";

end Tunnel;

A traffic route is modeled as a Modelica block. Each instance describes a route in one direction. The model 
is connected (using traffic connector) with segments in tunnel sections and platforms (a tunnel section 
may consist of several segments). The connection is done by the application; the user only draws the route on 
the tunnel schema. 
The route block is translated to an algorithmic model. It does not add equations to the tunnel system, but 
only supplies the system with input data series (like a table). IDA SE supports also post-processing algo-
rithmic models, used for collecting and transforming measurements on a model. 

block Route
// Array sizes
parameter ArraySize
nSched = 2 "Number of points in route schedule",
nSeg = 1 "Number of tunnel segments",
nRun = 5 "Max number of scheduled vehicles";

final parameter ArraySize nPos = nSeg + 1 "Number of segment ends";

// Route schedule
parameter Time tSched[nSched] = {0, 3600} "time column in schedule";
parameter Velocity vSched[nSched] = {10, 10} "speed column in schedule";
parameter Length xSched[nSched] "position column in schedule";
parameter Length xSched0 = 0 "start position for schedule";

// Tunnel segments
parameter Length lSeg[nSeg] "segment lengths";
parameter Boolean reverse[nSeg] = fill(false,nSeg) "traffic direction";
parameter Length xSeg[nPos] "segment ends";

// Time schedule
Integer lastRun(start=0) "last scheduled vehicle";
discrete Time

nextDep(start=time.start) "Next departure time",
interval(start=300) "departure interval",
depTime[nRun] (each start=-1) "Departures time";

parameter input Integer vehicleType = 1;
output Traffic[nSeg] traffic;
outer parameter ArraySize nVeh;
outer parameter Vehicle[nVeh] veh "Description of vehicles";

protected
Length xFront, xBack, xF, xB;
Velocity v;
Acceleration a;
parameter Length lVeh = veh[vehicleType].length;
parameter Time tMax "max route time";
parameter Time tFront[nPos], tBack[nPos];
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// parameter processing
algorithm
// Calculate the train position at scheduled time points
xSched[1] := xSched0;
for i in 1:nSched-1 loop
xSched[i+1] := xSched[i] + 0.5*(vSched[i]+vSched[i+1])*(tSched[i+1]-tSched[i]);

end for;
// maximal time per route
tMax := tSched[nSched] +

(if vSched[nSched]==0 then 0 else lVeh/vSched[nSched]);
// segment lengths
lSeg := xSeg[2:nSeg+1] - xSeg[1:nSeg];

// the time then the train passes tunnel segments
for i in 1:nPos loop

tFront[i] := RouteTime(xSeg[i], nSched, tSched, xSched, vSched);
tBack[i] := RouteTime(xSeg[i]+lVeh, nSched, tSched, xSched, vSched);

end for;

algorithm
// calculate the traffic parameters on each segment
// the tunnel segments reads them (using traffic connector)

// Launch the next train
when time>=nextDep then
lastRun := mod(lastRun, nRun) + 1;
assert(depTime[lastRun]<0, "The max number of scheduled trains is exceeded");
depTime[lastRun] := nextDep;
nextDep := nextDep + interval;
end if;

// Initialize output variables
for iSeg in 1:nSeg loop
traffic[iSeg].speed := 0.0;
traffic[iSeg].nFront := 0.0;
traffic[iSeg].nBack := 0.0;
traffic[iSeg].lBody := 0.0;
traffic[iSeg].dSpeed := 0.0;
traffic[iSeg].acc := 0.0;

end for;
// loop over all running trains
for iRun in 1:nRun loop
if depTime[iRun]>=0 then // if not removed
if time >= depTime[iRun] + tMax then
// the train is out of tunnel, remove it
depTime[iRun] := -1;

else
// calculate the position, speed, and acceleration
(xFront, v, a) :=

RouteInt(time - depTime[iRun], nSched, tSched, xSched, vSched);
xBack := xFront - lVeh;
// loop over tunnel segments
for iSeg in 1:nSeg loop
// calculate the position of the train in the segment
xF := xSeg[iSeg+1];
xB := xSeg[iSeg];
// is the train on the segments (with events)?
if time>depTime[iRun]+tFront[iSeg] and time < depTime[iRun]+tBack[iSeg+1] then
traffic[iSeg].speed := if reverse[iSeg] then -v else v;
traffic[iSeg].acc := if reverse[iSeg] then -a else a;
if time<=depTime[iRun]+tFront[iSeg+1] then
// count the train fronts
xF := xFront;
traffic[iSeg].nFront := traffic[iSeg].nFront + 1;

end if;
if time>depTime[iRun]+tBack[iSeg] then
// count the train backs
xB := xBack;
traffic[iSeg].nBack := traffic[iSeg].nBack + 1;

end if;
// count the total length
traffic[iSeg].lBody := traffic[iSeg].lBody + (xF - xB);

end if;
end for;

end if;
end if;

end for;
protected
function RouteInt "Integrates the train movement along the route"
input Time t "time elapsed from the start point";
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input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";
output Length x "train position";
output Velocity v "train speed";
output Acceleration a "train acceleration";

external;
end RouteInt;
function RouteTime "Returns the train time at given position"
output Time t "the calculated train time";
input Length x "the given train position";
input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";

external;
end RouteTime;

end Route;

The tunnel segments and platforms are connected using TunnelCut connector: 
 
connector TunnelCut
outer parameter ArraySize nFract "Number of air fractions";

Pressure P;
flow MassFlowRate m_dot(start=0);

Temp_C T(start=10);
flow HeatFlowRate_M Q;

Real vf[nFract];
flow MassFlowRate vf_dot[nFract];

end TunnelCut;

The bi-directional flow of air with fractions (of CO2, NO, dust, smoke etc.) is modeled in a similar way as in 
the Modelica Fluid package, but the implementation is different. 
Here the end-user (working with pre-compiled components) is able to define media properties, especially 
number of air fractions. Therefore the number of fractions nFract is defined as a parameter and not as a 
constant as in the Modelica Fluid package. 
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