

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Per Sahlin and Pavel Grozman
Equa Simulation AB, Sweden:
IDA Simulation Environment - a tool for Modelica based end-user
application deployment
pp. 105-114

IDA Simulation Environment
a tool for Modelica based end-user application deployment

 Per Sahlin Pavel Grozman

Equa Simulation AB
Box 1376, 172 27 Sundbyberg, Sweden

http://www.equa.se/

Abstract

A new Modelica implementation based on IDA
Simulation Environment (IDA SE) is presented.
IDA SE is primarily used for development of equa-
tion based simulators for end-users with limited
modeling skills but provides interesting features also
for the advanced user. A recently developed Mode-
lica application for simulation of tunnel ventilation
for commuter rail networks illustrates IDA usage.
Excerpts of models from this application are pre-
sented in some detail as well as a list of present
limitations of the IDA based Modelica implementa-
tion.

1 Introduction
Modelica has proven to be of excellent service to

advanced modelers in several domains. However,
presently, there is usually close contact between
model developers and end-users. In fact, they fre-
quently coincide in a single person. As Modelica
uptake evolves, the need to deploy Modelica based
simulators among less experienced users is likely to
increase. IDA Simulation Environment (IDA SE)
has been developed to facilitate this process. Origi-
nally based on a Modelica predecessor, NMF [1],
IDA SE has been used for equation based end-user
application development since the early nineties.
Several real-scale simulation applications have been
developed, some of which have earned leading roles
in their respective markets.

IDA SE is based on the concept of pre-compiled
component models, i.e. most IDA application end-
users work only with fixed1 component models that
may be combined into arbitrary (input-output free)
configurations without need for compilation. Simu-
lators do not require a working compiler installation.

1 array sizes, including connector arrays, can be modified
after compilation

Encryption is not needed to preserve component
model secrecy. The new Modelica implementation
which has been included in the IDA SE package
retains this structure, separating the typical roles of
the model developer and end-user.

A large majority of potential simulation users
have little appreciation of the beauty and generality
of an advanced modeling language. They have a
design problem to solve and want quality answers
with minimum effort. Quite often the full mathe-
matical formulation of the problem is of less inter-
est. A good simulation application must communi-
cate in terms natural to the user and in most situa-
tions this does not involve any modeling language
but rather physical concepts from the target applica-
tion. Pipes, pumps and valves may well be the opti-
mal elements of communication rather than differ-
ential-algebraic equations.

The structure and main features of IDA Simula-
tion Environment are presented in the next section.
In Section 3, a sample IDA application is presented,
followed by a discussion about the current state of
the Modelica implementation. Some code details
from train traffic modeling are discussed in an Ap-
pendix.

2 IDA Simulation Environment
Figure 1 shows the three main software modules

of IDA SE:

IDA Modeler: the interactive front-end
IDA Solver: the numerical DAE solver
IDA Translator: the model source code editor and

processor
A development version contains all three, while a

runtime installation lacks IDA Translator. The de-
veloper uses IDA Translator to generate a set of C

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

or F77 routines for each component2, for equation
evaluation, analytical Jacobian evaluation and gen-
eral information about the model. The code is com-
piled from the translator into a Windows DLL
which is then linked to IDA Solver. The Modelica
(or NMF) source may or may not be shipped with
the application, depending on the desired level of
confidentiality. Also generated are native class de-
scriptions for IDA Modeler, containing structural
information about the model library. This code may
then be complemented by application specific ex-
tensions.

IDA Modeler

IDA Solver

IDA
Translator

*.C
*.F77

*.NMF
*.MO

*.IDA

*.EO

*.APP
*.LSP

Application definition files
Application specific source

Component description file

Component
source

Component equations

System
descrip-
tion file

Results

Figure 1: Structure of IDA Simulation Environment

Applications may be shipped stand alone, includ-
ing an IDA runtime environment or as separate
plug-ins for an existing IDA environment. Both the
model library and the user interface of an applica-
tion may be amended and altered by multiple extra
separate installations, for customizations and appli-
cation extensions. This allows efficient management
of complex version structures.

The cost of the runtime environment for each in-
stallation is significantly lower than that of the full
development environment, normally only a small
fraction of the cost of the end-user product.

2 A component or a compilation unit becomes an indi-
visible building block in the end-user application. The
Modelica source of a component model may be a com-
posite, hierarchical model. It is also possible to define
hierarchical models in IDA Modeler containing multiple
components.

IDA Simulation Environment is presently avail-
able as an off-the-shelf product only with NMF for
Microsoft Windows 98 or NT 4.0 and higher. IDA
Solver and Translator have previously been ported
to Unix platforms but are not maintained in this
setting. Modelica is presently supported only for
specific customers. We will return to the state of the
Modelica implementation in Section 4.

2.1 IDA Solver

In tools, such as Dymola, where equations are
globally reduced prior to integration, the numerical
solver will deal with a fairly dense system of equa-
tions but where each equation can be quite complex.
One can generally expect equation evaluations to
take some time while factorization of Jacobian ma-
trices is likely to be faster due to the dense problem
structure. In a pre-compiled setting, the situation is
the opposite: functions are rather simple (simple
enough to differentiate analytically!) while Jacobi-
ans are typically large and sparse.

IDA relies on standard software components for
sparse Jacobian factorization. Since large sparse
matrices occur in many technical and scientific ap-
plications a range of powerful solvers are readily
available for scalar as well as parallel architectures.
Available solvers for IDA are: SuperLU [2],
MUMPS [3] and UMFPACK [4]. The graph theo-
retical analysis of system structure is done by these
external solvers rather than in the context of a global
symbolic preprocessing.

There are many implications of this difference in
solution strategy. A thorough discussion of this is
beyond our current scope and we will merely point
out a few aspects:

+ Component structure is maintained during
integration. This allows for example: (1)
Exploitation of special component structure
by tailored methods. (2) Component level
co-simulation with external tools such as
FEMLAB (see Figures 2 and 3). (3) Com-
ponent level debugging.

+ Equation topology may change during simu-
lation. Since the graph theoretical analysis
may be done in each timestep, discontinui-
ties that alter the system structure can be ac-
cepted.

+ For few-timestep simulations, global compi-
lation may take a significant part of the total
execution time.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

- Pre-compiling component models precludes
some operations that are natural in a setting
where a global symbolic analysis is done.
The most serious limitation concerns index
reduction. Although index 2 systems gener-
ally can be simulated without any problems
in IDA Solver, serious high-index problems
are most likely better solved by means of
global symbolic analysis.

Figure 2: A FEMLAB-Simulink standard case

“Thermal controller.“ A heat source in a 2D region
is controlled by a thermostat.

10 1 102 103
10 0

10 1

10 2

10 3

10 4 TIME

NODES

IDA
Simulink

Figure 3: Execution time vs. FEMLAB spacial reso-
lution in the “Thermal controller case“. The original
Simulink model is compared to an identical FEM-

LAB-IDA model (from [5]).

IDA Solver is a variable timestep and order
solver based on the MOLCOL implicit multistep
methods, which include the most common implicit
methods such as BDF. Explicit methods are cur-
rently not available for the global integrator but may
be implemented for individual components.

A selection of methods for initial value computa-
tion are available: damped Newton, line-search,
gradient and homotopy (embedding) methods

2.2 IDA Modeler

IDA Modeler provides a framework for interface
development. It may be used to write simulation
oriented applications of sufficient quality for com-
petition with tools written from scratch but at a frac-
tion of the cost. IDA Modeler exploits the fact that
many tasks are common to most simulation applica-
tions: building and presenting models, editing pa-
rameters, interacting with a data base, making simu-
lation experiments, viewing results as diagrams and
reports, checking user licenses etc.

More elaborate IDA applications, divide the user
interface into three levels, to serve users with differ-
ent needs and capabilities:

Wizard
level:

Least demanding. Each required input
is presented in a sequence of user input
forms.

Standard
level

Intermediate. The user is required to
formulate a model, but in terms that are
natural to the domain.

Advanced
level

The user builds a model using equation
based objects. Facilities for model
checking, automatic mapping of global
data, selection of given variables and
similar tasks are available.

In such an IDA application, the Advanced level
interface offers a model-lab work bench similar to
that offered by other DAE environments, providing
the user with direct contact with the individual equa-
tions, variables and parameters of the mathematical
model. However, a great majority of end-users pre-
fer the tools of the Standard and Wizard level inter-
faces, where the basic mental concept is that of a
physical system and not of a mathematical model.

The kernel of IDA Modeler is written in Com-
mon Lisp but most application programming is done
interactively or by writing native scripts. Extensive
facilities are available to simplify common tasks
such as: building user interfaces in multiple natural
languages; defining a data bases for input data ob-
jects; report generation; data mapping etc. Some
user interface elements, such as dialog boxes with
complex logic, may be written via an API in other
languages.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 4: Applications may have multiple Wiz-

ard level interfaces for typical simulation tasks.
Each interface has a separate data model and a tai-

lored script language for data mapping between
levels is provided.

Special emphasis has been laid on tools for de-
velopment of web clients, running in a browser,
powered by an IDA based simulation engine on the
(Windows) server. A large portion of the native data
structures have been mapped to Java script, facilitat-
ing advanced web development with minimum ef-
fort.

Several examples of full-complexity applications
written in IDA Modeler are available. Equa markets
two such applications: IDA Indoor Climate and
Energy (IDA ICE) and IDA Road Tunnel Ventila-
tion. Others have been developed for specific cus-
tomers. IDA ICE is with more than 2000 users a
leading international tool for thermal building simu-
lation, available in six languages.

3 Ventilation and fire in com-
muter rail tunnel networks

The first full-complexity Modelica based IDA
application concerns prediction of air flows in tun-
nels and on platforms of commuter rail networks.
Results are needed for several reasons: hygienic
ventilation, thermal comfort, smoke propagation in
fire scenarios and for gas and particle dispersion
studies.

A primarily pulsating air movement through the
system is driven by train piston effect. Secondary
driving forces are thermal stack effect, wind pres-
sure on portals and openings and possible fan opera-
tion.

In this application, air has been modeled as,
weakly compressible, i.e. propagating pressure
waves have infinite speed but the temperature-
density relationship is modeled (perfect gas law) in
order to capture the stack effect. Solving the fully
compressible equations is often required for rail
tunnel studies to predict the effects of interacting
pressure waves but this has not been done here since
the solution of the resulting hyperbolic equations is
likely to be time consuming and otherwise problem-
atic.

Pressure drop in tunnels is modeled in 1D with
conventional pipe flow theory: With the fluid is
transported a series of fractions for computation of
CO2, age of air etc. Flows with altering directions,
often fluctuating around zero, may be numerically
difficult to handle in branched systems with high
Reynolds number since coarse approximations of
viscous losses tends to produce discontinuities. To
overcome these problems Gardel [6] empirical for-
mulae have been implemented for viscous loss coef-
ficients, providing continuity around zero flow
situations. Bulk air inertia is modeled leading to an
index 2 system. Figure 5 shows a model of a four-
station section.

A convenient way of expressing train traffic
through the system is essential. A design principle
has been to separate the models of the tunnel system
from the traffic models. Input data for a train route
through the system is depicted in Figure 6, including
line segmentation, speed limits, accelerations, dwell
times at stations etc. To add a new route, the user
selects a sufficient number of objects in the direc-
tion of the traffic to unambiguously determine a
path. The segmentation of the Route need not corre-
spond to the segmentation of the physical tunnel.
(The latter may e.g. depend on needed resolution of,
e.g., a smoke front.)

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 5: A model of a four-station underground

section of the Stockholm subway. Tunnels and other
airflow paths are modeled.

Each Route through the system is contained in a
single instance of the Route block (code extract in
Appendix). This block is then automatically con-
nected to each segment of the physical tunnel using
application specific code. The connection lines are
not visible, since the number of tunnel segments
may be exorbitant.

Figure 6: The IDA form for description of a train

route through the system.

The management of train routes is a good exam-
ple of application specific programming, where the
standard drag, drop and connect functionality needs
to be complemented. The Route form in Figure 6 is
an example of a native IDA form, which first has
been automatically generated and then subsequently
interactively altered. In the Outline tab, the user can
see all available parameters, variables and interfaces
of the block and in the Code tab, the Modelica code
can be browsed (but not edited).

Figure 7: Computed airflows at station Mariator-

get, with five minute traffic of C20 trains in one
direction.

4 Present state of Modelica in IDA
The current IDA Modelica implementation has

been developed to cater to the immediate modeling
needs of ongoing projects like the mentioned sub-
way ventilation study. It is our intention to continue
to enhance the tools in the scope of cooperative
modeling projects and then, at some future point,
release an off-the-shelf product.

The design of the Modelica language itself has
for natural reasons been centered around the only
presently available implementation by Dynasim. In
this section, we will outline a few issues where the
present Modelica design is less well suited to usage
in the pre-compiled setting of IDA and where
Modelica extensions have been introduced. Present
shortcomings of the implementation are also dis-
cussed.

4.1 Interpretation of Modelica code

The IDA Translator compiles classes, not com-
plete systems. Compiled models normally contain:

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

• public connectors
• more variables than equations
• outer elements
• arrays with non-constant sizes

All public non-partial and non-local classes de-
clared with keywords class, model or block
are compiled to IDA components. Blocks are pres-
ently compiled to IDA algorithmic models. Public
non-partial and non-local atomic types and connec-
tor classes are similarly compiled to IDA quantity
and link types.

A compiled model may be extended after compi-
lation by inserting and connecting submodels.

Public top-level connectors in compilation units
are preserved by the compiler available for connec-
tions.

Compilation units may contain unresolved outer
components. Such compiled models should be used
only as elements of models that contain correspond-
ing inner components. Unresolved outer classes are
not supported.

For each compilation unit, a symbolic analysis is
performed where as many variables as possible are
solved for symbolically, effectively removing them
from the global system of equations. Resulting
equations are differentiated and code for evaluation
of analytical Jacobians is generated. Although prin-
cipally possible, no index reduction is currently
done at this stage.

It is possible to allow the IDA Translator to
process entire simulation problems, resulting in just
a single compilation unit. However, this is not the
intended usage of the tool since the topological
flexibility of being able to re-configure pre-
compiled units is an essential feature of most IDA
applications.

4.2 IDA driven Modelica extensions

Events in functions and pre operator
The previous IDA language, NMF, supports

events in functions, also in foreign functions. This is
possible because the variables that monitor events
are explicit in NMF models. In Modelica, these
variables are automatically generated and not avail-
able for the programmer.

We have implemented events using the special
function mo_event(var, expr). The variable var is a
special kind of variable (called assigned state in

NMF) that keeps its value from the previous
timestep. The function modifies the value of var and
generates an event whenever it changes sign. In
order to be used in a function, the previous value of
var should be passed to the function and the modi-
fied value should be returned. To make this possi-
ble, we have changed the semantic of the pre opera-
tor. In our implementation, pre(v) is always the
value of v at the previous successful time step; this
is also valid for non-discrete variables.

The modified pre operator may also be used for
several other purposes, for example:

• To calculate a maximum value during the simu-
lation:
xMax = max(x, pre(xMax));

• To break an algebraic loop in order to simplify
solution of an equation with weak dependences:
RhoAir = 1/287.0 * pre(PAir) / Tair;

• To implement local integration methods, for
efficency or for limiting numerical dissipation in
PDE:s

A full account of the arguments for the extension
of the pre operator is beyond the scope of this pa-
per. However, uncontrolled numerical dissipation
due to large and variable timesteps is a fundamental
problem for many Modelica applications that should
be further discussed.

Conversion to strings
In Modelica 2.1 there are functions that converts

scalar values to strings, but there are no functions
for converting arrays and matrices. We have imple-
mented automatic conversion of non-strings to
strings. Example:
assert(x>0, "x = "+ x + " should be positive")

Graphics
• More named colors
• Arrow: Closed, Left, Right, {type,side}. The

size may be a vector
• lineThickness=0 - non-scaled minimal thickness
• Transformation: negative scale and aspectRatio

may be used instead of flip.

4.3 Features yet to be implemented

The following list is intended to give a flavor of
the present state of development.

Available variable and parameter types
� All variables and non-scalar parameter declared

as Integer or Boolean are converted to Real.
These variables cannot be used as arguments of
function calls.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

� Boolean scalar parameters are converted to In-
teger.

� String variables are not implemented (string
parameters are supported)

� Attributes (except value and start) should be
constant. They cannot be used in expressions.

� Attributes displayUnit, fixed, enable, nominal,
stateSelect are not used.

Connections
� Connection of subconnectors is not yet sup-

ported
Modification and redeclarations
� Modifications of class elements are not sup-

ported (i.e., when instantiating or extending a
class, it is not possible to modify local classes in
that class).

� No subtype checking in redeclarations. The
constraining clause is ignored.

� Choice annotations not supported.
Expressions
� Record constructors are not supported.
Iterations
� Multiple iterations (separated by “,”) not yet

supported.
� Ranges with step from:step:to are not supported.
� Vectors in indices only partially supported.
� The index end is not supported.
� Deduction of range is not implemented.
Arrays
� Array expressions (not instances) may not be

used as arguments to non-built-in functions.
Functions
� Optional arguments are not supported (except in

some built-in functions)
� Record arguments are not supported.
� Protected variables in functions are not sup-

ported.
� The annotation derivative is not yet supported.
� Some restrictions on external functions.
� Not all Modelica utility functions are imple-

mented.
� External objects are not implemented.
Initialization
� Initial equation/algorithm not implemented
Built-in functions and operators
� Not implemented functions: initial, terminal,

smooth, sample, edge, change, reinit, termi-

nate, div, rem, integer, cardinality.
Graphics
� Attribute visible and smooth is ignored.

� Cylinders and Sphere fill patterns are not sup-
ported.

� BorderPattern shown as rectangle with 3D bor-
der

� No line pattern if lineThickness >= 0.375
� Text rotation is not implemented
� Filled text is not implemented.
� Bitmaps: may be rotated by 90 degrees only,

imageSource not implemented, fileName just
copied (no directory information added).

5 Summary and further work
The present IDA Modelica implementation is a

sufficient base for complex application development
and delivery. Several partner projects are underway,
where Equa supports developers with needed new
functionality. Perceived user demand will determine
when a public product is released.

Equation based simulation is presently limited by
fragmentation into disparate single-vendor user
communities. As a technology, Modelica is suffi-
ciently neutral and powerful to break the presnet
status quo. Hopefully, another reasonably complete
independent implementation will aid this process.
However, it is vital that the present Modelica com-
munity focuses on the truly critical success factors
rather than on yet another intriguing technical issue.

References
1. P.Sahlin, E.F.Sowell, „A Neutral Format for Buil-

ding Simulation Models“, Proceedings of the IBPSA
Building Simulation '89 conference, Vancouver, Ca-
nada, 1989

2. J.W. Demmel, J.R. Gilbert and X.S. Li, “SuperLU
User’s Guide”, Technical Report, UC Berkeley,
USA, 1997

3. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent,
“MUMPS Multifrontal Massively Parallel Solver v.
2.0”, Technical Report, CERFACS, France, 1998

4. T.A. Davis, “UMFPACK v. 4.0 User Guide”, Tech-
nical Report, Univ. of Florida, Gainesville, USA,
2002

5. C. Panagiotopoulos “Finite element models in a
lumped model simulation environment. An interface
between FEMLAB and IDA S.E.” Technical Report,
KTH, Stockholm, 2001

6. Gardel, A. (1957), “Les Pertes de Charge dans les
Ecoulements au Travers de Branchements en Te”,
Bull. Tech. De la Suisse Romande, 83, 123-130, 144-
148, 1957

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

Appendix - Structure of commuter rail model

The Traffic connector transmits information about train location, speed and acceleration between the Route
block and the physical tunnel model:

connector Traffic "Traffic line in tunnel segment"
Velocity speed(start=0) "traffic speed";
Real nFront "no of vehicle fronts per segment";
Real nBack "no of vehicle backs per segment";
Length lBody "total length of vehicles per segment";
Acceleration acc(start=0) "traffic acceleration";

end Traffic;

Below is the template for a Tunnel system. The end user may add instances of different models (sections,
platforms, ventilation shafts, traffic routes) into a compiled Tunnel system and then connect and simulate the
system (see Figure 5).

// The template for Tunnel document
model Tunnel "Tunnel Document"
inner parameter ArraySize nFract = 2 "Number of air fractions";
inner parameter ArraySize nVeh=1 "Number of vehicle types";
inner parameter Vehicle[nVeh] veh "Description of vehicles";
inner parameter Fraction[nFract] fract "Description of air fractions";
Ambient amb "Properies of ambient air";

end Tunnel;

A traffic route is modeled as a Modelica block. Each instance describes a route in one direction. The model
is connected (using traffic connector) with segments in tunnel sections and platforms (a tunnel section
may consist of several segments). The connection is done by the application; the user only draws the route on
the tunnel schema.
The route block is translated to an algorithmic model. It does not add equations to the tunnel system, but
only supplies the system with input data series (like a table). IDA SE supports also post-processing algo-
rithmic models, used for collecting and transforming measurements on a model.

block Route
// Array sizes
parameter ArraySize
nSched = 2 "Number of points in route schedule",
nSeg = 1 "Number of tunnel segments",
nRun = 5 "Max number of scheduled vehicles";

final parameter ArraySize nPos = nSeg + 1 "Number of segment ends";

// Route schedule
parameter Time tSched[nSched] = {0, 3600} "time column in schedule";
parameter Velocity vSched[nSched] = {10, 10} "speed column in schedule";
parameter Length xSched[nSched] "position column in schedule";
parameter Length xSched0 = 0 "start position for schedule";

// Tunnel segments
parameter Length lSeg[nSeg] "segment lengths";
parameter Boolean reverse[nSeg] = fill(false,nSeg) "traffic direction";
parameter Length xSeg[nPos] "segment ends";

// Time schedule
Integer lastRun(start=0) "last scheduled vehicle";
discrete Time

nextDep(start=time.start) "Next departure time",
interval(start=300) "departure interval",
depTime[nRun] (each start=-1) "Departures time";

parameter input Integer vehicleType = 1;
output Traffic[nSeg] traffic;
outer parameter ArraySize nVeh;
outer parameter Vehicle[nVeh] veh "Description of vehicles";

protected
Length xFront, xBack, xF, xB;
Velocity v;
Acceleration a;
parameter Length lVeh = veh[vehicleType].length;
parameter Time tMax "max route time";
parameter Time tFront[nPos], tBack[nPos];

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

// parameter processing
algorithm
// Calculate the train position at scheduled time points
xSched[1] := xSched0;
for i in 1:nSched-1 loop
xSched[i+1] := xSched[i] + 0.5*(vSched[i]+vSched[i+1])*(tSched[i+1]-tSched[i]);

end for;
// maximal time per route
tMax := tSched[nSched] +

(if vSched[nSched]==0 then 0 else lVeh/vSched[nSched]);
// segment lengths
lSeg := xSeg[2:nSeg+1] - xSeg[1:nSeg];

// the time then the train passes tunnel segments
for i in 1:nPos loop

tFront[i] := RouteTime(xSeg[i], nSched, tSched, xSched, vSched);
tBack[i] := RouteTime(xSeg[i]+lVeh, nSched, tSched, xSched, vSched);

end for;

algorithm
// calculate the traffic parameters on each segment
// the tunnel segments reads them (using traffic connector)

// Launch the next train
when time>=nextDep then
lastRun := mod(lastRun, nRun) + 1;
assert(depTime[lastRun]<0, "The max number of scheduled trains is exceeded");
depTime[lastRun] := nextDep;
nextDep := nextDep + interval;
end if;

// Initialize output variables
for iSeg in 1:nSeg loop
traffic[iSeg].speed := 0.0;
traffic[iSeg].nFront := 0.0;
traffic[iSeg].nBack := 0.0;
traffic[iSeg].lBody := 0.0;
traffic[iSeg].dSpeed := 0.0;
traffic[iSeg].acc := 0.0;

end for;
// loop over all running trains
for iRun in 1:nRun loop
if depTime[iRun]>=0 then // if not removed
if time >= depTime[iRun] + tMax then
// the train is out of tunnel, remove it
depTime[iRun] := -1;

else
// calculate the position, speed, and acceleration
(xFront, v, a) :=

RouteInt(time - depTime[iRun], nSched, tSched, xSched, vSched);
xBack := xFront - lVeh;
// loop over tunnel segments
for iSeg in 1:nSeg loop
// calculate the position of the train in the segment
xF := xSeg[iSeg+1];
xB := xSeg[iSeg];
// is the train on the segments (with events)?
if time>depTime[iRun]+tFront[iSeg] and time < depTime[iRun]+tBack[iSeg+1] then
traffic[iSeg].speed := if reverse[iSeg] then -v else v;
traffic[iSeg].acc := if reverse[iSeg] then -a else a;
if time<=depTime[iRun]+tFront[iSeg+1] then
// count the train fronts
xF := xFront;
traffic[iSeg].nFront := traffic[iSeg].nFront + 1;

end if;
if time>depTime[iRun]+tBack[iSeg] then
// count the train backs
xB := xBack;
traffic[iSeg].nBack := traffic[iSeg].nBack + 1;

end if;
// count the total length
traffic[iSeg].lBody := traffic[iSeg].lBody + (xF - xB);

end if;
end for;

end if;
end if;

end for;
protected
function RouteInt "Integrates the train movement along the route"
input Time t "time elapsed from the start point";

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";
output Length x "train position";
output Velocity v "train speed";
output Acceleration a "train acceleration";

external;
end RouteInt;
function RouteTime "Returns the train time at given position"
output Time t "the calculated train time";
input Length x "the given train position";
input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";

external;
end RouteTime;

end Route;

The tunnel segments and platforms are connected using TunnelCut connector:

connector TunnelCut
outer parameter ArraySize nFract "Number of air fractions";

Pressure P;
flow MassFlowRate m_dot(start=0);

Temp_C T(start=10);
flow HeatFlowRate_M Q;

Real vf[nFract];
flow MassFlowRate vf_dot[nFract];

end TunnelCut;

The bi-directional flow of air with fractions (of CO2, NO, dust, smoke etc.) is modeled in a similar way as in
the Modelica Fluid package, but the implementation is different.
Here the end-user (working with pre-compiled components) is able to define media properties, especially
number of air fractions. Therefore the number of fractions nFract is defined as a parameter and not as a
constant as in the Modelica Fluid package.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003

