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ABSTRACT 

The real power and flexibility that comes from 
using Modelica for physical modeling stems from 
the combination of the acausal approach to 
formulating physical connections combined with 
sets of standard connector definitions in various 
engineering domains.  These features are important 
because they help avoid a priori causality 
assumptions (which promotes reuse of components) 
and ensure physical compatibility across 
connections.  However, complex systems are 
generally made up of several complex, multi-
domain subsystems with numerous connectors.  
Such systems also benefit from having standardized 
subsystem interface definitions.  This paper will 
focus on an initial proposal for a vehicle model 
architecture for vehicle system applications.  
Ultimately, we hope that feedback on this proposal 
from other groups doing vehicle modeling will lead 
to a consensus on the appropriate subsystem 
interfaces such that we can achieve the same level of 
flexibility and reusability for vehicle subsystem 
models that we currently have with component level 
models. 

1 Motivation 

Vehicle system modeling is an important part of 
optimizing overall vehicle performance.  To avoid 
building up complete vehicle models from scratch 
repeatedly, it is useful to develop a pre-wired 
vehicle model architecture.  We had two goals in 
mind when formulating such a vehicle model 
architecture.  First, it should allow the exchange of 
subsystem models between different organizations 
(e.g. part/subsystem vendors, design organizations, 
universities) without the need to "rework" the 
models to fit into existing vehicle system models.  
Second, it should greatly simplify the handling of 
alternative vehicle system configurations by 
allowing substitution of one particular subsystem or 
strategy implementation for another. 

Ideally, we hope that this architecture will 
develop to the point that other groups, outside of 
Ford, will adopt it.  Given the growing number of 
automotive related libraries in Modelica [1-4], both 
freely available and commercial, such a vehicle 
model architecture will be a practical necessity to 
allow subsystem models from these libraries to be 
easily assembled into complete vehicle models. 

Previous efforts at Ford have focused on 
providing a vehicle model architecture for models 
developed in Simulink [5].  While not disputing the 
value of a corporate standard for vehicle subsystem 
models, groups working with Modelica were not 
willing to give up the acausal flexibility in Modelica 
for an approach that required a priori causality 
assumptions.  Furthermore, most existing vehicle 
level modeling applications using Modelica at Ford 
involved details (e.g. modeling the motion of the 
powertrain mounts) that were was not possible with 
the Simulink framework. 

As a result of internal discussions, it was agreed 
that an acceptable compromise would be to develop 
a purely Modelica architecture using essentially the 
same subsystem decomposition, as was done in 
Simulink, but avoiding a priori causality 
assumptions.  In cases where Modelica models 
would be useful to someone working in Simulink, 
we hope to develop a set of standard "wrappers" for 
each subsystem that will allow us to impose the 
required causality on an otherwise acausal 
subsystem model and then convert these into an S-
function using Dymola [6]. 

2 Architecture Structure 

A complete vehicle system model must take into 
account the response of the various physical 
subsystems, the function of the controller modules 
(both subsystem and vehicle level) as well as other 
"external" influences like the environment and the 
driver.  The following sections will discuss the 
decomposition in each of these categories. 
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2.1 Physical Subsystems 

The first category we will be discussing 
includes all the physical subsystems in the vehicle.  
This section will provide some discussion for each 
physical subsystem and some explanation of what is 
contained within each subsystem.  The order of the 
subsystems corresponds, roughly, to the order that 
they appear (from left to right) in Figure 1. 

Note that each physical subsystem is connected 
to a subsystem controller.  We will defer the 
discussion of this connection until Section 2.2.3 and 
instead focus, for now, on the physical connections 
associated with each subsystem. 

 

Figure 1: Vehicle Model Architecture 

2.1.1 Accessories 
The accessory subsystem is composed of those 

components typically connected to the front end 
accessory drive (FEAD) of an engine.  Examples of 
such components would include an alternator or AC 
compressor. As shown in Figure 1, the accessories 
are connected to the front side of the powerplant.  
As a result, any torque required by these 
components will be taken from the powerplant.  The 
accessories are also connected to the electrical 
subsystem and they typically represent a significant 
influence on the charging and discharging of the 
electrical system. 

2.1.2 Electrical 
The electrical subsystem is composed of the 

various purely electrical components in the vehicle.  
Typical examples would include the battery, radio 
and/or headlights.  In addition to being the location 

for all purely electrical components, the electrical 
system is also the source of electrical power for 
every other physical subsystem in the vehicle and, 
as such, is subject to "external" influences that may 
charge or deplete the battery (e.g. alternator, 
regenerative braking). 

2.1.3 Powerplant 
The powerplant subsystem represents the 

primary source of motive torque for the vehicle.  
Typically, this would be an internal combustion 
engine although it could also be, for example, an 
electric motor.  Like the battery, the powerplant 
model provides power to the rest of the vehicle.  As 
such, there are physical connections from the 
powerplant to the accessories and the transmission.   

The powerplant is also connected to the 
electrical subsystem. Although the electrical 
influence of an internal combustion engine is 
normally quite small (e.g. spark plug energy, etc), if 
the powerplant were an electric motor, the 
connection to the electrical system would become 
quite important.  In the case of hybrid electric 
vehicles, additional electrical components, such as 
electric motors, may be included in the powerplant 
or they may be lumped into the transmission 
(depending on the powertrain topology). 

The physical connection between the driver and 
the powerplant includes a signal representing the 
physical position of the accelerator pedal.  
Typically, this signal is translated directly into a 
throttle position.  However, in "drive by wire" 
applications, it is assumed that the pedal position 
sensor would be associated with the powerplant 
subsystem and that sensor information would be 
relayed to the powerplant subsystem controller 
and/or vehicle controller where, for example, the 
commanded throttle position (or motive torque, in 
the case of an electric vehicle) would be calculated 
and returned as an actuator command. 

Finally, Figure 1 shows that the powerplant has 
a third mechanical connection.  This connection is 
to the powertrain mounts and accounts for reaction 
torque to the powertrain mount system. 

2.1.4 Transmission 
The transmission subsystem represents any 

"gearing" done to deliver power from the 
powerplant to the wheels.  One side of the 
transmission is connected to the powerplant while 
the other side is connected to the driveline.  Any 
hydraulic function associated with the transmission 
is assumed to be encapsulated within the 
transmission subsystem. 
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Like the powerplant, the transmission is also 
connected to the powertrain mounts.  This is an 
important aspect that differentiates this architecture 
from most vehicle level models because it accounts 
for the influence of reaction torques in the 
powerplant, transmission and driveline on the 
motion of the powertrain.  This is particularly 
important for the transmission because it can be the 
source of large amplitude, low frequency 
disturbances not effectively isolated by the 
mounting system [11]. 

As with all the physical subsystems, the 
transmission subsystem is connected to the electrical 
subsystem.  In addition, the transmission is also 
connected to the driver.  The driver connection 
represents the shifting mechanism for either a 
manual or automatic transmission depending on the 
configuration options chosen for the vehicle (these 
will be discussed later in Section 3.3). 

2.1.5 Driveline 
The driveline subsystem is responsible for 

modeling the distribution of transmission output 
torque to each of the wheels.  For many vehicles, 
this distribution is determined by simple mechanical 
connections (e.g. differentials in strictly front-wheel 
or rear-wheel drive vehicles).  In other cases, this 
distribution is actively controlled (e.g. on-demand 
four wheel drive systems). 

Physically, the driveline is connected to the 
output side of the transmission and generally has the 
potential to influence each of the wheels.  In order to 
avoid a complex series of graphical connections, all 
wheels are lumped into a single connector which is 
also physically connected to both the brake and 
chassis subsystems.  Note that the driveline 
subsystem is also connected to the mounting system 
and the electrical system. 

2.1.6 Brakes 
The brake subsystem represents not only the 

friction used to decelerate the vehicle but also, as 
with the transmission, any encapsulated hydraulic 
function.  The brake subsystem is physically 
connected to each wheel (via the single connector 
described in Section 2.1.5), the electrical subsystem 
and the brake pedal (associated with the driver).  As 
with the powerplant, the connection to the driver 
could represent either direct actuator control by the 
driver or a "brake by wire" configuration where the 
brake pedal position sensor would be contained in 
the brake subsystem with pedal position information 
communicated to the brake subsystem controller 
and/or vehicle controller. 

2.1.7 Chassis 
The chassis subsystem represents the vehicle 

body, frame, wheels and suspension system.  One 
remaining issue with the decomposition described in 
[5] is the handling of the steering mechanism. It is 
still an open issue what the physical interface 
between the steering mechanism and the suspension 
system should be.  For now, we have kept the 
steering components inside the chassis while we 
collect feedback from experts on the best way to 
separate these two systems. 

While for many applications the chassis may be 
modeled as a simple unsprung mass constrained to 
move longitudinally, the goal of this architecture is 
to provide sufficient flexibility to accommodate 
complex vehicle dynamics models ([1, 9]).  The 
chassis subsystem is physically connected to the 
wheels and also to the powerplant, transmission and 
driveline through the mounts.  The modeling of the 
mounts is handled inside the chassis system.  
Furthermore, the actual physical type of the 
mounting connections is configurable (e.g. 1D, 3D, 
etc).  The modeling of the road-tire interface is also 
handled inside the chassis subsystem. 

Physically, the chassis system is also connected 
to the electrical system and the steering wheel.  As 
with the brake and powerplant models, the 
connection to the driver may represent a "by wire" 
connection. 

2.2 Controllers 

While analysis performed during the subsystem 
design process can sometimes be accomplished 
using simple open-loop control strategies for a 
single subsystem, it is much more important that 
vehicle level models include closed-loop control to 
capture communication between each subsystem 
plant and controller pair as well as physical 
interactions across the various physical subsystems. 

The subsystem controllers are decomposed 
along similar lines as their physical counterparts.  
Rather than categorize the controllers by subsystem, 
we will focus on the controller hierarchy and how 
the controllers communicate both with each other 
and with the physical subsystems. 

2.2.1 Vehicle System Controller 
This vehicle architecture includes a hierarchy of 

controllers.  At the top of this hierarchy is the 
vehicle system controller.  The vehicle system 
controller exists to control vehicle level functions 
and deal with arbitration and apportioning of 
subsystem functions (e.g. balancing how much 
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motive torque is delivered from the internal 
combustion engine versus how much is delivered by 
electric motors in a hybrid electric vehicle). 

In order to function, a vehicle system controller 
(if present, not all vehicles implement one) must 
communicate with each of the subsystem controllers 
on the vehicle.  In an actual vehicle, this kind of 
communication would be done through a vehicle 
level communication bus (e.g. a Controller Area 
Network, or CAN, bus).  Although the behavior of 
the bus itself can have a significant impact on 
overall vehicle performance, modeling of the bus is 
not currently within the scope of this architecture. 

2.2.2 Subsystem Controllers 
As shown in Figure 1, associated with each 

physical subsystem is a controller for that 
subsystem.  These controllers are responsible for 
controlling the function of their particular 
subsystem.  For example, for a vehicle with an 
internal combustion engine, the powerplant 
subsystem controller would be responsible for 
determining spark timing, injector timing and other 
specialized functions like cam phasing control. 

Each subsystem controller must communicate 
with its associated physical subsystem to exchange 
sensor and actuator information.  In addition, each 
subsystem may receive supervisory commands from 
a vehicle system controller.  Finally, the architecture 
should accommodate any combination of 
continuous controllers (e.g. formulated using block 
diagrams) and/or discrete controllers (e.g. 
employing Petri-nets, z-domain blocks or embedded 
code). 

2.2.3 Communication Buses 
As mentioned previously, bus behavior can have 

a significant impact on vehicle performance.  
Although we would like to capture these effects, we 
feel it is important to focus initially on the 
interactions between the physical subsystems and 
controllers. 

Even if we ignore the behavior of the 
communication bus, we still need to represent the 
information exchanged on the bus.  This is 
complicated by the fact that each subsystem design 
can potentially have a wide variety of signals that 
must be communicated between the subsystem 
controller and its physical counterpart.  For 
example, one powerplant may contain an internal 
combustion engine that has cam phasing while 
another one does not (while a third may have an 
electric motor as a powerplant and therefore an 
entirely different set of sensor and actuator signals).  

For each case, the subsystem controller must have 
the appropriate architecture to deal with the varying 
sets of sensors and actuators in each case.  As a 
result, the set of signals exchanged between the 
controller and its physical counterpart must be 
customizable on a per configuration basis. 

In a similar way, the information exchanged 
between the vehicle system controller and each of 
the subsystem controllers will also depend on 
whether a vehicle system controller is present and, if 
so, what features are implemented at the system 
level. 

2.3 External Influences 

Apart from the physical subsystems and 
controllers, a vehicle system model must account for 
two important external influences.  The first 
influence is the driver.  While the driver is not 
strictly part of the vehicle, the driver obviously has a 
tremendous influence over the response of the 
vehicle.  The other external influence is the 
environment.  The environment could potentially 
influence things like air temperature and 
composition (used in predicting engine 
performance), road surface effects (e.g. changes in 
elevation, traction characteristics), obstacles or other 
vehicles (potentially necessary in evaluating 
intelligent cruise control and other active safety 
features). 

In some sense, the driver is both a physical 
subsystem and a controller.  Both of these functions 
are lumped into a single driver model.  The 
environment is assumed to be purely autonomous 
typically based purely on time and vehicle position. 

3 Modelica Features 

3.1 Acausal Modeling 

The rich set of physical modeling and 
configuration management features associated with 
the Modelica modeling language [10] provide great 
potential for vehicle system analysis [11]. 

Vehicle systems are typically modeled from 
either a "forward" [12] or "backward" [13] 
perspective.  This limits the reusability of 
component models because they must be developed 
with these perspectives in mind.  From a purely 
physical perspective, the ability to build components 
and subsystems without a priori causality 
assumptions allows these components and 
subsystems to be used in both "backward" and 
"forward" vehicle modeling applications.  Beyond 
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the reusability of components that results from this 
acausal approach, the use of inheritance, subtype 
constraints and the ability to declare replaceable 
components and subsystems is often useful in 
practice for large scale modeling projects.  In this 
section, we will discuss how these features allow us 
to satisfy important requirements for our vehicle 
model architecture. 

3.2 Replaceable Subsystems and 
Controllers 

The cornerstone of configuration 
management in Modelica is the ability to declare 
types and components as replaceable.  In fact, 
all the physical subsystems, controllers and external 
influence components shown in Figure 1 are 
declared replaceable so that alternative 
configurations can be easily created.  Furthermore, 
constraining types are also defined for each of these 
components to prevent inappropriate substitutions 
from being made. 

One problem with making each component 
replaceable is that it leaves open the possibility 
that novice users will attempt to pair plant and 
controller models together that are not compatible 
with each other (e.g. the controller expects an 
automatic transmission but the actual transmission 
plant is a manual transmission).  So, in addition to 
making each component in Figure 1 
replaceable, the set of models associated with 
each subsystem (i.e. the plant, local controller bus 
signals, local controller and global bus signals) are 
grouped together (using replaceable packages) so 
that entire subsystem configurations can be changed 
in a single operation.  This allows users to select 
from pre-packaged, consistent and compatible 
collections of these models that can be changed in a 
single operation. 

Ultimately, vehicle level models will extend 
from the template shown in Figure 1 and then use 
redeclarations (as class modifications) to create each 
specific vehicle configuration.  Furthermore, 
alternative vehicle configurations can then extend 
from each other ad infinitum to create many 
different variations on a baseline design.  This 
approach allows users to easily control 
configuration options while at the same time 
maximizing reuse.  In turn, this minimizes 
redundant code and/or configuration options across 
different configurations which greatly eases 
maintenance of the models. 

3.3 Subsystem Configuration Options 

As mentioned in Section 2.2.3, the set of signals 
communicated on each bus depends on the specific 
set of features implemented in each subsystem.  To 
address this issue, our architecture contains a set of 
replaceable packages that are used to propagate 
specific definitions for connectors and/or records 
that are configuration specific. 

For example, the powerplant configuration 
package includes a definition for the connector used 
to communicate information between the physical 
powerplant and the powerplant subsystem 
controller.  That definition, in turn, can be 
customized (using replaceable type definitions) to 
specify what kind of information is required for 
each control feature.  In this way, the fact that a 
particular powerplant has, for example, a dual 
independent cam phasing feature can be stated as a 
configuration option which then automatically adds 
the necessary signals to the connectors used on both 
the physical powerplant and the powerplant 
controller.  In other words, for any given vehicle 
model there is a single top-level configuration 
option for each subsystem that ensures consistent 
bus definitions throughout the vehicle model. 

This is essentially the same idiom, utilizing 
replaceable packages, that is sometimes used to 
model different media in fluid modeling 
applications [14]. 

3.4 Common Environment 

The ambient environment in this architecture 
contains information that is potentially relevant to 
every subsystem.  Since the environment is a model 
(potentially with its own equations and states), it 
isn't possible to propagate the environment 
component through the vehicle hierarchy.  Instead, 
an inner qualifier is used to make the information 
available to other components in the hierarchy. 

3.5 Documentation 

The ability to embed documentation about a 
package, subsystem, connector, etc. into its 
definition has already been utilized in this package 
to provide model developers with a useful online 
reference for the various interface definitions as well 
as HTML versions of the same information which 
can be posted, for example, on a corporate intranet 
site for reference. 
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4 Sample Application 

To demonstrate how this architecture can be 
used to build a specific vehicle, we started from the 
base vehicle configuration shown in Figure 1 and 
added specific engine, transmission, driveline, 
brakes and chassis models.  Along with these 
physical subsystem models, controllers for the 
engine and transmission were included to handle 
spark timing and gear shifting.  The accessory and 
electrical subsystems were neglected in our 
example.  The purpose of the model is to evaluate 
performance characteristics such as 0-60 MPH times 
and 0-400 meter times. 

 

 
(a) 

 
(b) 

Figure 2: (a) Powerplant Interface; (b) Sample Engine 

4.1 Engine 

The engine model used in this example 
includes simple "filling and emptying" dynamics for 
the engine manifold and uses a table to lookup 

engine torque as a function of spark timing, air fuel 
ratio and recirculated exhaust gas.  Figure 2a shows 
the basic interface definition for a powerplant.  
Figure 2b shows our sample model which extends 
from the interface definitions so it can inherit all the 
physical and control system connectors required for 
compatibility with the overall architecture.  Since, 
for this example, we are only interested in simple 
1D rotational dynamics of the powertrain, the 
powertrain mount connection has been redeclared as 
a 1D rotational flange.  Once this is done, the 
subsystem model is populated with component 
models which are connected to each other and to the 
interface connectors.  Note that this particular 
subsystem translates driver accelerator pedal 
position directly into a throttle angle, reads the 
engine control parameters (i.e. spark, intended air-
fuel ratio and command exhaust gas recirculation) 
from the subsystem control bus and writes the 
engine speed back onto the subsystem control bus. 

 

 
(a) 

 
(b) 

Figure 3: (a) Transmission Interface; (b) Sample 
Transmission 
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4.2 Transmission 

The transmission model represents a six 
speed automatic transmission.  The basic 
transmission interface is shown in Figure 3a.  By 
extending from the interface, redeclaring connectors 
and adding components we eventually end up with a 
complete transmission model as shown in Figure 3b 
which includes the torque converter, bypass clutch 
and gearbox.  The gearbox is further composed of  a 
series of planetary gear sets, inertias and clutches 
(not shown).  Note that in this model we assume that 
the gear selection information is propagated back to 
the transmission subsystem controller which, based 
on this information, command the engaging and 
disengaging of specific clutches inside the gearbox. 

4.3 Remaining Subsystems 

The remaining subsystems do not contain 
much detail.  Rather than presenting the interface 
and implementation for each subsystem, we will just 
summarize the behavior represented in each: 
• Accessories – No accessory loads are 

considered in this analysis. 
• Electrical – The electrical system provides a 

constant 12V to the other components (although 
none of these simple models draw any current). 

• Brakes – The brakes are modeled as simple 
friction elements (from the Modelica standard 
library). 

• Driveline – The driveline provides power to the 
front axle of the vehicle through a final drive 
gearset and a simple differential element 

• Chassis – The chassis response is purely 
longitudinal.  The tire behavior uses the Pacejka 
characterization [7] and the vehicle mass is 
represented by a single lumped mass.  No 
weight distribution effects are included. 

4.4 Control 

The only control functions required for this 
analysis are spark control (to maximize mean engine 
torque), shift scheduling and clutch control (i.e. 
engaging and disengaging clutches depending on the 
currently requested gear).  In addition, the chassis 
subsystem provides vehicle speed to its local 
subsystem controller that transmits the information 
to the transmission subsystem controller via the 
vehicle level communication bus. 

4.5 Results 

The models used to demonstrate the 
capabilities of this vehicle model architecture are 
part of the training materials used within Ford to 
familiarize engineers and model developers with 
Dymola and Modelica.  As such, it is important to 
point out that the subsystem specifications and 
system simulation results do not represent or reflect 
the performance of any particular Ford vehicles.  In 
fact, the controller calibrations are intentionally 
made sub-optimal to allow students to further refine 
them. 

The training exercise that these models were 
taken from focuses on vehicle acceleration 
performance.  Figure 4 shows the vehicle 
acceleration plotted as a function of time.  From this 
plot we can clearly see the "torque holes" that occur 
while the transmission is shifting.  In addition, the 
upper limit on acceleration seen at the start of the 
simulation represents the limited longitudinal 
traction provided by the tires before they start to 
slip. 
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Figure 4: Vehicle Acceleration vs. Time 
 
It is also interesting to examine the engine speed 

during the simulation as shown in Figure 5.  
Studying the RPM signal we can clearly see an 
"engine flare" at about 5 seconds into the 
simulation.  Such flares occur when the shifting of 
the clutches in the transmission is not well 
controlled.  As a result of poor control, the overall 
torque capacity of the transmission is less than the 
torque generated by the engine and the engine 
accelerates rapidly until the clutches engage. 

In addition to examining the physical signals 
within the system (e.g. torques, speeds, etc), it is 
also interesting to examine the communication 
between the controllers.  Figure 6 shows the clutch 
and band engagement requests sent from the 
transmission controller to the physical transmission.  
These are actuator commands instructing the 
hydraulic controllers within the transmission to 
engage specific clutches and/or bands. 
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Figure 5: Engine Speed 
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Figure 6: Clutch/Band Engagement 
 
Similarly, in Figure 7 we can see the internal 

decision making process of the transmission 
subsystem controller by plotting its selection of gear 
during the simulation.  This information is what 
ultimately dictates the detailed clutch/band 
engagements show in Figure 6. 
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Figure 7: Gear Selection 
 

Finally, many insights can be gained by plotting 
some of the simulation variables with respect to 
each other.  For example, if an engineer knows at 
approximately what speed the peak in the engine 
power curve appears, he might plot the commanded 
gear selection as a function of engine speed, as 
shown in Figure 8 for this example, to make sure 
that the shift strategy appropriately straddles that 
peak. 
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Figure 8: Gear Selection vs. Engine RPM 

This section demonstrates just a few of the 
possible results that a vehicle level analysis can 
uncover.  Having a standardized set of interfaces not 
only makes the exchange of models easier, it also 
assures, to some degree, that signals will have 
common names (at least those associated with the 
provided interfaces). 

5 Usability Considerations 

Some of the more advanced Modelica language 
features used in this architecture (e.g. replaceable 
packages, choice annotations, subtype definitions 
for classes, etc) are not necessarily accessible or 
intuitive for end users.  In this section, we describe 
some ideas for representing the complex structure of 
the vehicle so that end users can easily configure 
and reconfigure vehicle models. 

5.1 Handling User Choices 

5.1.1 Link Choices to Component Icons 
First, it should be possible to select a component 

in a vehicle model and browse a set of compatible 
alternative components.  In other words, the set of 
alternatives should be easily accessible from the 
graphical icon associated with that component 
rather than requiring users to find components in, 
for example, the component browser (which 
requires knowledge of what classes the components 
were inherited from). 
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5.1.2 Consistent Handling of Choices 
For complex "template" models (i.e. models that 

are designed so that end users can merely "fill in the 
blanks"), it is important that users be presented with 
a complete view of the model including all 
redeclarations/customizations they have made.  
Redeclarations can affect many different "visual" 
aspects of the model including its inheritance, its 
component hierarchy, the parameter dialogs, 
graphical appearance, results structure, associated 
scripts, etc.  It is important for tools to make sure 
that all of these possibilities are always consistent 
with the choices made by the end user when 
customizing the models. 

When interface definitions are influenced by 
top-level choices (e.g. the physical powerplant 
interface is altered by the choices made in the top 
level powerplant configuration package), this should 
influence the set of possibilities generated with the 
choicesAllMatching annotation in the 
models.  For example, if the top-level configuration 
specifies a powerplant with dual independent cam 
phasing, the set of choices generated when 
redeclaring the powerplant should only include 
powerplant models that can satisfy that interface. 

5.1.3 Carryover and Memory of Choices 
While exploring alternatives, graphical tools 

should perpetuate user modifications for identical 
parameters and/or choices when possible and, when 
not possible, remember those modifications in case 
the same options reappear.  For example, if a user 
configures a model to use one particular 5 speed 
transmission model and then switches to a different 
5 speed transmission model, it should be possible to 
carryover any common parameters (e.g. gear ratios) 
or choices  (e.g. torque converter model) between 
the two alternatives.  In addition, if they explore the 
idea of a continuously variable transmission (CVT), 
the tool should remember the gear ratio settings if 
they decide to revert back to a 5 speed transmission. 

5.2 Visualization 

5.2.1 Decision Tree Visualization 
With a template model as complicated as the 

one shown in Figure 1, the options and possibilities 
open to the end user can be quite disorienting.  For 
these kinds of models, it would be very useful to 
have a compact representation of the tree of possible 
choices open to the user.  Such a tree would need to 
be hierarchical and each decision that is made 
should be reflected in the tree (i.e. the tree should 
respond dynamically to user choices).  Ideally, such 

a tree should show, in a single comprehensive view, 
choices that influence topological changes (e.g. 
what transmission model is used) as well as 
parameters. 

5.2.2 Visualizing Configurations 
Another issue with template models is the 

proliferation of variations.  It should be possible to 
visualize in a coherent way the modifications 
associated with a "tree" of configurations (in this 
case, a tree based on the inheritance hierarchy as 
opposed to the tree discussed in Section 5.2.1 which 
is based on the compositional hierarchy). 

6 Limitations 

While Modelica provides some powerful 
features to support the architecture described in this 
paper, there are still some areas where the existing 
features are still not sufficient.  In this section, we 
will discuss some of the limitations we encountered 
and some ideas for overcoming those limitations. 

As described in Section 3.3, we have chosen to 
propagate configuration information from the top 
down.  In other words, decisions about connector 
definitions are made at the top level and then 
propagated to subsystems.  This is awkward because 
it is often unnatural for this information to either 
appear or originate at the vehicle level.  For 
example, information about signals exchanged 
between the powerplant and the powerplant 
controller is really determined by the set of sensors 
and actuators present on the powerplant itself but we 
were not able to find a way of expressing this in 
Modelica. 

Along similar lines, the set of signals 
communicated on the vehicle control bus should be 
the union of all signals broadcast from each 
subsystem controller.  From a user perspective, it 
would be best to simply choose the controller and 
physical subsystem and have the information about 
broadcast messages "propagate up" automatically to 
the vehicle level controller bus. 

In the current design, the subsystem bus 
connector on the physical subsystems is always 
declared inner.  This is done to allow the use of 
the SignalBus idiom [8] which allows sensors 
and actuators to reference only the specific signals 
they require (as opposed to all signals 
communicated in that subsystem).  Unfortunately, 
the relationship between the bus connector and these 
sensors and actuators is not explicit because it relies 
on using inner and outer qualifiers.  A better 
solution would be to allow direct connections.  
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Unfortunately, the current Modelica specification 
requires each connector to contain exactly the same 
signals.  By relaxing this requirement and, for 
example, allowing one connector to be a subtype of 
the other, such connections would be possible and, 
as a result, clearer. 

One of the biggest problems in developing such 
a framework is how to represent the fundamental 
engineering assumptions present.  For example, the 
powertrain mounts might be represented as either 
1D or 3D connections.  Likewise, the electrical 
system may support multiple voltage levels.  Several 
subsystem models can be impacted by these choices 
and there is no easy way of understanding what 
assumptions are made for particular models and 
how that affects the assembly and compatibility at 
the vehicle level.  Rather than relying on complex 
nested replaceable type definitions and interfaces, 
the entire process might be more coherently 
represented with features (e.g. layers) that provide 
configuration based on a fixed set of possibilities. 

7 Future Work 

It is important to reiterate that the structure 
defined in this document is merely a proposal and 
that further discussion is required.  Once a 
consensus is reached on the appropriate subsystem 
decomposition and interface definitions, there are 
several potential directions for this work.  For 
example, it might be useful to extend the depth of 
the current hierarchy to define architectures for each 
of the various subsystems.  For example, powerplant 
templates could be developed for internal 
combustion engines (e.g. I-4 or V-6 cylinder 
configurations) and transmission templates could be 
developed that decompose automatic transmissions 
into individual models for a torque converter, 
bypass clutch and gearbox (with interface 
definitions for each).  Finally, other top-level 
architectures could be developed that reuse the 
subsystem interface definitions. These architectures 
may choose to use a subset of the subsystems shown 
in Figure 1 (e.g. an engine connected to a 
dynamometer) or they may choose to add additional 
subsystems for more exotic vehicle configurations 
(for towing applications, fuel cell vehicles, etc). 

8 Acknowledgments 

The architecture presented in this paper is 
heavily based on a Ford Motor Company internal 
initiative, by Mark Jennings, Judy Che, Bradley 
Hieb, Tim Mortimer, Ken Butts, Chris Belton, Pete 

Burchill, Peter Bennet, David Copp and Nick 
Darnton, to develop a vehicle model architecture for 
Simulink [5].  This work leverages a great deal from 
the system decomposition and thorough analysis 
that was done as part of that work.  As a result, the 
authors would like to recognize the significant 
influence and impact that work had on the material 
in this paper. 

The authors would also like to thank John 
Batteh, Chuck Newman, Erik Surewaard, Graham 
King, Johan Andreasson, Christian Schweiger, 
Martin Otter, Jonas Hellgren, Jonas Karlsson, Jonas 
Fredriksson, Bengt Jacobson and Lars Eriksson for 
their work in developing automotive component and 
subsystem models which we hope will, at some 
point, be compatible and freely exchangeable 
through this architecture. 

9 References 

1. J. Andreasson, A. Möller and M. Otter, 
"Modeling of a Racing Car with Modelica's 
Multi-Body Library", Modelica Workshop 2000 
Proceedings, 
http://www.modelica.org/workshop2000/procee
dings/Andreasson.pdf 

2. M. Otter, M. Dempsey and C. Schlegel, 
"Package PowerTrain.  A Modelica library for 
modeling and simulation of vehicle power 
trains", Modelica Workshop 2000 Proceedings, 
p. 23-32, 
http://www.modelica.org/workshop2000/procee
dings/Otter.pdf 

3. P. Treffinger and M. Goedecke, "Development 
of Fuel Cell Powered Drive Trains With 
Modelica", Proceedings of the 2nd Modelica 
Conference, p.125-131, 
http://www.modelica.org/Conference2002/paper
s/p16_Treffinger.pdf 

4. J. Hellgren, "Modelling of Hybrid Electric 
Vehicles in Modelica for Virtual Prototyping", 
Proceedings of the 2nd Modelica Conference, p. 
247-256, 
http://www.modelica.org/Conference2002/paper
s/p32_Hellgren.pdf 

5. C. Belton, P. Bennet, P. Burchill, D. Copp, N. 
Darnton, K. Butts, J. Che, B. Hieb, M. Jennings 
and T. Mortimer, "A Vehicle Model 
Architecture for Vehicle System Control 
Design", SAE Congress 2003, SAE-2003-01-
0092. 

6. "Dymola 5.0 User's Manual", Dynasim AB, p. 
206. 

 Michael Tiller, Paul Bowles, Mike Dempsey                    Development of a Vehicle Modeling Architecture in Modelica 

 

 The Modelica Association                                                                                         Modelica 2003, November 3-4, 2003



7. H. B. Pacejka and E. Bakker, "The magic 
formula tyre model.", Proceedings of the 1st 
Tyre Colloquium, Delft, October 1991. 

8. M. Tiller, W. E. Tobler and M. Kuang, 
"Evaluating Engine Contributions to HEV 
Driveline Vibrations", Proceedings of the 2nd 
Modelica Conference, p. 19-24, 
http://www.modelica.org/Conference2002/paper
s/p03_Tiller.pdf 

9. S. Drogies and M. Bauer, "Modeling Road 
Vehicle Dynamics with Modelica", Modelica 
Workshop 2000 Proceedings, p. 161-168, 
http://www.modelica.org/workshop2000/procee
dings/Drogies.pdf 

10. "Modelica Language Specification, Version 
2.0", Modelica Association, 2002, 

11. M. Tiller, "Introduction to Physical Modeling 
with Modelica", Kluwer Academic Publishers, 
2001. 

12. K. Wipke, M. Cuddy and S. Burch, "Advisor 
2.1: A User-Friendly Advanced Powertrain 
Simulation Using a Combined 
Backward/Forward Approach", IEEE 
Transactions on Vehicular Technology: Special 
Issue on Hybrid Electric Vehicles, 1999, 
http://www.ctts.nrel.gov/analysis/pdfs/advisor_2
1.pdf 

13. A. Rousseua, S. Pagerit, G. Monney and A. 
Feng, "The New PNGV System Analysis 
Toolkit V4.1- Evolution and Improvement", 
SAE 2001 Future Transportation Technology 
Conference, SAE 2001-01-2536. 

14. C. Newman, J. Batteh and M. Tiller, "Spark-
Ignited-Engine Cycle Simulation in Modelica", 
Proceedings of the 2nd Modelica Conference, p. 
133-142, 
http://www.modelica.org/Conference2002/paper
s/p17_Newman.pdf 

 

 Michael Tiller, Paul Bowles, Mike Dempsey                    Development of a Vehicle Modeling Architecture in Modelica 

 

 The Modelica Association                                                                                         Modelica 2003, November 3-4, 2003



 

 The Modelica Association                                                                                          Modelica 2003, November 3-4, 2003

 

 




