

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Michael Tiller, Paul Bowles, Mike Dempsey
Ford Motor Company, USA; Claytex, UK:
Development of a Vehicle Modeling Architecture in Modelica
pp. 75-86

Development of a Vehicle Model Architecture in
Modelica

Michael Tiller† Paul Bowles† Mike Dempsey‡

†Ford Motor Company, Powertrain Research Department
‡Claytex Services Limited

ABSTRACT

The real power and flexibility that comes from
using Modelica for physical modeling stems from
the combination of the acausal approach to
formulating physical connections combined with
sets of standard connector definitions in various
engineering domains. These features are important
because they help avoid a priori causality
assumptions (which promotes reuse of components)
and ensure physical compatibility across
connections. However, complex systems are
generally made up of several complex, multi-
domain subsystems with numerous connectors.
Such systems also benefit from having standardized
subsystem interface definitions. This paper will
focus on an initial proposal for a vehicle model
architecture for vehicle system applications.
Ultimately, we hope that feedback on this proposal
from other groups doing vehicle modeling will lead
to a consensus on the appropriate subsystem
interfaces such that we can achieve the same level of
flexibility and reusability for vehicle subsystem
models that we currently have with component level
models.

1 Motivation

Vehicle system modeling is an important part of
optimizing overall vehicle performance. To avoid
building up complete vehicle models from scratch
repeatedly, it is useful to develop a pre-wired
vehicle model architecture. We had two goals in
mind when formulating such a vehicle model
architecture. First, it should allow the exchange of
subsystem models between different organizations
(e.g. part/subsystem vendors, design organizations,
universities) without the need to "rework" the
models to fit into existing vehicle system models.
Second, it should greatly simplify the handling of
alternative vehicle system configurations by
allowing substitution of one particular subsystem or
strategy implementation for another.

Ideally, we hope that this architecture will
develop to the point that other groups, outside of
Ford, will adopt it. Given the growing number of
automotive related libraries in Modelica [1-4], both
freely available and commercial, such a vehicle
model architecture will be a practical necessity to
allow subsystem models from these libraries to be
easily assembled into complete vehicle models.

Previous efforts at Ford have focused on
providing a vehicle model architecture for models
developed in Simulink [5]. While not disputing the
value of a corporate standard for vehicle subsystem
models, groups working with Modelica were not
willing to give up the acausal flexibility in Modelica
for an approach that required a priori causality
assumptions. Furthermore, most existing vehicle
level modeling applications using Modelica at Ford
involved details (e.g. modeling the motion of the
powertrain mounts) that were was not possible with
the Simulink framework.

As a result of internal discussions, it was agreed
that an acceptable compromise would be to develop
a purely Modelica architecture using essentially the
same subsystem decomposition, as was done in
Simulink, but avoiding a priori causality
assumptions. In cases where Modelica models
would be useful to someone working in Simulink,
we hope to develop a set of standard "wrappers" for
each subsystem that will allow us to impose the
required causality on an otherwise acausal
subsystem model and then convert these into an S-
function using Dymola [6].

2 Architecture Structure

A complete vehicle system model must take into
account the response of the various physical
subsystems, the function of the controller modules
(both subsystem and vehicle level) as well as other
"external" influences like the environment and the
driver. The following sections will discuss the
decomposition in each of these categories.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

2.1 Physical Subsystems

The first category we will be discussing
includes all the physical subsystems in the vehicle.
This section will provide some discussion for each
physical subsystem and some explanation of what is
contained within each subsystem. The order of the
subsystems corresponds, roughly, to the order that
they appear (from left to right) in Figure 1.

Note that each physical subsystem is connected
to a subsystem controller. We will defer the
discussion of this connection until Section 2.2.3 and
instead focus, for now, on the physical connections
associated with each subsystem.

Figure 1: Vehicle Model Architecture

2.1.1 Accessories
The accessory subsystem is composed of those

components typically connected to the front end
accessory drive (FEAD) of an engine. Examples of
such components would include an alternator or AC
compressor. As shown in Figure 1, the accessories
are connected to the front side of the powerplant.
As a result, any torque required by these
components will be taken from the powerplant. The
accessories are also connected to the electrical
subsystem and they typically represent a significant
influence on the charging and discharging of the
electrical system.

2.1.2 Electrical
The electrical subsystem is composed of the

various purely electrical components in the vehicle.
Typical examples would include the battery, radio
and/or headlights. In addition to being the location

for all purely electrical components, the electrical
system is also the source of electrical power for
every other physical subsystem in the vehicle and,
as such, is subject to "external" influences that may
charge or deplete the battery (e.g. alternator,
regenerative braking).

2.1.3 Powerplant
The powerplant subsystem represents the

primary source of motive torque for the vehicle.
Typically, this would be an internal combustion
engine although it could also be, for example, an
electric motor. Like the battery, the powerplant
model provides power to the rest of the vehicle. As
such, there are physical connections from the
powerplant to the accessories and the transmission.

The powerplant is also connected to the
electrical subsystem. Although the electrical
influence of an internal combustion engine is
normally quite small (e.g. spark plug energy, etc), if
the powerplant were an electric motor, the
connection to the electrical system would become
quite important. In the case of hybrid electric
vehicles, additional electrical components, such as
electric motors, may be included in the powerplant
or they may be lumped into the transmission
(depending on the powertrain topology).

The physical connection between the driver and
the powerplant includes a signal representing the
physical position of the accelerator pedal.
Typically, this signal is translated directly into a
throttle position. However, in "drive by wire"
applications, it is assumed that the pedal position
sensor would be associated with the powerplant
subsystem and that sensor information would be
relayed to the powerplant subsystem controller
and/or vehicle controller where, for example, the
commanded throttle position (or motive torque, in
the case of an electric vehicle) would be calculated
and returned as an actuator command.

Finally, Figure 1 shows that the powerplant has
a third mechanical connection. This connection is
to the powertrain mounts and accounts for reaction
torque to the powertrain mount system.

2.1.4 Transmission
The transmission subsystem represents any

"gearing" done to deliver power from the
powerplant to the wheels. One side of the
transmission is connected to the powerplant while
the other side is connected to the driveline. Any
hydraulic function associated with the transmission
is assumed to be encapsulated within the
transmission subsystem.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

Like the powerplant, the transmission is also
connected to the powertrain mounts. This is an
important aspect that differentiates this architecture
from most vehicle level models because it accounts
for the influence of reaction torques in the
powerplant, transmission and driveline on the
motion of the powertrain. This is particularly
important for the transmission because it can be the
source of large amplitude, low frequency
disturbances not effectively isolated by the
mounting system [11].

As with all the physical subsystems, the
transmission subsystem is connected to the electrical
subsystem. In addition, the transmission is also
connected to the driver. The driver connection
represents the shifting mechanism for either a
manual or automatic transmission depending on the
configuration options chosen for the vehicle (these
will be discussed later in Section 3.3).

2.1.5 Driveline
The driveline subsystem is responsible for

modeling the distribution of transmission output
torque to each of the wheels. For many vehicles,
this distribution is determined by simple mechanical
connections (e.g. differentials in strictly front-wheel
or rear-wheel drive vehicles). In other cases, this
distribution is actively controlled (e.g. on-demand
four wheel drive systems).

Physically, the driveline is connected to the
output side of the transmission and generally has the
potential to influence each of the wheels. In order to
avoid a complex series of graphical connections, all
wheels are lumped into a single connector which is
also physically connected to both the brake and
chassis subsystems. Note that the driveline
subsystem is also connected to the mounting system
and the electrical system.

2.1.6 Brakes
The brake subsystem represents not only the

friction used to decelerate the vehicle but also, as
with the transmission, any encapsulated hydraulic
function. The brake subsystem is physically
connected to each wheel (via the single connector
described in Section 2.1.5), the electrical subsystem
and the brake pedal (associated with the driver). As
with the powerplant, the connection to the driver
could represent either direct actuator control by the
driver or a "brake by wire" configuration where the
brake pedal position sensor would be contained in
the brake subsystem with pedal position information
communicated to the brake subsystem controller
and/or vehicle controller.

2.1.7 Chassis
The chassis subsystem represents the vehicle

body, frame, wheels and suspension system. One
remaining issue with the decomposition described in
[5] is the handling of the steering mechanism. It is
still an open issue what the physical interface
between the steering mechanism and the suspension
system should be. For now, we have kept the
steering components inside the chassis while we
collect feedback from experts on the best way to
separate these two systems.

While for many applications the chassis may be
modeled as a simple unsprung mass constrained to
move longitudinally, the goal of this architecture is
to provide sufficient flexibility to accommodate
complex vehicle dynamics models ([1, 9]). The
chassis subsystem is physically connected to the
wheels and also to the powerplant, transmission and
driveline through the mounts. The modeling of the
mounts is handled inside the chassis system.
Furthermore, the actual physical type of the
mounting connections is configurable (e.g. 1D, 3D,
etc). The modeling of the road-tire interface is also
handled inside the chassis subsystem.

Physically, the chassis system is also connected
to the electrical system and the steering wheel. As
with the brake and powerplant models, the
connection to the driver may represent a "by wire"
connection.

2.2 Controllers

While analysis performed during the subsystem
design process can sometimes be accomplished
using simple open-loop control strategies for a
single subsystem, it is much more important that
vehicle level models include closed-loop control to
capture communication between each subsystem
plant and controller pair as well as physical
interactions across the various physical subsystems.

The subsystem controllers are decomposed
along similar lines as their physical counterparts.
Rather than categorize the controllers by subsystem,
we will focus on the controller hierarchy and how
the controllers communicate both with each other
and with the physical subsystems.

2.2.1 Vehicle System Controller
This vehicle architecture includes a hierarchy of

controllers. At the top of this hierarchy is the
vehicle system controller. The vehicle system
controller exists to control vehicle level functions
and deal with arbitration and apportioning of
subsystem functions (e.g. balancing how much

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

motive torque is delivered from the internal
combustion engine versus how much is delivered by
electric motors in a hybrid electric vehicle).

In order to function, a vehicle system controller
(if present, not all vehicles implement one) must
communicate with each of the subsystem controllers
on the vehicle. In an actual vehicle, this kind of
communication would be done through a vehicle
level communication bus (e.g. a Controller Area
Network, or CAN, bus). Although the behavior of
the bus itself can have a significant impact on
overall vehicle performance, modeling of the bus is
not currently within the scope of this architecture.

2.2.2 Subsystem Controllers
As shown in Figure 1, associated with each

physical subsystem is a controller for that
subsystem. These controllers are responsible for
controlling the function of their particular
subsystem. For example, for a vehicle with an
internal combustion engine, the powerplant
subsystem controller would be responsible for
determining spark timing, injector timing and other
specialized functions like cam phasing control.

Each subsystem controller must communicate
with its associated physical subsystem to exchange
sensor and actuator information. In addition, each
subsystem may receive supervisory commands from
a vehicle system controller. Finally, the architecture
should accommodate any combination of
continuous controllers (e.g. formulated using block
diagrams) and/or discrete controllers (e.g.
employing Petri-nets, z-domain blocks or embedded
code).

2.2.3 Communication Buses
As mentioned previously, bus behavior can have

a significant impact on vehicle performance.
Although we would like to capture these effects, we
feel it is important to focus initially on the
interactions between the physical subsystems and
controllers.

Even if we ignore the behavior of the
communication bus, we still need to represent the
information exchanged on the bus. This is
complicated by the fact that each subsystem design
can potentially have a wide variety of signals that
must be communicated between the subsystem
controller and its physical counterpart. For
example, one powerplant may contain an internal
combustion engine that has cam phasing while
another one does not (while a third may have an
electric motor as a powerplant and therefore an
entirely different set of sensor and actuator signals).

For each case, the subsystem controller must have
the appropriate architecture to deal with the varying
sets of sensors and actuators in each case. As a
result, the set of signals exchanged between the
controller and its physical counterpart must be
customizable on a per configuration basis.

In a similar way, the information exchanged
between the vehicle system controller and each of
the subsystem controllers will also depend on
whether a vehicle system controller is present and, if
so, what features are implemented at the system
level.

2.3 External Influences

Apart from the physical subsystems and
controllers, a vehicle system model must account for
two important external influences. The first
influence is the driver. While the driver is not
strictly part of the vehicle, the driver obviously has a
tremendous influence over the response of the
vehicle. The other external influence is the
environment. The environment could potentially
influence things like air temperature and
composition (used in predicting engine
performance), road surface effects (e.g. changes in
elevation, traction characteristics), obstacles or other
vehicles (potentially necessary in evaluating
intelligent cruise control and other active safety
features).

In some sense, the driver is both a physical
subsystem and a controller. Both of these functions
are lumped into a single driver model. The
environment is assumed to be purely autonomous
typically based purely on time and vehicle position.

3 Modelica Features

3.1 Acausal Modeling

The rich set of physical modeling and
configuration management features associated with
the Modelica modeling language [10] provide great
potential for vehicle system analysis [11].

Vehicle systems are typically modeled from
either a "forward" [12] or "backward" [13]
perspective. This limits the reusability of
component models because they must be developed
with these perspectives in mind. From a purely
physical perspective, the ability to build components
and subsystems without a priori causality
assumptions allows these components and
subsystems to be used in both "backward" and
"forward" vehicle modeling applications. Beyond

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

the reusability of components that results from this
acausal approach, the use of inheritance, subtype
constraints and the ability to declare replaceable
components and subsystems is often useful in
practice for large scale modeling projects. In this
section, we will discuss how these features allow us
to satisfy important requirements for our vehicle
model architecture.

3.2 Replaceable Subsystems and
Controllers

The cornerstone of configuration
management in Modelica is the ability to declare
types and components as replaceable. In fact,
all the physical subsystems, controllers and external
influence components shown in Figure 1 are
declared replaceable so that alternative
configurations can be easily created. Furthermore,
constraining types are also defined for each of these
components to prevent inappropriate substitutions
from being made.

One problem with making each component
replaceable is that it leaves open the possibility
that novice users will attempt to pair plant and
controller models together that are not compatible
with each other (e.g. the controller expects an
automatic transmission but the actual transmission
plant is a manual transmission). So, in addition to
making each component in Figure 1
replaceable, the set of models associated with
each subsystem (i.e. the plant, local controller bus
signals, local controller and global bus signals) are
grouped together (using replaceable packages) so
that entire subsystem configurations can be changed
in a single operation. This allows users to select
from pre-packaged, consistent and compatible
collections of these models that can be changed in a
single operation.

Ultimately, vehicle level models will extend
from the template shown in Figure 1 and then use
redeclarations (as class modifications) to create each
specific vehicle configuration. Furthermore,
alternative vehicle configurations can then extend
from each other ad infinitum to create many
different variations on a baseline design. This
approach allows users to easily control
configuration options while at the same time
maximizing reuse. In turn, this minimizes
redundant code and/or configuration options across
different configurations which greatly eases
maintenance of the models.

3.3 Subsystem Configuration Options

As mentioned in Section 2.2.3, the set of signals
communicated on each bus depends on the specific
set of features implemented in each subsystem. To
address this issue, our architecture contains a set of
replaceable packages that are used to propagate
specific definitions for connectors and/or records
that are configuration specific.

For example, the powerplant configuration
package includes a definition for the connector used
to communicate information between the physical
powerplant and the powerplant subsystem
controller. That definition, in turn, can be
customized (using replaceable type definitions) to
specify what kind of information is required for
each control feature. In this way, the fact that a
particular powerplant has, for example, a dual
independent cam phasing feature can be stated as a
configuration option which then automatically adds
the necessary signals to the connectors used on both
the physical powerplant and the powerplant
controller. In other words, for any given vehicle
model there is a single top-level configuration
option for each subsystem that ensures consistent
bus definitions throughout the vehicle model.

This is essentially the same idiom, utilizing
replaceable packages, that is sometimes used to
model different media in fluid modeling
applications [14].

3.4 Common Environment

The ambient environment in this architecture
contains information that is potentially relevant to
every subsystem. Since the environment is a model
(potentially with its own equations and states), it
isn't possible to propagate the environment
component through the vehicle hierarchy. Instead,
an inner qualifier is used to make the information
available to other components in the hierarchy.

3.5 Documentation

The ability to embed documentation about a
package, subsystem, connector, etc. into its
definition has already been utilized in this package
to provide model developers with a useful online
reference for the various interface definitions as well
as HTML versions of the same information which
can be posted, for example, on a corporate intranet
site for reference.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

4 Sample Application

To demonstrate how this architecture can be
used to build a specific vehicle, we started from the
base vehicle configuration shown in Figure 1 and
added specific engine, transmission, driveline,
brakes and chassis models. Along with these
physical subsystem models, controllers for the
engine and transmission were included to handle
spark timing and gear shifting. The accessory and
electrical subsystems were neglected in our
example. The purpose of the model is to evaluate
performance characteristics such as 0-60 MPH times
and 0-400 meter times.

(a)

(b)

Figure 2: (a) Powerplant Interface; (b) Sample Engine

4.1 Engine

The engine model used in this example
includes simple "filling and emptying" dynamics for
the engine manifold and uses a table to lookup

engine torque as a function of spark timing, air fuel
ratio and recirculated exhaust gas. Figure 2a shows
the basic interface definition for a powerplant.
Figure 2b shows our sample model which extends
from the interface definitions so it can inherit all the
physical and control system connectors required for
compatibility with the overall architecture. Since,
for this example, we are only interested in simple
1D rotational dynamics of the powertrain, the
powertrain mount connection has been redeclared as
a 1D rotational flange. Once this is done, the
subsystem model is populated with component
models which are connected to each other and to the
interface connectors. Note that this particular
subsystem translates driver accelerator pedal
position directly into a throttle angle, reads the
engine control parameters (i.e. spark, intended air-
fuel ratio and command exhaust gas recirculation)
from the subsystem control bus and writes the
engine speed back onto the subsystem control bus.

(a)

(b)

Figure 3: (a) Transmission Interface; (b) Sample
Transmission

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

4.2 Transmission

The transmission model represents a six
speed automatic transmission. The basic
transmission interface is shown in Figure 3a. By
extending from the interface, redeclaring connectors
and adding components we eventually end up with a
complete transmission model as shown in Figure 3b
which includes the torque converter, bypass clutch
and gearbox. The gearbox is further composed of a
series of planetary gear sets, inertias and clutches
(not shown). Note that in this model we assume that
the gear selection information is propagated back to
the transmission subsystem controller which, based
on this information, command the engaging and
disengaging of specific clutches inside the gearbox.

4.3 Remaining Subsystems

The remaining subsystems do not contain
much detail. Rather than presenting the interface
and implementation for each subsystem, we will just
summarize the behavior represented in each:
• Accessories – No accessory loads are

considered in this analysis.
• Electrical – The electrical system provides a

constant 12V to the other components (although
none of these simple models draw any current).

• Brakes – The brakes are modeled as simple
friction elements (from the Modelica standard
library).

• Driveline – The driveline provides power to the
front axle of the vehicle through a final drive
gearset and a simple differential element

• Chassis – The chassis response is purely
longitudinal. The tire behavior uses the Pacejka
characterization [7] and the vehicle mass is
represented by a single lumped mass. No
weight distribution effects are included.

4.4 Control

The only control functions required for this
analysis are spark control (to maximize mean engine
torque), shift scheduling and clutch control (i.e.
engaging and disengaging clutches depending on the
currently requested gear). In addition, the chassis
subsystem provides vehicle speed to its local
subsystem controller that transmits the information
to the transmission subsystem controller via the
vehicle level communication bus.

4.5 Results

The models used to demonstrate the
capabilities of this vehicle model architecture are
part of the training materials used within Ford to
familiarize engineers and model developers with
Dymola and Modelica. As such, it is important to
point out that the subsystem specifications and
system simulation results do not represent or reflect
the performance of any particular Ford vehicles. In
fact, the controller calibrations are intentionally
made sub-optimal to allow students to further refine
them.

The training exercise that these models were
taken from focuses on vehicle acceleration
performance. Figure 4 shows the vehicle
acceleration plotted as a function of time. From this
plot we can clearly see the "torque holes" that occur
while the transmission is shifting. In addition, the
upper limit on acceleration seen at the start of the
simulation represents the limited longitudinal
traction provided by the tires before they start to
slip.

Time [sec]

A
cc

el
er

at
io

n
[m

/s
^2

]

0 2.5 5 7.5 10 -2
0
2
4
6
8

10 chassis.chassis.der(v)

Figure 4: Vehicle Acceleration vs. Time

It is also interesting to examine the engine speed

during the simulation as shown in Figure 5.
Studying the RPM signal we can clearly see an
"engine flare" at about 5 seconds into the
simulation. Such flares occur when the shifting of
the clutches in the transmission is not well
controlled. As a result of poor control, the overall
torque capacity of the transmission is less than the
torque generated by the engine and the engine
accelerates rapidly until the clutches engage.

In addition to examining the physical signals
within the system (e.g. torques, speeds, etc), it is
also interesting to examine the communication
between the controllers. Figure 6 shows the clutch
and band engagement requests sent from the
transmission controller to the physical transmission.
These are actuator commands instructing the
hydraulic controllers within the transmission to
engage specific clutches and/or bands.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

Time [sec]

E
ng

in
e

[R
PM

]

0 2.5 5 7.5 10 1400

1600

1800
2000

2200

2400 powerplant.eng_RPM.inPort.signal[1]

Figure 5: Engine Speed

Time [sec]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[1]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[2]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[3]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_band[1]

Figure 6: Clutch/Band Engagement

Similarly, in Figure 7 we can see the internal

decision making process of the transmission
subsystem controller by plotting its selection of gear
during the simulation. This information is what
ultimately dictates the detailed clutch/band
engagements show in Figure 6.

0 2.5 5 7.5 10
0

2

4

6 ...mission_control.shift_schedule.gear.signal[
1]

Time [sec]

Figure 7: Gear Selection

Finally, many insights can be gained by plotting
some of the simulation variables with respect to
each other. For example, if an engineer knows at
approximately what speed the peak in the engine
power curve appears, he might plot the commanded
gear selection as a function of engine speed, as
shown in Figure 8 for this example, to make sure
that the shift strategy appropriately straddles that
peak.

1400 1600 1800 2000 2200
0

1

2

3

4

5

6
...l[1](pow erplant.eng_RPM.inPort.s ignal[1])

Figure 8: Gear Selection vs. Engine RPM

This section demonstrates just a few of the
possible results that a vehicle level analysis can
uncover. Having a standardized set of interfaces not
only makes the exchange of models easier, it also
assures, to some degree, that signals will have
common names (at least those associated with the
provided interfaces).

5 Usability Considerations

Some of the more advanced Modelica language
features used in this architecture (e.g. replaceable
packages, choice annotations, subtype definitions
for classes, etc) are not necessarily accessible or
intuitive for end users. In this section, we describe
some ideas for representing the complex structure of
the vehicle so that end users can easily configure
and reconfigure vehicle models.

5.1 Handling User Choices

5.1.1 Link Choices to Component Icons
First, it should be possible to select a component

in a vehicle model and browse a set of compatible
alternative components. In other words, the set of
alternatives should be easily accessible from the
graphical icon associated with that component
rather than requiring users to find components in,
for example, the component browser (which
requires knowledge of what classes the components
were inherited from).

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

5.1.2 Consistent Handling of Choices
For complex "template" models (i.e. models that

are designed so that end users can merely "fill in the
blanks"), it is important that users be presented with
a complete view of the model including all
redeclarations/customizations they have made.
Redeclarations can affect many different "visual"
aspects of the model including its inheritance, its
component hierarchy, the parameter dialogs,
graphical appearance, results structure, associated
scripts, etc. It is important for tools to make sure
that all of these possibilities are always consistent
with the choices made by the end user when
customizing the models.

When interface definitions are influenced by
top-level choices (e.g. the physical powerplant
interface is altered by the choices made in the top
level powerplant configuration package), this should
influence the set of possibilities generated with the
choicesAllMatching annotation in the
models. For example, if the top-level configuration
specifies a powerplant with dual independent cam
phasing, the set of choices generated when
redeclaring the powerplant should only include
powerplant models that can satisfy that interface.

5.1.3 Carryover and Memory of Choices
While exploring alternatives, graphical tools

should perpetuate user modifications for identical
parameters and/or choices when possible and, when
not possible, remember those modifications in case
the same options reappear. For example, if a user
configures a model to use one particular 5 speed
transmission model and then switches to a different
5 speed transmission model, it should be possible to
carryover any common parameters (e.g. gear ratios)
or choices (e.g. torque converter model) between
the two alternatives. In addition, if they explore the
idea of a continuously variable transmission (CVT),
the tool should remember the gear ratio settings if
they decide to revert back to a 5 speed transmission.

5.2 Visualization

5.2.1 Decision Tree Visualization
With a template model as complicated as the

one shown in Figure 1, the options and possibilities
open to the end user can be quite disorienting. For
these kinds of models, it would be very useful to
have a compact representation of the tree of possible
choices open to the user. Such a tree would need to
be hierarchical and each decision that is made
should be reflected in the tree (i.e. the tree should
respond dynamically to user choices). Ideally, such

a tree should show, in a single comprehensive view,
choices that influence topological changes (e.g.
what transmission model is used) as well as
parameters.

5.2.2 Visualizing Configurations
Another issue with template models is the

proliferation of variations. It should be possible to
visualize in a coherent way the modifications
associated with a "tree" of configurations (in this
case, a tree based on the inheritance hierarchy as
opposed to the tree discussed in Section 5.2.1 which
is based on the compositional hierarchy).

6 Limitations

While Modelica provides some powerful
features to support the architecture described in this
paper, there are still some areas where the existing
features are still not sufficient. In this section, we
will discuss some of the limitations we encountered
and some ideas for overcoming those limitations.

As described in Section 3.3, we have chosen to
propagate configuration information from the top
down. In other words, decisions about connector
definitions are made at the top level and then
propagated to subsystems. This is awkward because
it is often unnatural for this information to either
appear or originate at the vehicle level. For
example, information about signals exchanged
between the powerplant and the powerplant
controller is really determined by the set of sensors
and actuators present on the powerplant itself but we
were not able to find a way of expressing this in
Modelica.

Along similar lines, the set of signals
communicated on the vehicle control bus should be
the union of all signals broadcast from each
subsystem controller. From a user perspective, it
would be best to simply choose the controller and
physical subsystem and have the information about
broadcast messages "propagate up" automatically to
the vehicle level controller bus.

In the current design, the subsystem bus
connector on the physical subsystems is always
declared inner. This is done to allow the use of
the SignalBus idiom [8] which allows sensors
and actuators to reference only the specific signals
they require (as opposed to all signals
communicated in that subsystem). Unfortunately,
the relationship between the bus connector and these
sensors and actuators is not explicit because it relies
on using inner and outer qualifiers. A better
solution would be to allow direct connections.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

Unfortunately, the current Modelica specification
requires each connector to contain exactly the same
signals. By relaxing this requirement and, for
example, allowing one connector to be a subtype of
the other, such connections would be possible and,
as a result, clearer.

One of the biggest problems in developing such
a framework is how to represent the fundamental
engineering assumptions present. For example, the
powertrain mounts might be represented as either
1D or 3D connections. Likewise, the electrical
system may support multiple voltage levels. Several
subsystem models can be impacted by these choices
and there is no easy way of understanding what
assumptions are made for particular models and
how that affects the assembly and compatibility at
the vehicle level. Rather than relying on complex
nested replaceable type definitions and interfaces,
the entire process might be more coherently
represented with features (e.g. layers) that provide
configuration based on a fixed set of possibilities.

7 Future Work

It is important to reiterate that the structure
defined in this document is merely a proposal and
that further discussion is required. Once a
consensus is reached on the appropriate subsystem
decomposition and interface definitions, there are
several potential directions for this work. For
example, it might be useful to extend the depth of
the current hierarchy to define architectures for each
of the various subsystems. For example, powerplant
templates could be developed for internal
combustion engines (e.g. I-4 or V-6 cylinder
configurations) and transmission templates could be
developed that decompose automatic transmissions
into individual models for a torque converter,
bypass clutch and gearbox (with interface
definitions for each). Finally, other top-level
architectures could be developed that reuse the
subsystem interface definitions. These architectures
may choose to use a subset of the subsystems shown
in Figure 1 (e.g. an engine connected to a
dynamometer) or they may choose to add additional
subsystems for more exotic vehicle configurations
(for towing applications, fuel cell vehicles, etc).

8 Acknowledgments

The architecture presented in this paper is
heavily based on a Ford Motor Company internal
initiative, by Mark Jennings, Judy Che, Bradley
Hieb, Tim Mortimer, Ken Butts, Chris Belton, Pete

Burchill, Peter Bennet, David Copp and Nick
Darnton, to develop a vehicle model architecture for
Simulink [5]. This work leverages a great deal from
the system decomposition and thorough analysis
that was done as part of that work. As a result, the
authors would like to recognize the significant
influence and impact that work had on the material
in this paper.

The authors would also like to thank John
Batteh, Chuck Newman, Erik Surewaard, Graham
King, Johan Andreasson, Christian Schweiger,
Martin Otter, Jonas Hellgren, Jonas Karlsson, Jonas
Fredriksson, Bengt Jacobson and Lars Eriksson for
their work in developing automotive component and
subsystem models which we hope will, at some
point, be compatible and freely exchangeable
through this architecture.

9 References

1. J. Andreasson, A. Möller and M. Otter,
"Modeling of a Racing Car with Modelica's
Multi-Body Library", Modelica Workshop 2000
Proceedings,
http://www.modelica.org/workshop2000/procee
dings/Andreasson.pdf

2. M. Otter, M. Dempsey and C. Schlegel,
"Package PowerTrain. A Modelica library for
modeling and simulation of vehicle power
trains", Modelica Workshop 2000 Proceedings,
p. 23-32,
http://www.modelica.org/workshop2000/procee
dings/Otter.pdf

3. P. Treffinger and M. Goedecke, "Development
of Fuel Cell Powered Drive Trains With
Modelica", Proceedings of the 2nd Modelica
Conference, p.125-131,
http://www.modelica.org/Conference2002/paper
s/p16_Treffinger.pdf

4. J. Hellgren, "Modelling of Hybrid Electric
Vehicles in Modelica for Virtual Prototyping",
Proceedings of the 2nd Modelica Conference, p.
247-256,
http://www.modelica.org/Conference2002/paper
s/p32_Hellgren.pdf

5. C. Belton, P. Bennet, P. Burchill, D. Copp, N.
Darnton, K. Butts, J. Che, B. Hieb, M. Jennings
and T. Mortimer, "A Vehicle Model
Architecture for Vehicle System Control
Design", SAE Congress 2003, SAE-2003-01-
0092.

6. "Dymola 5.0 User's Manual", Dynasim AB, p.
206.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

7. H. B. Pacejka and E. Bakker, "The magic
formula tyre model.", Proceedings of the 1st
Tyre Colloquium, Delft, October 1991.

8. M. Tiller, W. E. Tobler and M. Kuang,
"Evaluating Engine Contributions to HEV
Driveline Vibrations", Proceedings of the 2nd
Modelica Conference, p. 19-24,
http://www.modelica.org/Conference2002/paper
s/p03_Tiller.pdf

9. S. Drogies and M. Bauer, "Modeling Road
Vehicle Dynamics with Modelica", Modelica
Workshop 2000 Proceedings, p. 161-168,
http://www.modelica.org/workshop2000/procee
dings/Drogies.pdf

10. "Modelica Language Specification, Version
2.0", Modelica Association, 2002,

11. M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publishers,
2001.

12. K. Wipke, M. Cuddy and S. Burch, "Advisor
2.1: A User-Friendly Advanced Powertrain
Simulation Using a Combined
Backward/Forward Approach", IEEE
Transactions on Vehicular Technology: Special
Issue on Hybrid Electric Vehicles, 1999,
http://www.ctts.nrel.gov/analysis/pdfs/advisor_2
1.pdf

13. A. Rousseua, S. Pagerit, G. Monney and A.
Feng, "The New PNGV System Analysis
Toolkit V4.1- Evolution and Improvement",
SAE 2001 Future Transportation Technology
Conference, SAE 2001-01-2536.

14. C. Newman, J. Batteh and M. Tiller, "Spark-
Ignited-Engine Cycle Simulation in Modelica",
Proceedings of the 2nd Modelica Conference, p.
133-142,
http://www.modelica.org/Conference2002/paper
s/p17_Newman.pdf

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003

 The Modelica Association Modelica 2003, November 3-4, 2003

