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Abstract

This paper describes a program which extends Math-
Modelica so that model parameters can be estimated
using measured data. Given initial values of the
parameters, the parameter estimates are iteratively
changed so that the sum of squared errors of the dif-
ference between the model output and the data is mini-
mized. In each iteration an extended differential equa-
tion has to be simulated. The developed program im-
ports the Modelica model into Mathematica and de-
rives a symbolic expression for this extended differen-
tial equation. The extended model i converted to Mod-
elica format and MathModelica is used to simulate it
efficiently.

1 Introduction

A mathematical model of a plant can be based on well-
known physical laws. These physical laws often con-
tains parameters which numerical values might not be
exactly known. There might be, for example, spring
constants, masses, resistances and other basic parame-
ters. The program described here has been developed
to estimate such parameters using measured signals
from the system.
Estimating models of dynamic systems is called sys-
tem identification. It is a well established engineering
research field. Introductory books are, for examples,
[5, 3], and more advanced ones [4, 6]. These books,
and available software tools, deal with either linear
models or discrete time models. For many real world
problems there is a need of nonlinear continuous-time
models.
There are many reasons to estimate parameters in
models built on physical principles. Some examples

�Financial support from Volvo Aero Corporation AB is grate-
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follows.

� Some parameters are maybe only approximately
known.

� The change of the parameters in the estimation
can be used as a way to validate the original
model.

� The system might need to be re-tuned after age
and wear.

� An online version of the program could be used
for monitoring and failure detection of plants in
continuous use.

The current program builds on MathModelica. The
rational for this is that when the user has obtained a
model for simulation, no extra effort is needed to es-
timate its parameters. This is in opposite to most ex-
isting identification tools of today where you have to
transform the model into their special format. It is also
a question of flexibility, thanks to the great generality
of Modelica you can specify almost any type of model.
This can either by done by using the Modelica syntax
in a Mathematica notebook or by using the graphical
user interface, Figure 1, where you build a model by
combining sub models from different libraries.
The following example illustrates the idea of the pro-
gram.
Example: Consider the electric circuit in Figure 2. It
is easy to build this model with the model editor. The
only non-standard part is the resistor which is nonlin-
ear and described by

uR � R1i�R2i
5

where uR is the voltage, i the current, and R1 and R2

are parameters. There are also parameters describing
the inductance, L and the capacitor, C.
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Figure 1: MathModelica model building editor.

v�t�

C

R1, R2

L

Figure 2: A nonlinear circuit with unknown parame-
ters C, L, and R1 and R2. Voltage over the resistor is
described by R1i�R2i5

Data was obtained by simulating the model with “true”
parameter values and with a step voltage of 10 Volt at
t � 0. The obtained current is displayed in Figure 3.
The sampled data values used in the parameter estima-
tion are indicated with dots. The model was initialized

2 4 6 8 10 12 14
t

0.5

1

1.5

Inductor1i�t�

Figure 3: Current through the inductor of the circuit in
Figure (2). The marked values are data samples used
to estimate the parameters.

with parameter values different from the ones used to
obtain the data, as indicated in Table 1. From the ini-
tialization the parameters where iteratively improved
using the developed program. In Figure 4 the simu-
lated current is shown after each iteration. As seen in
the figure, the simulated values coincide with the data
after some 6-7 iterations.

Parameter True value Initial estimates
R1 0.5 2
R2 1 2
C 0.5 2
L 1 2

Table 1: True parameters used to obtain the data and
initial parameter values used in the optimization.

�

The rest of the paper is organized in the following way.
Section 2 gives the mathematical description of the
considered system identification problem. How this
theory is solved by the program is described in Sec-
tion 3. Another example is given in Section 4 which is
followed by a discussion on possibilities and problems
with the current approach in Section 5. The paper is
then concluded in Section 6.
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Figure 4: Simulated current after consecutive parame-
ter estimate updates.

2 The equations describing the calcu-
lations

Assume that we are interested of a specific system and
consider a model of it, described by a differential equa-
tion, DAE or ODE

f �ẋ�t��x�t��u�t�� � � 0 (1)

ŷ�t� � � h�x�t�� � (2)

where x�t� are the states of the model, u�t� is the input
signal, y�t� is the output signal. The differential equa-
tion is then specified by the functions f and h which
also depend on the parameters which are stored in a
parameter vector .
Assume further that a data set of N samples has been
collected from the system, �y�t��u�t��Nt�1. The goal
is then to tune so that the simulated output ŷ�t� re-
sembles y�t� when the model is simulated with the in-
put �u�t��Nt�1. This is obtained by introducing a crite-
rion of fit. It can be almost any arbitrary differential
function, but to keep things easy we choose the mean
squared error

VN� � �
1
N

N

t�1

�y�t�� ŷ�t� ��2 (3)

Then the estimate is defined as

ˆ � arg minVN� � (4)

It is generally not possible to find a closed form ex-
pression for ˆ . Instead, starting with an initial param-
eter guess ˆ�0� the estimate is iteratively computed by

a gradient based algorithm

ˆ�i�1� � ˆ �i��µR�1 dVN� �

d

����
�ˆ �i�

(5)

where R is a positive definite matrix approximating
the Hessian, and µ is a step length to assure descent
steps. Different standard minimization algorithms, for
example Gauss-Newton, Levenberg-Marquardt and
steepest-descent, are covered by (5) and they differ on
the choice of R. See, eg, [1, 2].
A key part in the iterative minimization (5) is the com-
putation of the derivative of the criterion. It becomes

dVN� �

d
��

2
N

N

t�1

�y�t�� ŷ�t� ��
dŷ�t� �

d
(6)

This leads us to the derivative of the model output

dŷ�t� �

d
�

h�x�t�� �
�

h�x�t�� �

x�t�
dx�t�
d

(7)

which cannot be obtained without the signal

x̃�t� �
dx�t�
d

(8)

To obtain this signal we have to take the derivative of
the original state space equation in (1). This gives us

f �ẋ�t��x�t��u�t�� �

ẋ�t�
dẋ�t�
d

�

f �ẋ�t��x�t��u�t�� �

x�t�
dx�t�
d

�
f �ẋ�t��x�t��u�t�� �

�

f �ẋ�t��x�t��u�t�� �

ẋ�t�
˙̃x�t��

f �ẋ�t��x�t��u�t�� �

x�t�
x̃�t��

f �ẋ�t��x�t��u�t�� �
� 0 (9)

which is a new differential equation. Since it contains
x�t� it is coupled with the original differential equation
(1) describing the model.
By introducing

z�t� �

�
x�t�
x̃�t�

�
(10)

the two coupled differential equations (1) and (9) can
be described as

F�ż�t��z�t��u�t�� � � 0 (11)

where the definition of F follows from (1) and (9).
Hence, to perform the iterative minimization (5) the
differential equation (11) has to be simulated in each
iteration using the current value of .
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3 The program

The different parts of the Mathematica program can
now be described in more detail:

1. Given a Modelica model, describing (1), with ini-
tial parameter values and data from the true sys-
tem.

2. A subset of the parameters are selected for esti-
mation.

3. The extended differential equation (11) is sym-
bolically computed from the original model (1)
and transformed into Modelica standard.

4. The extended differential equation (11) is simu-
lated with the current parameter values.

5. The selected parameters are updated (5).

6. Until convergence, go to 4.

The main part of the program is the derivation of the
extended model. The other steps consists of interface
issues or well-known algorithms which have to be in-
cluded into the program.

4 Example

A first example was given already in the introduction.
Here follows a second one where we have a different
type of nonlinear resistor. The system is described in
Figure 5. The input to the system is the voltage at
the voltage source and the output is the current. The

v�t�

C

R, d

L

Figure 5: Nonlinear circuit with a parameterized dead
zone.

resistor is described by an unknown resistance, R, and
a dead zone, d, see Figure 6.
Estimation data was obtained by selecting a set of
“true” parameters, given in Table 2 and simulating the
model with a step input of 5 Volt. Figure 7 depicts the

v
R

id

Figure 6: Description of the dead zone parameteriza-
tion.

voltage over the resistor and one can clearly see the
cut-off due to the dead zone.

10 20 30 40

-0.5

0.5

1

1.5

Figure 7: Simulation of the true system, the voltage
over the resistor versus time.

The model was initialized with parameter values as in-
dicated in Table 2. The simulation of the initial model
together with the estimation data are depicted in Fig-
ure 8.

Parameter True value Initial value Final value
R 0.5 0.7 0.503
d 0.4 0.35 0.402
C 0.8 1.1 0.805
L 1 1.1 0.993

Table 2: Parameter values for the circuit with a dead
zone in the resistance.

The result of the tuning is illustrated in Figure 9 where
the simulated current is depicted after each iteration
together with the estimation data. Table 2 gives the
final parameter values. From the figure it is clear that
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Figure 8: Simulation of the model with the initial pa-
rameters together with estimation data.
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Figure 9: Simulated current after consecutive parame-
ter estimate updates.

the parameters converge within some 10 iterations.

5 Discussion

Although the program is far from ready the following
functionality is supported, or can easily be supported
by making smaller changes.

� Data can be sampled at irregular sampling in-
stances. Different signals can be sampled indi-
vidually.

� Systems described by DAE can be handled in the
same (automatic) way as ODE systems. The ex-
ample in the introduction was actually a DAE ex-
ample.

� Discontinuous (but piecewise smooth) differen-
tial equations can be handled, at least a formal
result can be obtained.

� Multiple input multiple output systems are han-
dled.

� Criterion of fit can be changed.

There are also potential problems.

� The gradient search can only guarantee conver-
gence to a local minimum. Hence, a good ini-
tial parameter guess is necessary to obtain con-
vergence to the global minimum.

� The order of the extended differential equation is
often high, it becomes the number of parameters
times the number of states in the original differ-
ential equation. This gives a high computational
burden which might limit the applicability of the
program.

� Stability problems may occur. Depending on the
parameter values the differential equations might
be stable or unstable. In the general case, where
the model is nonlinear, it is not possible to moni-
tor stability.

6 Conclusions

A Mathematica program has been developed which
extends MathModelica so that parameters can be es-
timated using measured data. The program builds on
the following principles.
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� An existing modeling tool, the MathModelica
graphical user interface, is used to describe the
model.

� Mathematica is used to create the to the model
specific extended differential equation which
needs to be simulated in the estimation process.

� Existing, efficient numerical differential equation
solver is used to simulate the extended differen-
tial equation.

So far only preliminary studies have been carried out.
More experience is needed and the program has to be
developed further before it becomes as easy to use, as
it is supposed to be.
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