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Abstract

The open source software movement has received
enormous attention in recent years. It is often
characterized as a fundamentally new way to develop
software. This paper describes an effort to develop an
open source Modelica environment to a large extent
based on a formal specification of Modelica,
coordinated by PELAB, Department of Computer and
Information Science, Linkdping University, Sweden.
The current version of the system provides an efficient
interactive computational environment for most of the
expression, algorithm, and function parts of the
Modelica language as well as an almost complete static
semantics for Modelica 2.0.

The longer-term goal is to provide reasonable
simulation execution support, at least for less complex
models, also for the equation part of Modelica which is
the real essence of the language. People are invited to
contribute to this open source project, e.g. to provide
implementations of numerical algorithms as Modelica
functions, add-on tools to the environment, or
contributions to compiler itself. The source code of the
tool components of the open source Modelica
environment is available under the Gnu Public License,
GPL. The library components are available under the
same conditions as the standard Modelica library. The
system currently runs under Microsoft Windows, Linux,
and Sun Sparc Solaris. A benchmark example of
running a simplex algorithm shows that the performance
of the current system is close to the performance of
handwritten C code for the same algorithm.

1 Introduction and Project
Goals

The open source Modelica effort described in this paper

has both short-term and long-term goals:

e The short-term goal is to develop an efficient
interactive computational environment for most of
the expression, algorithm, and function parts of the
Modelica language, as well as a complete formal

static semantic specification of the language. It
turns out that with support of appropriate tools and
libraries, Modelica is very well suited as a
computational language for development and
execution of both low level and high level
numerical algorithms, e.g. for control system
design, solving nonlinear equation systems, or to
develop optimization algorithms that are applied to
complex applications.

e The long-term goal is to have a rather complete
implementation of the Modelica language,
including simulation of equation based models and
additional  facilities in the  programming
environment, as well as convenient facilities for
research and experimentation in language design or
other research activities. However, our goal is not
to reach the level of performance and quality
provided by current commercial Modelica
environments that can handle large models
requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the
open source implementation of a Modelica environment
include but are not limited to the following:

o Development of a complete formal specification of
Modelica, including both static and dynamic
semantics. Such a specification can be used to assist
current and future Modelica implementers by
providing a semantic reference, as a kind of
reference implementation.

e Language design, e.g. to further extend the scope of
the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as
modeling problems that require partial differential
equations.

o Language design to improve abstract properties
such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

e [mproved implementation techniques, e.g. to
enhance the performance of compiled Modelica
code by generating code for parallel hardware.
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e [mproved debugging support for equation based
languages such as Modelica, to make them even
easier to use.

e Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

e Visualization and animation techniques for
interpretation and presentation of results.

The complete formal specification for Modelica is
developed in Natural Semantics, which is currently the
most popular and widely used semantics specification
formalism. This specification is used as input for
automatic  generation of Modelica  translator
implementations being part of the open source Modelica
environment, using the RML compiler generation tool
developed at PELAB. The availability of a formal
specification facilitates language design research on
new language constructs to widen the scope of the
language, as well as improving its abstract properties.

The open source Modelica environment thus
provides a test bench for language design ideas that, if
successful, can be submitted to the Modelica
Association for consideration regarding possible
inclusion in the official Modelica standard.

The current version of the open source Modelica
environment allows most of the expression, algorithm,
and function parts of Modelica to be executed
interactively, and Modelica functions to be compiled
into efficient C code. The generated C code is combined
with a library of utility functions and a run-time library.
An external function library interfacing a LAPACK
subset and other basic algorithms is also under
development.

2 The Open Source Modelica
Environment

The interactive open source Modelica environment

currently consists of the following components:

e An interactive session handler, that parses and
interprets commands and Modelica expressions for
evaluation. The session handler also contains
simple history facilities, and completion of file
names and certain identifiers in commands. It is
based on the ReadLine library which is available in
most Linux and Unix distributions.

o A Modelica compiler, translating Modelica to C
code, with a symbol table containing definitions of
classes, functions, and variables. Such definitions
can be predefined, user-defined, or obtained from
libraries.

e An execution and run-time module. This module
currently executes compiled binary code from
translated expressions and functions. In the future it
will also support simulation of equation based
models, requiring numerical solvers as well as
event handling facilities for the discrete and hybrid
parts of the Modelica language.

o A textual model editor. Any text editor can be used.
We have so far primarily employed Gnu Emacs,

which has the advantage of being programmable for
future extensions. A Gnu Emacs mode for Modelica
and a Modelica syntax highlighting for the
UltraEdit text editor has previously been developed.
There is also a special Modelica editor that
recognizes the syntax to some extent, and marks
keywords and comments using different colors
[Modelica]. Both the Emacs mode and the special
editor hides Modelica graphical annotations during
editing, which otherwise clutters the code and
makes it hard to read.

e A graphical model editor. This is a graphical
connection editor, for component based model
design by connecting instances of Modelica classes.
This part of the system is not yet implemented. A
Java based prototype is however under
development.

Toxtual Interactive \ S .
extua session . raphic 1
Model Editor (& | ! Model Editor !

SN, |

Modelica
Compiler

4

Execution

Figure 1. The architecture of the open source Modelica
environment. Arrows denote data and control flow. The
interactive session handler receives commands and
shows results from evaluating expressions that are
translated and executed. The graphic model editor is not
yet implemented.

2.1 Interactive Session with
Examples

The following is an interactive session with the open
source  Modelica environment including some
commands and examples. First we start the system,
which responds with a header line:

Open Source Modelica 0.1

We enter an assignment of a vector expression, created
by the range construction expression 1:12, to be stored
in the variable x. The type and the value of the
expression is returned.

>> x = 1:12
Integer(12]: {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12}

The function bubblesort is called to sort this vector
in descending order. The sorted result is returned
together with its type. Note that the result vector is of
type Real [:], instantiated as Real [12], since this is
the declared type of the function result. The input
Integer vector was automatically converted to a
Real vector according to the Modelica type coercion
rules.

>> bubblesort (x)
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Real[1l2]:
3, 2, 1}

{12, 11, 10, 9, 8, 7, 6, 5,

4,

Now we want to try another small application, a simplex
algorithm for optimization. First read in a small matrix
containing coefficients that define a simplex problem to
be solved:

>> a := read("simplex in.txt")

Real[6, 9]:

{{-1,-1,-1, o0, 0, 0, O, O, O},
{-1, 1, 0, 1, 0, 0, 0, 0O, 5},
{1, 4, 0, 0, 1, 0, 0, O, 45},
{2, 1, 0, 0, 0, 1, 0, O, 27},
{ 31_41 OI O/ OI OI 1/ OI 24}/
{0, 0, 1, 0, 0, O, O, 1, 4}}

Then call the simplex algorithm implemented as the
Modelica function simplex1. This function returns
four results, which are represented as a tuple of four
return values:

>> simplexl(a)

Tuple: 4
Real([8]: {9, 9, 4, 5, 0, 0, 33, 0}
Real: 22

Integer: 9
Integer: 3

It is possible to compute an expression, e.g. 12:-1:1,
and store the result in a file using the write command:

>> write(12:-1:1,"test.dat")

We can read back the stored result from the file into a
variable y:

Another built-in command is cd, the change current
directory command. The resulting current directory is
returned as a string.

>> cd("..")
String: "/home/petfr/modelica"

3 The Modelica Translation

Process

The Modelica translation process is depicted in Figure 2
below. The Modelica source code is first translated to a
so-called flat model. This phase includes type checking,
performing all object-oriented operations such as
inheritance, modifications etc., and fixing package
inclusion and lookup as well as import statements. The
flat model includes a set of equations declarations and
functions, with all object-oriented structure removed
apart from dot notation within names. This process is a
partial instantiation of the model, called elaboration in
subsequent sections.

The next two phases, the equation analyzer and
equation optimizer, are necessary for compiling models
containing equations. These phases are currently
missing, but will be supplied in some future version of
the open source Modelica system. Finally, C code is
generated which is fed through a C compiler to produce
executable code. In the current preliminary version of
the system this code cannot be any equation based
simulation code, only code for computing expressions,
algorithms, and functions.

>> vy := read("test.dat") Sohlﬁl?geeléc:de
Integer(1l2]: {12, 11, 10, 9, 8, 7, 6,
5, 4, 3, 2, 1} {} E— Modelica model
It is also possible to give operating system commands Translator
via the system utility function. A command is
provided as a string argument. The example below i} T Flat Model
shows system applied to the UNIX command cat, Analyzer < Currently missing
which here outputs the contents of the file
bubblesort .mo to the output stream. i} S— Sorted equations
>> system("cat bubblesort.mo") Optimizer
function bubblesort Optimized sorted
input Real[:] x; JVL T equations
output Reall[size(x,1)] vy’ Code
protected Generator
Real t; @ SE— C Code
algorithm
y = X; C Compiler
for i in 1l:size(x,1) loop
for j in 1l:size(x,1) loop @4 """"" Executable
if y[i]l > y[j] then
t o= yl[i]; Simulation
ylil = y[3l;
vI3l == t; Figure 2. Translation stages from Modelica code to
end 1if; executing simulation. The current version of the open
end for; source Modelica compiler generates executable code
end for; only for functions and expressions since the equation
end bubblesort; analyzer and optimizer are still missing.
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4 Modelica Static and Dynamic
Semantics

The complete semantics, i.e. meaning, of the constructs
in any programming language, also including the
Modelica language, is usually divided into two major
parts:

e  static semantics

e dynamic semantics

The static semantics specifies compile time issues such
as type checking, equivalence between different
representations of the program such as a form with
inheritance operations present, and the corresponding
form with inheritance and modifications expanded,
elaboration of the object-oriented model representation,
conversion between different levels of the intermediate
form, etc. Such a static semantics is currently given by
our formal specification of Modelica.

It should be noted that the semantics specification
for an equation based language such as Modelica differs
from semantics specifications of ordinary programming
languages, since Modelica equation based models are
not programs in the usual sense. Instead Modelica is a
modeling language used to specify relations between
different objects in the modeled system.

The dynamic semantics specifies the run-time
behavior including the equation solving process during
the simulation, execution of algorithmic code, and
additional run-time aspects of the execution process. We
do not currently have a formal specification of the
Modelica dynamic semantics, but intend to develop
such a specification in the future. The current dynamic
run-time behavior is implemented by hand in the C
programming language

4.1 An Example Translation of
Models into Equations.

As an example, the Modelica model B below is
translated into equations.
model A
Real x,y;
equation
X =2 *vy;
end A;

model B

A a;

Real x[10];
equation

x[5] = a.y;
end B;

The resulting equations appear as follows:
B.a.x = 2 * B.a.y
B.x[5] = B.a.y

The object-oriented structure is mostly lost which is
why we talk about a flat set of equations, but the
variable names in the equations still give a hint about
their origin.

What the translator actually does is translating
from the Modelica source code to an internal
representation of the resulting set of equations. This
internal representation is then further translated to C
code. For functions, declarations, and interactively
entered expressions, the C code can be generated fairly
directly, whereas for equations several optimization
stages must be applied before generating the C code.

4.2 Model Parameterization and
Structural Parameters

In many cases model parameters in a Modelica model
are unproblematic, and the translator can simply emit a
flat model with the parameters still available as
parameters that can be given different values during
equation solution. But in some cases this is not so. We
differentiate between two types of parameters, structural
parameters, which affect the number and contents of the
equations, and value parameters, that do not.

One simple example of a structural parameter is
when a parameter is used in the size of an array.
Consider the following model:

model ArrayEx
parameter Real N = 3;
Real a[N];

equation
all] = 1;
for i in 2:N loop

alil = ali-1] * 2;

end for;

end ArrayEx;

This will, with the parameter N unmodified, produce the
following equations:

all] =1
al2] = 2
al3] = 4

However, if the parameter N is modified to be 5 when
the model is elaborated, i.e. symbolically expanded, the
set of equations will be different:

all] =1
al2] = 2
al3] = 4
al4] = 8
al[5] = 16

As the semantic specification specifies the semantics in
terms of the generated equations, regarding algorithms
and functions as special cases of equations, this means
that the values of the parameters need to be determined
at compile time to make it possible for the translator to
do the translation.

Another, even more serious, complication with
parameters is the combined use of parameters and
connect statements. If a model contains e.g. a connect
statements that looks like connect (a [N], c¢), where a
is an array of connectors, and N is a parameter, then the
generated equations may look very different depending
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on the value of N. Not only the number of equations
may change, but the equations themselves can be
altered.

5 Automatic Generation and
Formal Specification of
Translators

The implementation of compilers and interpreters for
non-trivial languages is a complex and error prone
process, if done by hand. Therefore, formalisms and
generator tools have been developed that allow
automatic generation of compilers and interpreters from
formal specifications. This offers two major advantages:
e High level descriptions of language properties,
rather than detailed programming of the translation
process
o High degree of «correctness of generated
implementations. The high level specifications are
more concise and easier to read than a detailed
implementation in some programming language

The syntax of a programming language is conveniently
described by a grammar in a common format, such as
BNF, and the structure of the lexical entities, usually
called tokens, are easily described by regular
expressions. However, when it comes to the semantics
of a programming language, things are not so
straightforward.

The semantics of the language describes what any
particular program written in the language “means”, i.e.
what should happen when the program is executed, or
evaluated in some form.

Many programming language semantic definitions
are given by a standard text written in English which
tries to give a complete and unambiguous specification
of the language. Unfortunately, this is often not enough.
Natural language is inherently not very exact, and it is
hard to make sure that all special cases are covered. One
of the most important requirements of a language
specification is that two different language
implementers should be able to read the specification
and make implementations that interpret the
specification in the same way. This implies that the
specification must be exact and unambiguous.

For this reason formalisms for writing formal
specifications of languages have been invented (Pagan
1981). These formalisms allow for a mathematical
semantic description, which as a consequence is exact,
unambiguous and easier to verify. One of the most
widely used formalisms for specifying semantics is
called Natural Semantics (Kahn, 1987). A computer
processable Natural Semantic specification language
called RML, for Relational Meta Language, with a
compiler generation tool rml2c (Pettersson, 1995), has
previously been developed at PELAB, and is used for
the formal specification of Modelica in the open source
Modelica project.

5.1 Compiler Generation

Writing a good compiler is not easy. This makes
automatic  compiler generation from language
specifications very interesting. If a language
specification is written in a formal manner, all the
information needed to build the compiler is already
available in a machine-understandable form. Writing the
formal semantics for a language can even be regarded as
the high-level programming of a compiler.

In Figure 3 below, the different phases of the
compilation process are shown. More specifically, it
shows the translation process of a Modelica translator,
which compiles, or rather translates, the Modelica
source file. All the parts of the compiler can be
specified in a formal manner, using different formalisms
such as regular expressions, BNF grammars, and
Natural Semantics specifications. At all stages, there is
a tool to convert the formalism into an executable
compiler module.

Specification Generator  Translation Representation
Formalism Tool Phase
; Text source
ANTLRs
Regular Scanner
expressions -
‘ Token
BNF ANTLRp sequence
grammar -, Parser
# 777777777777777777777777777 Abstract
syntax
Natural rmi2c s -
semantics > emantics _
specification Set of equations
¢ and functions
C code gen
I C code

Figure 3. Phases in generating Modelica compiler
modules from different kinds of specifications. The
semantics module performs elaboration of the models
including type checking and expansion of class
structures, resulting in a set of equations, algorithms and
functions.

6 Natural Semantics and RML

We have previously mentioned that a compiler
generation system called RML is used to produce the
Modelica translator in the open source project, from a
Natural Semantics language specification. The
generated translator is produced in ANSI C with a
performance comparable to hand-written translators.

Below we give a short overview of the Natural
Semantics formalism, and the corresponding RML
specification language for expressing Natural Semantics
in a computer processable way.
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6.1 Natural Semantics

A Natural Semantics specification consists of a number
of rules, similar to inference rules in formal logic. A
rule has a structure consisting of clauses above a
horizontal line followed by a clause under the line. A
clause such as a = bmeans a gives b.

c>bre=f
a=b

All clauses above the line are premises, and the clause
below the line is the consequence. To prove the
consequence, all the premises need to be proved. A
small example of how rules typically appear is shown
below, where a rule stating that the addition of a Real
expression with an Integer expression gives a Real
result.

typeof(el) = Real A typeof(e2) = Integer
elaborate(el + e2) = Real

6.2 RML

Modelica semantics is specified using the RML
specification language (Pettersson 1995, 1999). The
RML language is based on Natural Semantics, and uses
features from languages like SML (Miller et. al. 1991)
to allow for strong typing and datatype constructors.
The RML source, e.g. a Modelica specifications, is
compiled by an RML compiler (rml2c) to produce a
translator for the described language. The RML
compiler generates an efficient ANSI C program that is
subsequently compiled by an ordinary C compiler, e.g.
producing an executable Modelica translator. The RML
tool has also been used to produce compilers for Java,
Pascal and a few other languages.

6.2.1 Correspondence between Natural
Semantics and RML.

The correspondence between Natural Semantics and
RML is perhaps easiest to understand using an example.
The following three Natural Semantics rules specifies
the types of expressions containing addition operators
and Boolean constants:

typeof(el) = Real A typeof(e2) = Real
typeof(el + e2) = Real

typeof(el) = Integerl A typeof(e2) = Integer
typeof(el + e2) = Integer

typeof (FALSE) = Boolean

The corresponding three RML rules are collected in a
relation called typeof, which maps expressions to

types:

relation typeof :: Exp => Type =

typeof(el) => Real & typeof(e2) => Real

typeof (ADD(el,e2)) => Real

rule

rule typeof(el)

typeof (ADD (el,e2))

=> Integer & typeof(e2) => Integer

=> Integer

axiom typeof (FALSE) => Boolean

end

6.2.2 A Simple Interpretive Semantics

As a simple example of the RML syntax, we show a
small expression evaluator, which “translates” a
mathematical expression to the value of the expression.
First, an expression data type is declared:

= NUMBER of real
| ADD of Exp * Exp
| MUL of Exp * Exp

datatype Exp

An expression is either a number, a sum of two other
expressions, or a product of two other expressions. As
an example, the expression is represented as the value.

MUL (NUMBER (3) , ADD (NUMBER (4) , NUMBER (5) ) )

Then we describe the relation eval. The eval relation
relates expressions to their evaluated values, so that
eval (x)=>y always holds if y is the value resulting
from the evaluation of x.

relation eval =

axiom eval (NUMBER (X)) => x

rule eval(x) => x2 & eval(y) => y2 &
real add(x2,y2) => sum
eval (ADD(x,y)) => sum
rule eval(x) => x2 & eval(y) => y2 &
real mul (x2,y2) => prod
eval (MUL (x,y)) => prod
end

The first rule is an axiom, which means that the set of
premises for the rule is empty. It could also have been
written as a rule with nothing above the line:

eval (NUMBER (x)) => x

The second rule tells how to evaluate sums of two
expressions. What the rule says is “if x evaluates to x2,
vy evaluates to y2, and the sum of x2 and y2 is sum,
then the result of evaluating ADD (x,y) is sum.” The
relations real add and real mul are predefined in
RML.
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When an RML specification is executed, a relation
named main is evaluated at the top level. If our
program has a main relation that looks like the
following, the program would simply print the number
27 and exit.

relation main =

rule eval (MUL(NUMBER(3),
ADD (NUMBER (4) ,
NUMBER(5)))) => x &
real string(x) => xs &
print (cs)
main( )
end

The RML language has some obvious similarities with
functional  programming languages and logic
programming languages. While resolving, or “proving”
the premises in a rule, a simple resolution process is
carried out which tries to find a rule in the relation
which matches the arguments, and if it fails, a simple
retry mechanism is used to find other possible solutions.

If none of the rules in a relation is possible to
prove, the relation fails, but there is also the possibility
to introduce a rule that explicitly fails, by using the
keyword fail in the corresponding clause.

There are a few other syntactic features of RML
that should be known to the reader. If an argument is not
used in a rule, it can be written as an underscore, which
means that it matches anything, but is not used. If a
relation has the right-hand side (result) type (), it can
be omitted together with the => symbol. The main
relation above shows an example of both of these
features.

7 The Formal Specification of
Modelica

The specification is separated into a number of modules,
to separate different stages of the translation, and to
make it more manageable. This section will briefly
cover some of the most important parts of the
specification. In all, the specification contains several
thousand lines of RML, but it should be kept in mind
that the RML code is rather sparse, with many empty or
short lines.

The top level relation in the semantics is called
main, and appears as follows:

relation main =

rule Parser.parse f => p &
SCode.elaborate(p) => p2 &
Inst.elaborate(p2) => d &
DAE.dump d &
main ([£f])
end

7.1 Parsing and Abstract Syntax

The relation Parser.parse is actually written in C,
and calls the parser generated from a grammar by the
ANTLR parser generator tool (ANTLR 1998). This
parser builds an abstract syntax tree (AST) from the
source file, using the AST data types in a RML module
called 2bsyn. The parsing stage is not really part of the
semantic description, but is of course necessary to build
a real translator.

7.2 Rewriting the AST

The AST closely corresponds to the parse tree and
keeps the structure of the source file. This has several
disadvantages when it comes to translating the program,
and especially if the translation rules should be easy to
read for a human. For this reason a preparatory
translation pass is introduced which translates the AST
into an intermediate form, called SCode. Besides some
minor simplifications the SCode structure differs from
the AST in the following respects:

e All variables are described separately. In the source
and in the AST several variables in a class
definition can be declared at once, as in Real x,
y[17] ;. In the SCode this is represented as two
unrelated declarations, as if it had been written
Real x; Real y[17];.

e Class declaration sections. In a Modelica class
declaration the public, protected, equation and
algorithm sections may be included in any number
and in any order, with an implicit public section
first. In the SCode these sections are collected so
that all public and protected sections are combined
into one section, while keeping the order of the
elements. The information about which elements
were in a protected section is stored with the
element itself.

One might have thought that more work could be done
at this stage, like analyzing expression types and
resolving names. But due to the nature of the Modelica
language, the only way to know anything about how the
names will be resolved during elaboration is to do a
more or less full elaboration. It is possible to analyze a
class declaration and find out what the parts of the
declaration would mean if the class was to be elaborated
as-is, but since it is possible to modify much of the class
while elaborating it that analysis would not be of much
use.

7.3 Elaboration and Instantiation

e To be executed, classes in a model need to be
instantiated, i.e. data objects are created according
to the class declaration. There are two phases of
instantiation:

e The symbolic, or compile time, phase of
instantiation is usually called elaboration. No data
objects are created during this phase. Instead the
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symbolic internal representation of the model to be
executed/simulated is transformed, by performing
inheritance operations, modification operations,
aggregation operations, etc.

e The creation of the data object, usually called
instantiation in ordinary object-oriented
terminology. This can be done either at compile
time or at run-time depending on the circumstances
and choice of implementation.

The central part of the translation is the elaboration of
the model. The convention is that the last model in the
source file is elaborated, which means that the equations
in that model declaration, and all its subcomponents, are
computed and collected.

The elaboration of a class is done by looking at the
class definition, elaborating all subcomponents and
collecting all equations, functions, and algorithms. To
accomplish this, the translator needs to keep track of the
class context. The context includes the lexical scope of
the class definition. This constitutes the environment
which includes the variables and classes declared
previously in the same scope as the current class, and its
parent scope, and all enclosing scopes. The other part
of the context is the current set of modifiers which
modify things like parameter values or redeclare
subcomponents.

model M
constant Real c =
model Foo
parameter Real p =
Real x;
equation
X = p * sin(time)
end Foo;

5;

3;

+ Cc;

Foo f(p = 17);

end M;

In the example above, elaborating the model M means
elaborating its subcomponent f, which is of type Foo.
While elaborating £ the current environment is the
parent environment, which includes the constant c. The
current set of modifications is (p = 17), which means
that the parameter p in the component £ will be 17
rather than 3.

There are many semantic rules that takes care of
this, but only a few are shown below. They are also
somewhat simplified to focus on the central aspects.

7.4 The elab_class and
elab_element Relations

The relation elab class elaborates a class. It takes
five arguments, the environment env, the set of mod-
ifications mod, the prefix pre which is used to build a
globally unique name of the component in a hierarchical
fashion, a collection of connection sets csets, and the
class definition c. It opens a new scope in the
environment where all the names in this class will be
stored, and then uses a relation called elab class in
to do most of the work. Finally it generates equations
from the connection sets collected while elaborating this
class. The “result” of the relation are the elaborated
equations and some information about what was in the
class. In the case of a function, regarded as a restricted
class, the result is an algorithm section.

One of the most important relations is
elab element, that elaborates an element of a class.
An element can typically be a class definition, a variable
or constant declaration, or an extends clause. Below is
shown only the rule for elaborating variable declarations

relation elab class: (Env, Mod, Prefix, Connect.Sets, Scode.Class) =>
(DAE.Element list, Connect.Sets, Types.Type) =
rule Env.open scope(env) => env’ &
elab_class_in(env’,mod, pre,csets,c) => (dael, ,csets’,ci state’, tys) &
Connect.equations csets’ => dae2 & list append(dael, dae2) => dae &
mktype (ci state’,tys) => ty
elab class (env,mod, pre,csets,c as SCode.CLASS(n, ,r, )) => (dae, [], ty)
end
Modelica 2002, March 18-19, 2002 304 The Modelica Association



Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karstrom A. Open Source ...

relation elab element: (Env, Mod, Prefix, Connect.Sets, Scode.Element) =>
(DAE.Element list, Env, Connect.Sets, Types.Var list) =

rule Prefix.prefix cref(pre,Exp.CREF IDENT (n,[])) => vn &

Lookup.lookup class(env,t) => (cl,classmod) & Find the class definition
Mod.lookup modification (mods,n)=>mm &

Mod.merge (classmod,mm) => mod & Merge the modifications
Mod.merge (mod,m) => mod’ &
Prefix.prefix add(n, [],pre) => pre’ & Ehiendlheprqﬁx
elab class(env,mod’,pre’,csets,cl) Elaborate the variable
=> (dael,csets’,ty,st) &
Mod.mod equation mod’ => eg & If the variable is declared with a default equation,
make binding (env,attr,eq,cl) add it to the environment with the variable.
=> binding &
Env.extend frame v(env, Add the variable binding to the environment
Env.FRAMEVAR (n,attr, ty,binding))
=> env’ &
elab mod equation(env,pre,n,mod’) Fetch the equation, if supplied
=> dae2 &
list append(dael, dae2) => dae Concatenate the equation lists

elab _element (env,mods, pre,csets,
SCode .COMPONENT (n, final,prot,attr,t,m))
=> (dae, env’,csets’,[(n,attr,ty)])

end

7.5 Output 9 Conclusions
The equations, functions, and variables found during We have developed the first version of an open source
elaboration are collected in a list of objects of type Modelica environment, to a large extent based on a
DAEcomp: Modelica compiler automatically generated from a
datatype DAEcomp = VAR of formal Natural Semantics specification of Modelica.
Exp.ComponentRef * VarKind This formal specification is intended to become a
| EQUATION of Exp * Exp reference specification for research purposes and for
future Modelica implementers.
As the final stage of translation, in the current version An important short-term goal for this open source
of the translator, functions and expressions in this list project is to provide an interactive and efficient
are converted to C code. computational environment for using Modelica as a
high level strongly typed programming language for
8 A Small Benchmark computational applications.

In the longer-term perspective we expect to extend

We have evaluated the current implementation of the
open source Modelica compiler on a small benchmark
consisting of solving a simplex optimization problem
consisting of 25 variables and 5 conditions. The
measured execution time was averaged over 100
executions on a Sun UltraSparcstation 10. The
Modelica code of the simplex algorithm is available in
Appendix A. We found that the execution time for the
Modelica code was a factor of 1.54 slower than
handwritten C code for the same algorithm. This is a
preliminary result obtained at the time of writing this
paper, and we expect to be able to get even closer to C
code execution performance by tuning the
implementation.

as Dymola and MathModelica.

the system to also provide simulation of equation based
models in Modelica, however with lower performance
and handling models of less complexity than what is
currently managed by commercial implementation such
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Appendix — The Simplex
Algorithm

function pivotl
input Real b[:,:];
input Integer p;
input Integer qg;
output Real a[size(b,1l),size(b,2)];
protected
Integer M;
Integer Ny
algorithm
a := b;
N := size(a,l)-1;
M := size(a,2)-1;
for j in 0:N loop
for k in 0:M loop
if j<>p and k<>g then
alj+1l,k+1] = al[j+1,k+1]-
alp+l,k+1]l*a[j+1,g+1]/alp+l,g+1];
end 1if;
end for;
end for;
for j in 0:N loop
if j<>p then
alj+1l,g+1l] := 0;
end 1if;
end for;
for k in 0:M loop
if k<>g then

alp+l,k+1]:=al[p+l,k+1]/alp+l,g+1];
end if;
end for;
alp+l,g+l] := 1;
end pivotl;

function simplexl
input Real matr[:,:];
output Real x[size (matr,2)-1];
output Real z;
output Integer g;
output Integer p;
protected
Real a[size(matr,1l),size(matr,2)];
Integer M;
Integer Ny
algorithm
N := size(a,l)-1;
M := size(a,2)-1
a := matr;
p:=0; q:=0;
while not (g==(M+1)
q := 0;
while not
al0+1,g+1]1<0)
qg:=g+1;
end while;
p := 0;
while not
alp+l,g+11>0)

’

or p==(N+1)) loop

(g == (M+1) or

loop

(p ==
loop

(N+1) or

p:=p+1;
end while;
for i in p+1:N loop
if ali+l,g+1] > 0 then
if (ali+l1,M+1]/a[i+1,g+1]) <

(a[p+1l,M+1]/alp+l,g+1]) then
p = 1i;
end if;
end if;
end for;
if (g < M+1l) and (p < N+1) then
a := pivotl(a,p,q):
end if;
end while;
for i in 1:M loop
x[1i] := -1;
for j in 1:N+1 loop
if (x[1i] < 0) and ((alj,i] >=
1.0) and (a[j,1i] <= 1.0)) then
x[1] := alj,M+1];
elseif ((alj,i] < 0) or (alj,i] >
0)) then
x[1] := 0;
end if;
end for;
end for;
z = al[l,M+1];

end simplexl;
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