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Abstract

It is shown how to model and simulate frictional ef-
fects present in gearboxes and in planetary gearboxes.
This includes modeling of gear wheel stucking and
sliding due to Coulomb friction between the gear teeth
leading to load torque dependent losses. This allows
reliable simulation of, e. g., stick-slip effects in servo
drives or gear shifts in automatic gearboxes. It is also
discussed how the friction characteristics can be mea-
sured in a useful way. The presented models are im-
plemented in Modelica and demonstrated at hand of
the simulation of an automatic gearbox.

1 Introduction

Gearbox dynamics due to friction, elasticity and back-
lash in the gear has often a strong impact on the per-
formance of the system in which the gearbox is con-
tained, such as for robots, machine tools, vehicles,
power trains. It is both difficult to simulate gearbox
effects and to get reasonable agreement between mea-
surements and dynamic simulations.

In the current Modelica standard library Mo-
delica.Mechanics.Rotational [5] several
model components are available to simulate gearbox
effects, especially bearing friction. Missing is the sat-
isfactory handling of mesh efficiency due to friction
between the teeth of gear wheels which leads to load
torque dependent losses. In this article it is shown in
detail how this problem can be solved for any gear-
box that has two or three external shafts, i. e., standard
gears and a large class of planetary gears.

Before going into the details of an appropriate gear
efficiency model, it is important to analyse the differ-
ent frictional effects in a gearbox. Friction is present
between two surfaces which slide on each other. In a
gearbox, this occurs in the gear bearings and between
the gear teeth which are in contact to each other. The
effect of these two cases is quite different.

1.1 Bearing Friction

The torques acting at a bearing are shown in figure 1.
The shaft in the bearing has the torques τA and τB on
the two sides. Losses due to friction are described by
the additional torque τbf. Torque equilibrium yields

τB � τA� τbf � (1)

where

τbf �

��
�

� 0: ω � 0
� 0: ω � 0

so that ω̇ � 0: ω � 0
(2)

The friction torque τbf is essentially a function of the
shaft speed ω, the bearing load fN (=force perpen-
dicular to bearing axis), the bearing temperature T ,
the bearing construction and the used lubrication (for
more details, see, e. g. [6]). Since the bearing load is
usually constant (but not zero) and independent of the
gearbox load torque, and all other factors can be often
regarded as constant for certain operation conditions,
the bearing friction is essentially a function of the rel-
ative speed, τbf�ω�, and has a characteristic as given in
figure 2.

If ω �� 0 the friction torque τbf is computed from
the sliding friction characteristic according to figure 2.
If ω � 0 the bearing is stuck due to the bearing load
in combination with Coulomb friction, and therefore
the friction torque τbf is an unknown constraint torque
which is computed so that ω̇ vanishes. How to model
and simulate this effect is described in detail, e. g., in
[8].

τA τΒ

τbf

Figure 1: Torques at a bearing
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Figure 2: Typical bearing friction characteristic

1.2 Mesh Friction

In figure 3, two gear teeth in contact are shown. In
order that the teeth neither penetrate nor separate, the
normal velocities in contact point C need to be iden-
tical and therefore the tangential velocities are differ-
ent, i. e., the teeth slide on each other, see, e. g., [3]
(the tangential velocities are only identical, if ωA � 0
or if point C is at W, see figure 3). As a result, in con-
tact point C Coulomb friction fR � sv µ fN is present,
where fR is the friction force in the contact plane, fN is
the force perpendicular to the contact plane, sv � �1
depending on whether C is below or above pitch circle
rA and µ � µ�vrel �T � is the sliding friction coefficient
which is essentially a function of the relative veloc-
ity vrel between the contact planes and the temperature
T at the contact point. Note, that the contact planes

rB

rA

lA
fR

ωΒ

τΒ

dB

lB

ωΑ 
τΑ

fN

dA

W
C

fR, fN act on tooth B and with
opposite sign on tooth A

tooth A

tooth B

sv=+1

sv=-1

α

α

Figure 3: Friction between gear wheel teeth

may become stuck to each other if vrel � 0, i. e., if
ωA � 0. Then, fR is a constraint force calculated from
the condition that ω̇A � 0. Torque equilibrium in fig-
ure 3 yields

0 � τA� fN lA� fR dA
0 � τB� fN lB� fR dB
fR � sv µ fN

� τB�
lB
�

1� sv µ
dB
lB

�

lA
�

1� sv µ
dA
lA

� τA �

Utilizing teeth contact geometry and gear ratio i

cosα �
lA
rA

�
lB
rB

�
lB
lA

�
rB
rA

� i

results in

τB � iηmf1 τA with ηmf1 :�
1� sv µ

dB
lB

1� sv µ
dA
lA

� (3)

Since dA�lA � dB�lB for sv � �1, dA�lA � dB�lB for
sv � �1, and 0 � µ � 1, it follows from (3) that ηmf1

is between 0 and 1.
In a similiar way it can be shown (see, e. g., [7])

that the relative velocity vrel is calculated as vrel �
k���ωA where k��� is a function of the geometric quan-
tities dA�dB� lA� lB. Since all these quantities can be
computed from gear-wheel constants and the absolute
angle ϕA of shaft A, µ � µ�ϕA�ωA�T � and therefore
ηmf1 � ηmf1�ϕA�ωA�T �.

The derivation above is only valid if ωA � 0, be-
cause the friction force at the driven tooth is always
directed in opposite direction to the relative sliding ve-
locity. If ωA � 0 the sign of the friction force changes,
yielding:

ηmf2 τB � iτA with ηmf2 :�
1� sv µ

dA
lA

1� sv µ
dB
lB

� (4)

The derivations assume that the ”right” side of tooth
edge A is in contact. If the ”left” side is in contact,
the sign of the normal force changes. Collecting ev-
erything together and neglecting the temperature and
position dependency of ηmf1����ηmf2��� finally results
in the basic formula for mesh friction:

η̂mf :�

������
�����

ηmf1��ωA�� :

�
τAωA � 0 or
τA � 0 and ωA � 0

1�ηmf2��ωA�� :

�
τAωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0

(5)

where ηmf1��ωA�� � �0;1� and ηmf2��ωA�� � �0;1� de-
note the mesh efficiencies for the different power flow
directions characterized by PA � τAωA. Note, that the
two mesh efficiencies are a function of the absolute
value of ωA. Often, ηmf1 � ηmf2. However, there are
also cases where the two mesh efficiences are very dif-
ferent, e. g., for worm gears.
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2 Standard Gear

In this section, a mathematical description of the fric-
tional effects present in a standard gear is presented
and an appropriate Modelica model is sketched. The
gear type under consideration is shown in figure 4.
Here, ωA denotes the angular velocity of the left shaft

A B

AA ωτ , BB ωτ ,

Figure 4: Speeds and cut-torques of a standard gear

and ωB denotes the angular velocity of the right shaft,
respectively. At the cut-planes of the two shafts, the
constraint torques τA and τB are present. The class of
gears to be examined in this section is formally defined
as:

Definition 1: A gear denoted as standard
gear in this article has the following prop-
erties:

� The gear has two external shafts.

� The gear has one degree of freedom.

� The time invariant constraint equation

ωA � iωB (6)

holds, where i is constant and not zero.
This constant is called gear ratio1

This definition includes a broad class of gears.

2.1 Mathematical Description

A standard gear may have several bearings, several
gear stages and several teeth in contact. Based on
the observations in section 1.1 and 1.2, and assuming
that all bearing losses are either transformed to bearing
friction τbf,A at shaft A or bearing friction τbf,B at shaft
B and that mesh friction η̂mf is present, the following
loss model is obtained

τB� τbf,B ��i η̂mf �τA� τbf,A� � (7)

Reordering of terms yields

τB � i��η̂mf τA�
1
i

τbf,B � η̂mf τbf,A� � (8)

1The following derivation is also valid for variable gear ratios,
such as a CVT gear. The only addition is that the bearing friction
term τ̂b f is not only a function of ωA but also of the actual gear
ratio i, due to (8) and (9).

The torque direction of τbf,B depends on the sign of
ωB due to equation (2) and the torque direction of τbf,A

depends on the sign of ωA. Since ωB � iωA, the torque
direction of τbf,B��i� depends also on the sign of ωA.
Therefore, all bearing friction terms can be collected to
one overall bearing friction variable τ̂bf which has the
properties that (a) the direction of this torque depends
on ωA and (b) the value depends on the same energy
flow directions as η̂mf does. As a result, the following
gear loss model is obtained:

τB � i��η̂mf τA� τ̂b f � (9)

where

η̂mf :�

������
�����

ηmf1��ωA�� :

�
τAωA � 0 or
τA � 0 and ωA � 0

1�ηmf2��ωA�� :

�
τAωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0
(10)

describes the mesh frictions with ηmf1��ωA��,
ηmf2��ωA�� � �0;1� and

τ̂bf :�

������
�����

τbf1�ωA� :

�
τAωA � 0 or
τA � 0 and ωA � 0

τbf2�ωA� :

�
τAωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0
(11)

describes the bearing frictions with

τ̂bf�ωA� �

�
� 0 : ωA � 0

� 0 : ωA � 0
� (12)

More detailed models are obtained by taking into ac-
count that ηmf1���, ηmf2��� are additionally functions
of the absolute position ϕA of shaft A and of the gear
temperature T , and τ̂bf��� is additionally also a func-
tion of T , respectively.

The model above describes especially the case
when the gear bearings and the teeth in contact to
each other are stuck. This occurs when ω � 0. Then,
η̂mf and τ̂bf are constraint variables which are com-
puted from the condition that the gear remains stuck,
or formulated mathematically that ω̇A � 0. If the
constraint variables become greater as their respective
sliding values at zero speed, the gear leaves the stuck
mode and starts sliding. Note, that the stuck mode
is both due to bearing friction (because the bearing
loads introduce Coulomb friction) and due to mesh
friction. Since in stuck mode there are two additional
unknowns (η̂mf, τ̂bf), but only one additional equation
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(ω̇A � 0), there is an ambiguity so that either η̂mf or τ̂bf

can have an arbitrary value in this mode.
A direct implementation of model (9) is difficult.

The key idea from [9] is to transform this model into
a form close to the standard bearing friction model
which is well understood. This requires to collect all
loss effects in an additive loss torque ∆τ, i. e., to de-
scribe the mesh and bearing frictions by the equation

τB � i��τA�∆τ� (13)

instead of (9). Equation (13) implicitly defines the
newly introduced loss torque ∆τ, i. e., (9) and (13) are
two equations for the three unknowns τA, τB and ∆τ.

In sliding mode, equation (9) is replaced by the
combined equation of (9), (13)

�η̂mf τA� τ̂b f ��τA�∆τ

and therefore

∆τ � �1� η̂mf�τA� τ̂bf � (14)

In stuck mode, equation (9) is replaced by the con-
straint equation ω̇A � 0.

To summarize, the transformed gear loss model is
defined by (10), (11) and equations:

τB � i��τA�∆τ� (15)

∆τ �

�
�1� η̂mf�τA� τ̂bf : ωA �� 0

so that ω̇A � 0 : ωA � 0
(16)

Note, that by this transformation the previous ambigu-
ity in stuck mode is removed. Utilizing (10)-(12) in
(16) for the sliding mode, results in the equations of
table 1. The different regions to compute ∆τ are visu-

ωA τA ∆τ �
� 0 � 0 �1�ηmf1�τA� �τbf1� �� ∆τmax1 � 0�
� 0 � 0 �1�1�ηmf2�τA� �τbf2� �� ∆τmax2 � 0�
� 0 � 0 �1�1�ηmf2�τA��τbf2� �� ∆τmin1 � 0�
� 0 � 0 �1�ηmf1�τA��τbf1� �� ∆τmin2 � 0�

Table 1: ∆τ � ∆τ�ωA�τA� in sliding mode

alized in the upper part of figure 5. In sliding mode, ∆τ
has either a value on the upper or on the lower limiting
lines, depending on the sign of ωA. In stuck mode, ∆τ
has a value between the limiting lines such thatω̇A� 0.
Stuck mode is left, when ∆τ reaches one of the limiting
lines.

In the lower part of figure 5 the torque loss ∆τ is
shown using ωA as abscissa and τA as curve parameter.

ωA = 0

∆τ

τΑ

∆τmax1, ωA > 0

∆τmin2, ωA < 0
∆τ(ωΑ=0)

ωA

∆τ τΑ

τΑ

Figure 5: ∆τ in sliding and stuck mode

By this figure it can be clearly seen, that the transfor-
mation to ∆τ results in a friction characteristic which
is close to a pure bearing friction model. The stuck
mode is described in an identical way. Only the slid-
ing friction torque is no longer a function of solely ωA,
but additionally a function of τA.

2.2 Modelica Model

The gear loss model derived in the previous section
can be implemented as a Modelica model in a straight-
forward manner. The parameters to be provided are
the gear ratio i and table lossTable to define the
gear losses, see table 2. Tabulated values of the vari-
ables ηmf1, ηmf2, τbf1, τbf2 have to be given as function
of ωA � 0. The values for negative ωA are automat-
ically taken care off. Whenever ηmf1, ηmf2, τ̂bf1 or
τ̂bf2 are needed, they are determined by interpolation
in lossTable. The interface of this Modelica model
is therefore defined as

parameter Real i = 1;
parameter Real lossTable[:,5]

= [0, 1, 1, 0, 0];

�ωA� ηmf1 ηmf2 �τbf1� �τbf2�
...

...
...

...
...

Table 2: Format of table lossTable.
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using the unit gear ratio and no losses as a default.
Internally, the gear loss model is based on the

BearingFriction model, because this model al-
ready implements the sliding/stuck handling in a satis-
factory way. The only enhancement is that the sliding
friction torque ∆τ is not only a function of ωA but also
of the unknown variable τA and of the relations τA � 0,
τA � 0.

During code generation, this results in an addi-
tional algebraic loop in which τA, ∆τ and the two re-
lations are contained. Due to the structure of equa-
tion (14), the continuous unknowns (τA, ∆τ) enter this
loop linearly. The resulting algebraic loop is a mixed
Real/Boolean system of equations, which is very sim-
iliar to the corresponding mixed system of equation of
a pure bearing friction model, and can be solved with
the same methods, see, e. g., [8].

2.3 Measurement of Gear Losses

Efficiency measurement data provided in gearbox cat-
alogues contain usually not enough information for a
dynamic simulation (e. g., the losses for ωA� 0 are not
given). The reason is that in many cases only the over-
all efficiency is included as a function of load torque
for some constant angular velocities ωA �� 0.

In order to obtain the data needed for the
lossTable of the Modelica model, the following
measurement method is proposed:

Form� 2 fixed load torques τB� j (e. g., nom-
inal torque and half of the nominal torque)
and n angular velocities ωA�k, the necessary
driving torques τA are measured which are
needed to drive the gear for positive and
negative energy flow PA � ωA τA, including
measurements near ωA � 0 (= the gear shafts
start to rotate).

As a result, the following values are obtained:

τA� j�ωA�k� � τB� j � j � 2 ��m � k � 1 ��n� �

For every fixed speed ωA�k, equation (9) can be formu-
lated in the unknowns η̂mf and τ̂bf. Collecting all equa-
tions together results in one linear system of equations�

����
�iτA�1�ωA�k� 1
�iτA�2�ωA�k� 1

...
...

�iτA�m�ωA�k� 1

�
����
�

η̂mf

τ̂bf

�
�

�
����

τB�1

τB�2
...

τB�m

�
���� (17)

for every fixed speed ωA�k. If more than two load
torque measurements are available, (17) has no solu-
tion and is solved in a least square sense. For two load

torque measurements, a unique solution exists

η̂mf�ωA�k� � �
τB�1� τB�2

i�τA�1� τA�2�
(18)

τ̂bf�ωA�k� �
1
i

τB�2� η̂mf τA�2 � (19)

Finally, ηmf1�ωA�k�, ηmf2�ωA�k�, τbf1�ωA�k� and
τbf2�ωA�k� can be easily determined from η̂mf�ωA�k�
and τ̂bf�ωA�k� based on the sign of ωA τA using equa-
tions (10) and (11).

As already mentioned, in gearbox catalogues usu-
ally the overall efficiency η � �PB�PA is provided as
function of the load torque τB. To demonstrate that the
presented loss model produces qualitatively the same
result, the overall efficiency of the following example
with the loss model

ηmf1 � 0�97

τbf1�τBmax � 0�01�ω2
B�2ωB�5�

is shown in figure 6. As can be seen, the typical hy-
perbolical curves are present, although the mesh effi-
ciency is constant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ
B
 / τ

Bmax

η 
(τ

B
,ω

B
)

ω
B
 = 0.1, 0.5, 1.0 rad/s

Figure 6: Overall efficiency as function of τB.

3 Planetary Gear

In this section the frictional effects of planetary gears
are mathematically described in a similiar way as in

A B C

AA , BB , CC ,

Figure 7: Speeds and cut-torques of a planetary gear
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the previous section (based on [9]) and an appropriate
Modelica model is derived. The variables describing
a planetary gear are shown in figure 7, where ωA, ωB,
ωC denote the angular velocities of shafts A, B, C and
τA, τB, τC denote the torques at the cut planes of the
shafts, respectively. The examined gears are defined
as follows:

Definition 2: A gear denoted as planetary
gear in this article has the following proper-
ties:

� The gear has three external shafts.

� The gear has two degrees of freedom.

� The time invariant constraint equation

ωAB � i0 ωCB (20)

holds, with

ωAB � ωA�ωB

ωCB � ωC�ωB

where the so-called stationary gear ra-
tio i0 is constant and is in the range
i0 ��1 or i0 � 1 (for i0 outside of this
range, the role of shafts A and C has
just to be exchanged. However, i0 � 0
and i0 � 1 is never possible).

Note, that Willis’ equation, see, e. g. [4], is equivalent
to (20). A large class of planetary gears matches to this
definition. Some examples are shown in figure 8. The
stationary gear ratio i0 is usually computed from the
teeth number of the gear wheels. For example, for the
gearbox in the left upper corner of figure 8, i0 � zr�zs,
where zs is the number of teeth for the inner sun wheel
and zr is the number of teeth for the outer ring wheel
(teeth numbers are taken negative for internal teeth).

3.1 Mathematical Description

The relationship between the angular velocities of the
three shafts shown in figure 7 can be described using
relative kinematics yielding

ωA � ωB0�ωAB (21)

ωB � ωB0 (22)

ωC � ωB0�ωCB � (23)

The structure of (21)-(23) reflects the superposition of
two movement types:

Figure 8: Examples of planetary gears according to
definition 2 [4]

� Block movement. The whole gear rotates as one
fixed block with angular velocity ωB0:

ωA � ωB � ωC � ωB0 �

During this movement a power P1 is transmitted
solely by rigid coupling of the three shafts. As
the three shafts are not rotating relative to each
other, any losses due to friction between the teeth
of the gear wheels or in internal bearings cannot
arise, i. e., the block movement is without losses.

� Stationary gear movement. Shaft B is fixed rela-
tive to the inertial system:

ωB0 � 0 � ωA � ωAB ωC � ωCB �

During this movement a power P2 is transmit-
ted solely by sliding of teeth in all three gear
wheels resulting in power losses due to friction
between the teeth of the gear wheels and in in-
ternal bearings not related to the external shafts.
Since the shaft speeds are a function of ωAB�ωCB

and ωCB � ωAB�i0 due to (20), losses only occur,
if ωAB �� 0.

In order to achieve further equations energy flow con-
servation is considered according to figure 9 involving

planetary
gearbox

P∆

AP

BP

CP

Figure 9: Energy flow



Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 263 Modelica 2002, March 18−19, 2002

the energy flows in the shafts, PA, PB, PC, and the fric-
tion losses ∆P which dissipate to heat:

P� PA�PB�PC�∆P� 0 (24)

with

PA � τA �ωB0 �ωAB� (25)

PB � τBωB0 (26)

PC � τC �ωB0 �ωCB� � (27)

∆P��∆τωAB � (28)

Since losses can only occur if ωAB �� 0, the power loss
∆P has been formulated as the product of ωAB and a,
yet unknown, virtual loss torque �∆τ. Using (24)-(27)
and (20) results in

P� ωB0 �τA� τB� τC�� �� �
P1

�ωAB �τA� τC�i0�∆τ�� �� �
P2

(29)

Since a planetary gearbox has two degrees of freedom
(see definition 2), the two speeds ωB0 and ωAB can
have arbitrary values which are independent from each
other. Therefore the speed factors must vanish

0 � τA� τB� τC (30)

0 � τA� τC�i0�∆τ (31)

By solving (31) for τC and (30) for τB, the two equa-
tions can be alternatively formulated as

τC � i0��τA�∆τ� (32)

τB � �i0�1�τA� i0 ∆τ (33)

When stationary gear movement occurs, i.e., ωB0 � 0,
the planetary gear reduces to a standard gear with two
external shafts where the losses are described accord-
ing to equation (9)

τC � i0 ��η̂mf τA� τ̂bf� (34)

where η̂mf�ωAB� describes mesh friction

η̂mf :�

������
�����

ηmf1��ωAB�� :

	
τAωAB � 0 or
τA � 0 and ωAB � 0

1�ηmf2��ωAB�� :

	
τAωAB � 0 or
τA � 0 and ωAB � 0

so that ω̇AB � 0: ωAB � 0
(35)

with ηmf1, ηmf2 � �0;1� and τ̂bf describes friction in the
internal bearings of the planetary gearbox (e. g., for a
standard planetary gearbox with sun, planet and ring

wheel, τ̂bf�ωAB� is the bearing friction torque in the
planet bearings)

τ̂bf :�

������
�����

τbf1�ωAB� :

	
τAωAB � 0 or
τA � 0 and ωAB � 0

τbf2�ωAB� :

	
τAωAB � 0 or
τA � 0 and ωAB � 0

so that ω̇AB � 0: ωAB � 0
(36)

with

τ̂bf�ωAB� �



� 0 : ωAB � 0

� 0 : ωAB � 0
� (37)

No losses will be additionally introduced when a block
movement is superpositioned, as discussed previously.
Therefore, (34) is also valid for a general movement.
Comparision of (34) with (32) results in

i0��τA�∆τ� � i0 ��η̂mf τA� τ̂bf�

and therefore

∆τ � �1� η̂mf�τA� τ̂bf � (38)

As energy can dissipate only,

∆P��ωAB∆τ
!
� 0 (39)

��ωAB ��1� η̂mf�τA� τ̂bf� (40)

���1� η̂mf�τAωAB�ωAB τ̂bf (41)

Since

1� η̂mf � 0 for τAωAB � 0

1� η̂mf � 0 for τAωAB � 0

according to (35), the first term in (41) is never pos-
itive. With (37) the same also holds for the second
term and therefore ∆P is in fact never positive. Utiliz-
ing (35)-(37) and (38) for the sliding case, results in
the equations of table 3 to actually calculate ∆τ.

In the stuck mode the planetary gear rotates with-
out any losses as a block. Similar to Sec. 2 the torque
loss ∆τ is then defined implicitly by the constraint
equation ω̇AB � 0. The gear remains in sliding mode
until ωAB becomes zero. It remains in stuck mode as
long as the calculated torque loss ∆τ is lying in the
stuck region according to figure 10.

ωAB τA ∆τ �
� 0 � 0 �1�ηmf�τA� �τbf1� �� ∆τmax1 � 0�
� 0 � 0 �1�1�ηmf�τA� �τbf2� �� ∆τmax2 � 0�
� 0 � 0 �1�1�ηmf�τA��τbf2� �� ∆τmin1 � 0�
� 0 � 0 �1�ηmf�τA��τbf1� �� ∆τmin2 � 0�

Table 3: ∆τ � ∆τ�ωAB�τA� in sliding mode
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ωAB = 0

∆τ

τΑ

∆τmax1, ωAB > 0

∆τmin2, ωAB < 0
∆τ(ωAB = 0)

Figure 10: ∆τ in sliding and stuck mode

�ωAB� ηmf1 ηmf2 �τbf1� �τbf2�
...

...
...

...
...

Table 4: Format of table lossTable

3.2 Modelica Model

The planetary gear loss model derived in this section
can be implemented as a Modelica model in a sim-
ilar way as described in Sec. 2. The parameters to
be provided are the stationary gear ratio i0 and table,
lossTable to define the gear losses, see table 4.

Whenever ηmf1, ηmf1, τbf1 or τbf2 are needed, they
are determined by interpolation in lossTable. The
interface of this Modelica model is therefore defined
as

parameter Real i = 1;
parameter Real lossTable[:,5]

= [0, 1, 1, 0, 0];

using the unit gear ratio and no losses as a default.
The comments about model interna given in Sec. 2 are
valid similarily for the planetary gear model.

This Modelica model can be connected with com-
ponent Modelica.Mechanics.Rotational.-
BearingFriction at each shaft to model addi-
tionally the friction influence of bearings related to
the external shafts. As a consequence multiple fric-
tion phases arise with the phenomena explained, e. g.,
in [8].

4 Simulation Results

In this section simulation results are presented for
models containing the standard and planetary gear
models with losses developed in the last sections, us-
ing the Modelica modeling and simulation environ-
ment Dymola, version 4.2a [1].

4.1 Standard gear with mesh friction

Figure 11 contains a Dymola screenshot of the model
under consideration. It is a standard gear with mesh
friction that is driven by a sinusoidal torque and has a
load torque which is linearly increasing.

In figure 12 and 13 results of a simulation are
shown for ηm f � 0�5 and ηm f � 0�9: The thicker lines
are the loss torques ∆τ whereas the thinner lines char-
acterize whether mesh friction is in forward sliding
(mode=+1), backward sliding (mode=-1) or stuck
(mode=0) mode.

As can be seen in the upper part of figure 12 from
the two stuck modes, the maximum loss torque is not
constant (as it is for bearing friction) but depends on
the driving torque. Additionally, figure 13 contains the
speed of inertia 2 for ηm f � 0�5. During stuck mode,
the velocity vanishes.

4.2 Gear shift dynamics of automatic gear

The mesh friction model for planetary gears as well as
the clutch friction model already available in the Mod-

i=2

gear

inertia1

J=1

inertia2

J=1.5
tau

torque1

tau

torque2
drive

freqHz={1}

load

duration={2}

Figure 11: Modelica composition diagram of gear
with mesh friction.
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Figure 12: Loss torque ∆τ and mode in gear with mesh
friction ηm f � 0�5 and ηm f � 0�9.
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Figure 13: Speed of inertia 2 for ηm f � 0�5.

elica standard library are very well suited to simulate
the shift dynamics of automatic gearboxes reliably and
efficiently. As an example, the shift dynamics of the
automatic gearbox ZF 4HP22 is examined in more de-
tail. A schematic together with the gear shift table is
given in figure 14 (from [2]).

From this schematic it is straightforward to build
up the Modelica composition diagram from figure 18
containing the clutches, combined clutches and free
wheels, and the three planetary gears with mesh fric-
tion (ηm f � 0�975).

In order that simulations can be performed, a
model of the environment in which the automatic gear
operates is needed. A typical example of a longitudi-
nal dynamics model of a vehicle is shown in figure 19.
It consists of a driver, an engine, an automatic gearbox
with transmission control unit, an axle and a simple
1-dimensional vehicle model containing the most im-
portant drive resistances.

Signals, such as desired vehicle velocity or throttle
position, are transported between the components by a
signal bus. Via send and receive blocks, signals
can be send to or received from the bus connector bus

Gear C4 C5 C6 C7 C8 C11 C12

1 x x
2 x x x x
3 x x x x
4 x x x x
R x x x

C4

C5 C6 C7 C8
C11

C12

Figure 14: Gear shift table for gearbox ZF 4HP22.

which is a Modelica connector containing declarations
of all variables present in the bus.

Typical simulation results of the model are shown
in figure 15-17, especially in figure 15 the desired and
actual velocity of the vehicle in km/h, in figure 16 the
vehicle acceleration and the actual gear determined by
the simple transmission control unit, and in figure 17
the torque loss ∆τ of the right most planetary gearbox
p3.
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Figure 15: Desired and actual velocity of vehicle.
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Figure 16: Vehicle acceleration and actual gear.
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Figure 17: Loss torque ∆τ in planetary gear p3.
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Figure 18: Modelica composition diagram of automatic gearbox ZF 4HP22.

������

������

�����	
������
����	
��

�

�
�
��

�
�����

�
�
�
��
��
�
�
�
�
	

��
��

Figure 19: Modelica composition diagram of vehicle
longitudinal dynamics.

5 Conclusions and Outlook

A loss model for a broad class of standard gears
and planetary gears has been presented which in-
cludes Coulomb friction in the gearbox bearings and
Coulomb friction between the gear teeth. Most impor-
tant, the locking and unlocking of the friction elements
are handeled, including the friction between the gear
teeth. This allows to model and simulate the stick-slip
effect of standard and planetary gears as function of
the shaft speeds and the driving or load torque which
is essential for the design of servo drives.

The usual approach to model mesh friction as an
element which switches between two different effi-
ciencies, leads in such situations to chattering, i. e.,
very fast switching between the two possible modes
which in turn results in very small step sizes and prac-
tically stops the simulation. The new approach de-
scribed here will lead to much more reliable and more
efficient simulations.

The gear losses in standard gears have been im-
plemented in a new model LossyGear which will
be available in the next version of the Modelica.-
Mechanics.Rotational library. The gear loss

model for planetary gears has been implemented in a
new model LossyPlanetary which will be avail-
able in the next version of the PowerTrain library.
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